首页 > 最新文献

Advanced Nonlinear Studies最新文献

英文 中文
On constant higher order mean curvature hypersurfaces in H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ 论 H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ 中的恒定高阶均值曲率超曲面
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-15 DOI: 10.1515/ans-2023-0115
Barbara Nelli, Giuseppe Pipoli, Giovanni Russo
We classify hypersurfaces with rotational symmetry and positive constant r-th mean curvature in H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ . Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros–Rosenberg type theorem in H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ : we show that compact connected hypersurfaces of constant r-th mean curvature embedded in H n × [ 0 , ) ${mathbb{H}}^{n}{times}left[0,infty right)$ with boundary in the slice H n × { 0 } ${mathbb{H}}^{n}{times}left{0right}$ are topological disks under suitable assumptions.
我们对在 H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ 中具有旋转对称性和正常数 r 次平均曲率的超曲面进行了分类。此外,还讨论了在双曲平移下不变的特定恒定高阶平均曲率超曲面。这些不变超曲面中的一些被用作壁垒,以证明 H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ 中的一个 Ros-Rosenberg 型定理:我们证明了嵌入在 H n × [ 0 , ∞ ) ${mathbb{H}}^{n}{times}left[0,infty right)$ 中的边界在切片 H n × { 0 } 中的恒定 r 平均曲率的紧凑连通超曲面。 ${mathbb{H}}^{n}{times}left{0right}$ 在合适的假设条件下是拓扑磁盘。
{"title":"On constant higher order mean curvature hypersurfaces in H n × R ${mathbb{H}}^{n}{times}mathbb{R}$","authors":"Barbara Nelli, Giuseppe Pipoli, Giovanni Russo","doi":"10.1515/ans-2023-0115","DOIUrl":"https://doi.org/10.1515/ans-2023-0115","url":null,"abstract":"We classify hypersurfaces with rotational symmetry and positive constant <jats:italic>r</jats:italic>-th mean curvature in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>. Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros–Rosenberg type theorem in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>: we show that compact connected hypersurfaces of constant <jats:italic>r</jats:italic>-th mean curvature embedded in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}left[0,infty right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> with boundary in the slice <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}left{0right}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula> are topological disks under suitable assumptions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"51 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients 具有可变系数的非线性薛定谔方程的 L 2 归一化解的存在性和多重性
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-14 DOI: 10.1515/ans-2022-0056
Norihisa Ikoma, Mizuki Yamanobe
The existence of L 2–normalized solutions is studied for the equation Δ u + μ u = f ( x , u ) in R N , R N u 2 d x = m . $-{Delta}u+mu u=fleft(x,uright)quad quad text{in} {mathbf{R}}^{N},quad {int }_{{mathbf{R}}^{N}}{u}^{2} mathrm{d}x=m.$ Here m > 0 and f(x, s) are given, f(x, s) has the L 2-subcritical growth and (μ, u) ∈ R × H 1(R N ) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.
研究了 R N 中方程 - Δ u + μ u = f ( x , u ) 的 L 2 归一化解的存在性 , ∫ R N u 2 d x = m . $-{Delta}u+mu u=fleft(x,uright)quad quad text{in}{mathbf{R}}^{N},quad {int }_{mathbf{R}}^{N}}{u}^{2}这里 m > 0 和 f(x, s) 是给定的,f(x, s) 具有 L 2 次临界增长,且 (μ, u)∈ R × H 1(R N ) 是未知的。本文采用 Hirata 和 Tanaka 的论证("具有 L 2 约束的非线性标量场方程:山口和对称山口方法",《非线性研究》,第 19 卷第 2 期,第 263-290 页,2019 年),找到了拉格朗日函数的临界点。为了获得拉格朗日函数的临界点,我们使用了 Palais-Smale-Cerami 条件,而不是 Hirata 和 Tanaka("带 L 2 约束的非线性标量场方程:山口和对称山口方法",《非线性研究》,第 19 卷第 2 期,第 263-290 页,2019 年)中的条件 (PSP)。我们还证明了径向对称下的多重性结果。
{"title":"The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients","authors":"Norihisa Ikoma, Mizuki Yamanobe","doi":"10.1515/ans-2022-0056","DOIUrl":"https://doi.org/10.1515/ans-2022-0056","url":null,"abstract":"The existence of <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>–normalized solutions is studied for the equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mspace width=\"0.17em\" /> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math> $-{Delta}u+mu u=fleft(x,uright)quad quad text{in} {mathbf{R}}^{N},quad {int }_{{mathbf{R}}^{N}}{u}^{2} mathrm{d}x=m.$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0056_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> Here <jats:italic>m</jats:italic> &gt; 0 and <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) are given, <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) has the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-subcritical growth and (<jats:italic>μ</jats:italic>, <jats:italic>u</jats:italic>) ∈ R × <jats:italic>H</jats:italic> <jats:sup>1</jats:sup>(R <jats:sup> <jats:italic>N</jats:italic> </jats:sup>) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"305 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities 分数哈特里方程和波霍扎耶夫等式的无限多自由或规定质量解
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-14 DOI: 10.1515/ans-2023-0110
Silvia Cingolani, Marco Gallo, Kazunaga Tanaka
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width="0.3333em" /> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:math> <jats:tex-math> ${left(-{Delta}right)}^{s}u+mu u=left({I}_{alpha }{ast}Fleft(uright)right){F}^{prime }left(uright)quad text{in} {mathbb{R}}^{N},$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0110_ineq_001.png" /> </jats:alternatives> </jats:inline-formula> (*) where <jats:italic>μ</jats:italic> > 0, <jats:italic>s</jats:italic> ∈ (0, 1), <jats:italic>N</jats:italic> ≥ 2, <jats:italic>α</jats:italic> ∈ (0, <jats:italic>N</jats:italic>), <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>∼</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy="false">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy="false">|</m:mo> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> ${I}_{alpha }sim frac{1}{vert x{vert }^{N-alpha }}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0110_ineq_002.png" /> </jats:alternatives> </jats:inline-formula> is the Riesz potential, and <jats:italic>F</jats:italic> is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant="double-struck
本文研究了以下非线性分数哈特里(或乔夸-佩卡)方程 ( - Δ ) s u + μ u = ( I α * F ( u ) ) F ′ ( u ) in R N , ${left(-{Delta}right)}^{s}u+mu u=left({I}_{alpha }{ast}Fleft(uright)right){F}^{prime }left(uright)quad text{in}{mathbb{R}}^{N},$ (*) 其中 μ > 0, s∈ (0, 1), N ≥ 2, α∈ (0, N), I α ∼ 1 | x | N - α ${I}_{alpha }sim frac{1}{vert xvert }^{N-alpha }}$ 是里兹势,F 是一般的次临界非线性。我们的目标是通过假设 F 为奇数或偶数,证明多个(径向对称)解 u∈ H s ( R N ) $uin {H}^{s}left({mathbb{R}}^{N}right)$ 的存在性:我们既考虑了 μ > 0 固定的情况,也考虑了 ∫ R N u 2 = m > 0 ${int }_{mathbb{R}}^{N}}{u}^{2}=m{ >}0$ 规定的情况。这里我们还简化了一些针对 s = 1 的论证(S. Cingolani, M. Gallo, and K. Tanaka, "Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities," Calc.Var.Partial Differ.Equ.,第 61 卷,第 68 期,第 34 页,2022 年)。证明中的一个关键点是研究合适的多维奇数路径,这是由 Berestycki 和 Lions 在局部情况下完成的(H. Berestycki and P.-L. Lions, "Nonlinear scalar field equations II: existence of infinitely many solutions," Arch.Ration.Mech.Anal.4, pp.特别是,在对无约束问题的山口值进行渐近研究(当 μ 变化时)时,需要这些路径的一些特性,然后利用这些特性来描述约束问题的几何形状,并检测出任意 m > 0 的无限多归一化解。
{"title":"Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities","authors":"Silvia Cingolani, Marco Gallo, Kazunaga Tanaka","doi":"10.1515/ans-2023-0110","DOIUrl":"https://doi.org/10.1515/ans-2023-0110","url":null,"abstract":"In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;*&lt;/m:mo&gt; &lt;m:mi&gt;F&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;F&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;′&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;m:mtext&gt;in&lt;/m:mtext&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${left(-{Delta}right)}^{s}u+mu u=left({I}_{alpha }{ast}Fleft(uright)right){F}^{prime }left(uright)quad text{in} {mathbb{R}}^{N},$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; (*) where &lt;jats:italic&gt;μ&lt;/jats:italic&gt; &gt; 0, &lt;jats:italic&gt;s&lt;/jats:italic&gt; ∈ (0, 1), &lt;jats:italic&gt;N&lt;/jats:italic&gt; ≥ 2, &lt;jats:italic&gt;α&lt;/jats:italic&gt; ∈ (0, &lt;jats:italic&gt;N&lt;/jats:italic&gt;), &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;∼&lt;/m:mo&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${I}_{alpha }sim frac{1}{vert x{vert }^{N-alpha }}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the Riesz potential, and &lt;jats:italic&gt;F&lt;/jats:italic&gt; is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"80 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp affine weighted L 2 Sobolev inequalities on the upper half space 上半空间上的尖锐仿射加权 L 2 索波列夫不等式
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-14 DOI: 10.1515/ans-2023-0117
Jingbo Dou, Yunyun Hu, Caihui Yue
We establish some sharp affine weighted L 2 Sobolev inequalities on the upper half space, which involves a divergent operator with degeneracy on the boundary. Moreover, for some certain exponents cases, we also characterize the extremal functions and best constants. Our approach only relies on the L 2 structure of gradient norm, affine invariance and a class of weighted L 2 Sobolev inequality on the upper half space. This is a simple approach which does not depend on the geometric structure of Euclidean space such as Brunn–Minkowski theory on convex geometry.
我们在上半空间建立了一些尖锐的仿射加权 L 2 Sobolev 不等式,其中涉及边界上具有退化性的发散算子。此外,对于某些指数情况,我们还描述了极值函数和最佳常数的特征。我们的方法仅依赖于梯度规范的 L 2 结构、仿射不变性和上半空间的一类加权 L 2 Sobolev 不等式。这是一种简单的方法,不依赖于欧几里得空间的几何结构,如凸几何上的布伦-闵科夫斯基理论。
{"title":"Sharp affine weighted L 2 Sobolev inequalities on the upper half space","authors":"Jingbo Dou, Yunyun Hu, Caihui Yue","doi":"10.1515/ans-2023-0117","DOIUrl":"https://doi.org/10.1515/ans-2023-0117","url":null,"abstract":"We establish some sharp affine weighted <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> Sobolev inequalities on the upper half space, which involves a divergent operator with degeneracy on the boundary. Moreover, for some certain exponents cases, we also characterize the extremal functions and best constants. Our approach only relies on the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> structure of gradient norm, affine invariance and a class of weighted <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> Sobolev inequality on the upper half space. This is a simple approach which does not depend on the geometric structure of Euclidean space such as Brunn–Minkowski theory on convex geometry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An upper bound for the least energy of a sign-changing solution to a zero mass problem 零质量问题符号变化解的最小能量上限
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-14 DOI: 10.1515/ans-2022-0065
Mónica Clapp, Liliane Maia, Benedetta Pellacci
We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation Δ u = f ( u ) , u D 1,2 ( R N ) , $-{Delta}u=fleft(uright), uin {D}^{1,2}left({mathrm{R}}^{N}right),$ where N ≥ 5 and the nonlinearity f is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12c 0 if N = 5, 6 and smaller than 10c 0 if N ≥ 7, where c 0 is the ground state energy.
我们给出了非线性标量场方程- Δ u = f ( u ) , u ∈ D 1,2 ( R N ) 的符号变化解的最小能量上限、 $-{{Delta}u=fleft(uright), uin {D}^{1,2}left({mathrm{R}}^{N}right),$ 其中 N ≥ 5,非线性 f 在无穷远处是次临界的,在原点附近是超临界的。更确切地说,我们证明了非径向符号变化解的存在,当 N = 5, 6 时,其能量小于 12c 0;当 N ≥ 7 时,其能量小于 10c 0,其中 c 0 为基态能量。
{"title":"An upper bound for the least energy of a sign-changing solution to a zero mass problem","authors":"Mónica Clapp, Liliane Maia, Benedetta Pellacci","doi":"10.1515/ans-2022-0065","DOIUrl":"https://doi.org/10.1515/ans-2022-0065","url":null,"abstract":"We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>D</m:mi> <m:mn>1,2</m:mn> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:msup> <m:mi mathvariant=\"normal\">R</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $-{Delta}u=fleft(uright), uin {D}^{1,2}left({mathrm{R}}^{N}right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>N</jats:italic> ≥ 5 and the nonlinearity <jats:italic>f</jats:italic> is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> = 5, 6 and smaller than 10<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> ≥ 7, where <jats:italic>c</jats:italic> <jats:sub>0</jats:sub> is the ground state energy.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"143 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A C 2,α,β estimate for complex Monge–Ampère type equations with conic sigularities 具有圆锥西格的复杂蒙日-安培方程的 C 2,α,β 估计值
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-13 DOI: 10.1515/ans-2023-0113
Liding Huang, Gang Tian, Jiaxiang Wang
In this paper, we give an alternative approach to the C 2,α,β estimate for complex Monge-Ampère equations with cone singularities along simple normal crossing divisors.
在本文中,我们给出了另一种方法,即沿简单法线交叉除数具有圆锥奇点的复杂蒙日-安培方程的 C 2,α,β 估计。
{"title":"A C 2,α,β estimate for complex Monge–Ampère type equations with conic sigularities","authors":"Liding Huang, Gang Tian, Jiaxiang Wang","doi":"10.1515/ans-2023-0113","DOIUrl":"https://doi.org/10.1515/ans-2023-0113","url":null,"abstract":"In this paper, we give an alternative approach to the <jats:italic>C</jats:italic> <jats:sup>2,<jats:italic>α</jats:italic>,<jats:italic>β</jats:italic> </jats:sup> estimate for complex Monge-Ampère equations with cone singularities along simple normal crossing divisors.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"72 6 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry of branched minimal surfaces of finite index 有限指数分支极小曲面的几何学
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-12 DOI: 10.1515/ans-2023-0118
William H. Meeks, Joaquín Pérez
Given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:mi>I</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant="double-struck">N</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy="false">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy="false">}</m:mo> </m:mrow> </m:math> <jats:tex-math> $I,Bin mathbb{N}cup left{0right}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0118_ineq_001.png" /> </jats:alternatives> </jats:inline-formula>, we investigate the existence and geometry of complete finitely branched minimal surfaces <jats:italic>M</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0118_ineq_002.png" /> </jats:alternatives> </jats:inline-formula> with Morse index at most <jats:italic>I</jats:italic> and total branching order at most <jats:italic>B</jats:italic>. Previous works of Fischer-Colbrie (“On complete minimal surfaces with finite Morse index in 3-manifolds,” <jats:italic>Invent. Math.</jats:italic>, vol. 82, pp. 121–132, 1985) and Ros (“One-sided complete stable minimal surfaces,” <jats:italic>J. Differ. Geom.</jats:italic>, vol. 74, pp. 69–92, 2006) explain that such surfaces are precisely the complete minimal surfaces in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0118_ineq_003.png" /> </jats:alternatives> </jats:inline-formula> of finite total curvature and finite total branching order. Among other things, we derive scale-invariant weak chord-arc type results for such an <jats:italic>M</jats:italic> with estimates that are given in terms of <jats:italic>I</jats:italic> and <jats:italic>B</jats:italic>. In order to obtain some of our main results for these special surfaces, we obtain general intrinsic monotonicity of area formulas for <jats:italic>m</jats:italic>-dimensional submanifolds Σ of an <jats:italic>n</jats:italic>-dimensional Riemannian manifold <jats:italic>X</jats:italic>, where these area estimates depend on the geometry of <jats:italic>X</jats:italic> and upper bounds on the lengths of the mean curvature vectors of Σ. We also describe a family of complete, finitely branched minimal surfaces in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"
给定 I , B ∈ N∪ { 0 } $I,Bin mathbb{N}cup left{0right}$, 我们研究了 R 3 ${mathbb{R}}^{3}$ 中具有最多 I 的莫尔斯指数和最多 B 的总分支序的完整有限分支极小曲面 M 的存在性和几何性质。Math., vol. 82, pp.Geom., vol. 74, pp.为了得到这些特殊曲面的一些主要结果,我们得到了 n 维黎曼流形 X 的 m 维子流形 Σ 的一般内在单调性面积公式,其中这些面积估计值取决于 X 的几何形状和 Σ 的平均曲率向量长度的上限。我们还描述了 R 3 ${mathbb{R}}^{3}$ 中一系列稳定且不可定向的完整有限分支极小曲面;这些例子概括了经典的 Henneberg 极小曲面。
{"title":"Geometry of branched minimal surfaces of finite index","authors":"William H. Meeks, Joaquín Pérez","doi":"10.1515/ans-2023-0118","DOIUrl":"https://doi.org/10.1515/ans-2023-0118","url":null,"abstract":"Given &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;B&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;N&lt;/m:mi&gt; &lt;m:mo&gt;∪&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;{&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;}&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; $I,Bin mathbb{N}cup left{0right}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, we investigate the existence and geometry of complete finitely branched minimal surfaces &lt;jats:italic&gt;M&lt;/jats:italic&gt; in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}^{3}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with Morse index at most &lt;jats:italic&gt;I&lt;/jats:italic&gt; and total branching order at most &lt;jats:italic&gt;B&lt;/jats:italic&gt;. Previous works of Fischer-Colbrie (“On complete minimal surfaces with finite Morse index in 3-manifolds,” &lt;jats:italic&gt;Invent. Math.&lt;/jats:italic&gt;, vol. 82, pp. 121–132, 1985) and Ros (“One-sided complete stable minimal surfaces,” &lt;jats:italic&gt;J. Differ. Geom.&lt;/jats:italic&gt;, vol. 74, pp. 69–92, 2006) explain that such surfaces are precisely the complete minimal surfaces in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}^{3}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_003.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; of finite total curvature and finite total branching order. Among other things, we derive scale-invariant weak chord-arc type results for such an &lt;jats:italic&gt;M&lt;/jats:italic&gt; with estimates that are given in terms of &lt;jats:italic&gt;I&lt;/jats:italic&gt; and &lt;jats:italic&gt;B&lt;/jats:italic&gt;. In order to obtain some of our main results for these special surfaces, we obtain general intrinsic monotonicity of area formulas for &lt;jats:italic&gt;m&lt;/jats:italic&gt;-dimensional submanifolds Σ of an &lt;jats:italic&gt;n&lt;/jats:italic&gt;-dimensional Riemannian manifold &lt;jats:italic&gt;X&lt;/jats:italic&gt;, where these area estimates depend on the geometry of &lt;jats:italic&gt;X&lt;/jats:italic&gt; and upper bounds on the lengths of the mean curvature vectors of Σ. We also describe a family of complete, finitely branched minimal surfaces in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" ","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"58 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segregated solutions for nonlinear Schrödinger systems with a large number of components 具有大量分量的非线性薛定谔系统的分离解
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-12 DOI: 10.1515/ans-2022-0076
Haixia Chen, Angela Pistoia
In this paper we are concerned with the existence of segregated non-radial solutions for nonlinear Schrödinger systems with a large number of components in a weak fully attractive or repulsive regime in presence of a suitable external radial potential.
在本文中,我们关注的是在存在适当外部径向势的情况下,具有大量分量的非线性薛定谔系统在弱完全吸引力或排斥力状态下的分离非径向解的存在。
{"title":"Segregated solutions for nonlinear Schrödinger systems with a large number of components","authors":"Haixia Chen, Angela Pistoia","doi":"10.1515/ans-2022-0076","DOIUrl":"https://doi.org/10.1515/ans-2022-0076","url":null,"abstract":"In this paper we are concerned with the existence of segregated non-radial solutions for nonlinear Schrödinger systems with a large number of components in a weak fully attractive or repulsive regime in presence of a suitable external radial potential.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semilinear Dirichlet problem involving the fractional Laplacian in R+ n 涉及 R+ n 中分数拉普拉斯的半线性迪里夏特问题
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-12 DOI: 10.1515/ans-2023-0102
Yan Li
We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:msubsup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfenced close="}" open="{"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo stretchy="false">∣</m:mo> <m:msub> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> ${mathbb{R}}_{+}^{n}=left{xin {mathbb{R}}^{n}mid {x}_{1}{ >}0right}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0102_ineq_002.png" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:mfenced close="" open="{"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign="left"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign="left"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width="2em" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign="left"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign="left"> <m:mspace width="2em" /> <m:mspace width="0.3333em" /> <m:mspace width="0.3333em" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width="2em" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign="left"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign="left"> <m:mspace width="2em" /> <m:mspace width="0.3333em" /> <m:mspace width="0.3333em" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>
我们研究涉及上半空间 R + n = x ∈ R n ∣ x 1 > 0 ${mathbb{R}}_{+}^{n}=left{xin {mathbb{R}}^{n}mid {x}_{1}{ >}0right}$ : ( - Δ ) s u ( x ) = f ( u ( x ) ) , x ∈ R + n , u ( x ) > 0 , x ∈ R + n , u ( x ) = 0 , x ∉ R + n 。 begin{cases}quad hfill & {left(-{Delta}right)}^{s}uleft(xright)=fleft(uleft(xright)right),qquad xin {mathbb{R}}_{+}^{n},hfill quad hfill &;qquad uleft(xright){ >}0,qquad xin {mathbb{R}}_{+}^{n},hfill quad hfill & qquad uleft(xright)=0,qquad xnotin {mathbb{R}}_{+}^{n}.hfill end{cases}. .我们证明正解在 x 1 方向上是单调递增的,假设 u(x) 的增长速度不超过 |x| γ,且 γ ∈ (0, 2s)为 |x| 大。首先,我们建立了狭长区域的最大原则。然后,我们应用分数拉普拉卡方移动平面的直接方法来推导单调性。作为单调性结果的一个应用,我们用它来证明 f(u) = u p , p∈ 1 , n - 1 + 2 s n - 1 - 2 s $pin left(1,frac{n-1+2s}{n-1-2s}right)$ 的有界正解在 R + n ${mathbb{R}}_{+}^{n}$ 中不存在。
{"title":"A semilinear Dirichlet problem involving the fractional Laplacian in R+ n","authors":"Yan Li","doi":"10.1515/ans-2023-0102","DOIUrl":"https://doi.org/10.1515/ans-2023-0102","url":null,"abstract":"We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mfenced close=\"}\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo stretchy=\"false\"&gt;∣&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;&gt;&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}_{+}^{n}=left{xin {mathbb{R}}^{n}mid {x}_{1}{ &gt;}0right}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;: &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mfenced close=\"\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mtable&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;&gt;&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity 指数非线性混合阶 Hénon-Hardy 型系统解的 Liouville 定理
IF 1.8 2区 数学 Q1 MATHEMATICS Pub Date : 2024-03-12 DOI: 10.1515/ans-2023-0109
Wei Dai, Shaolong Peng
In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:msubsup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${mathbb{R}}_{+}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0109_ineq_001.png" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <m:mfenced close="" open="{"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign="left"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy="false">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy="false">|</m:mo> </m:mrow> <m:mrow> <m:mi>a</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width="0.17em" /> <m:mspace width="0.17em" /> <m:mspace width="0.17em" /> <m:mspace width="0.17em" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width="1em" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign="left"> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy="false">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy="false">|</m:mo> </m:mrow> <m:mrow> <m:mi>b</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo
本文关注的是半空间 R + 2 ${mathbb{R}}_{+}^{2}$ 上具有指数非线性的 Hénon-Hardy 型系统: ( - Δ ) α 2 u ( x ) = | x | a u p 1 ( x ) e q 1 v ( x ) , x ∈ R + 2 , ( - Δ ) v ( x ) = | x | b u p 2 ( x ) e q 2 v ( x ) , x ∈ R + 2 、 $begin{cases}{left(-{Delta}right)}^{frac{alpha }{2}}uleft(xright)=vert x{vert }^{a}{u}^{{p}_{1}}left(xright){e}^{{q}_{1}vleft(xright)}, xin {mathbb{R}}_{+}^{2},quad hfill left(-{Delta}right)vleft(xright)=vert x{vert }^{b}{u}^{p}_{2}}left(xright){e}^{q}_{2}vleft(xright)}、xin {mathbb{R}}_{+}^{2},quad hfill end{cases}$ with Dirichlet boundary conditions, where 0 <;α < 2 和 p 1, p 2, q 1, q 2 > 0。首先,我们在假设 p 1 ≥ - 2 a α - 1 ${p}_{1}ge -frac{2a}{alpha }-1$ 的条件下导出了与上述系统相对应的积分表示公式。然后,我们通过缩放球方法证明上述系统解的柳维尔定理。
{"title":"Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity","authors":"Wei Dai, Shaolong Peng","doi":"10.1515/ans-2023-0109","DOIUrl":"https://doi.org/10.1515/ans-2023-0109","url":null,"abstract":"In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}_{+}^{2}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;: &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mfenced close=\"\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mtable&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;a&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;e&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"1em\" /&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;b&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Nonlinear Studies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1