Pub Date : 2024-03-04DOI: 10.1007/s13659-024-00442-2
Li-Jun Ruan, Zhi-Jun Song, Ren-Wang Jiang
Bufadienolides, naturally occurring steroids primarily found in toads, have garnered attention for their pharmacological properties and ecological significance. In this study, we isolated and identified 21 bufadienolides from the gallbladders of Bufo gargarizans, comprising four new compounds and 17 known ones. Notably, the predominance of 15 bufadienolides with a 3α-OH configuration in toad bile differs significantly from the 3β-OH bufadienolides found in venom secreted by toad glands. Moreover, our investigation into the biotransformation of 3β-OH and 3α-OH bufadienolides in the liver and kidney tissues of toads revealed an irreversible conversion from 3β-OH to 3α-OH bufadienolides, suggesting a crucial role in toad self-detoxification. These findings provide valuable insights into the structural diversity of bufadienolides and advance our understanding of their medical and ecological significance.
{"title":"3α-Hydroxybufadienolides in Bufo gallbladders: structural insights and biotransformation","authors":"Li-Jun Ruan, Zhi-Jun Song, Ren-Wang Jiang","doi":"10.1007/s13659-024-00442-2","DOIUrl":"10.1007/s13659-024-00442-2","url":null,"abstract":"<div><p>Bufadienolides, naturally occurring steroids primarily found in toads, have garnered attention for their pharmacological properties and ecological significance. In this study, we isolated and identified 21 bufadienolides from the gallbladders of <i>Bufo gargarizans</i>, comprising four new compounds and 17 known ones. Notably, the predominance of 15 bufadienolides with a 3α-OH configuration in toad bile differs significantly from the 3β-OH bufadienolides found in venom secreted by toad glands. Moreover, our investigation into the biotransformation of 3β-OH and 3α-OH bufadienolides in the liver and kidney tissues of toads revealed an irreversible conversion from 3β-OH to 3α-OH bufadienolides, suggesting a crucial role in toad self-detoxification. These findings provide valuable insights into the structural diversity of bufadienolides and advance our understanding of their medical and ecological significance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"14 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1007/s13659-024-00441-3
Yifei Xie, Guotong Sun, Yue Tao, Wen Zhang, Shiying Yang, Li Zhang, Yang Lu, Guanhua Du
Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.