首页 > 最新文献

Neurochemical Research最新文献

英文 中文
Neuroprotective Effects Exerted by a Combination of Selected Lactic Acid Bacteria in a Mouse Parkinsonism Model under Levodopa-Benserazide Treatment. 精选乳酸菌组合在左旋多巴-苄丝肼治疗下的小鼠帕金森病模型中发挥的神经保护作用
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-01 DOI: 10.1007/s11064-024-04217-6
Daiana Pérez Visñuk, Jean Guy LeBlanc, Alejandra de Moreno de LeBlanc

Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.

微生物群-肠-脑轴的改变与帕金森病(PD)的肠道和神经元炎症有关。这项工作的目的是研究由植物乳杆菌(Lactiplantibacillus plantarum)CRL2130(核黄素过量产生菌株)、嗜热链球菌(Streptococcus thermophilus)CRL804(核黄素过量产生菌株)和嗜酸链球菌(Streptococcus thermophilus)组成的乳酸菌(LAB)组合(MIX)的神经保护作用的一些相关机制、在细胞培养中,以及在用 1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱导的老年小鼠帕金森病慢性模型和左旋多巴-苄丝肼治疗中,N2a 分化出了叶酸菌株 CRL2130 和 CRL807(免疫调节菌株)。在体外,将 N2a 分化神经元暴露于神经毒素 1-甲基-4-苯基吡啶(MPP+),并用细胞内细菌提取物或暴露于细菌提取物的 BV-2 细胞的条件培养基进行处理。在体内,对运动技能、大脑中的酪氨酸水解酶(TH)以及血清和大脑中的细胞因子浓度进行了评估。此外,还对粪便微生物群和小肠组织学进行了研究。结果表明,服用 LAB MIX 所产生的神经保护作用不会干扰左旋多巴-苄丝肼治疗。这种效果可能与 MIX 中所选 LAB 的抗氧化和免疫调节潜力有关,也与运动测试的显著改善和大脑中 TH + 细胞数量的增加有关。此外,服用 LAB MIX 还能调节免疫反应。服用 LAB 可减少肠道损伤,增加绒毛长度/绒毛深度比。最后,在左旋多巴-苄丝肼治疗的同时服用 LAB MIX 能够部分恢复在模型中观察到的肠道菌群失调,显示出与健康对照组更相似的特征,并突出了乳酸杆菌家族的增加。不同的作用机制可能与所选 LAB 组合的保护作用有关,该组合有可能被评估为传统帕金森病疗法的辅助疗法。
{"title":"Neuroprotective Effects Exerted by a Combination of Selected Lactic Acid Bacteria in a Mouse Parkinsonism Model under Levodopa-Benserazide Treatment.","authors":"Daiana Pérez Visñuk, Jean Guy LeBlanc, Alejandra de Moreno de LeBlanc","doi":"10.1007/s11064-024-04217-6","DOIUrl":"10.1007/s11064-024-04217-6","url":null,"abstract":"<p><p>Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4,5-Dimethoxycanthin-6-one Inhibits Glioblastoma Stem Cell and Tumor Growth by Inhibiting TSPAN1 Interaction with TM4SF1. 4,5-二甲氧基黄嘌呤-6-酮通过抑制 TSPAN1 与 TM4SF1 的相互作用抑制胶质母细胞瘤干细胞和肿瘤生长
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-26 DOI: 10.1007/s11064-024-04211-y
Wei Li, Li-Jian Yang, Yuan-Yuan Xiong, Zeng-Shi Li, Xi Li, Yi Wen

Glioblastoma stem cells (GSCs) have been implicated in the self-renewal and treatment resistance of glioblastoma (GBM). Our previous study found that 4,5-dimethoxycanthin-6-one has the potential to inhibit GBM cell proliferation. This current study aims to elucidate the molecular mechanism underlying the effects of 4,5-dimethoxycanthin-6-one in GBM development. The effect of 4,5-dimethoxycanthin-6-one on GSC formation and differentiation was explored in human GBM cell lines U251 and U87. Subsequently, 4,5-dimethoxycanthin-6-one binding to tetraspanin 1 (TSPAN1) / transmembrane 4 L six family member 1 (TM4SF1) was analyzed by molecular simulation docking. Co-immunoprecipitation (Co-IP) and immunofluorescence (IF) were used to assess the interactions between TSPAN1 and TM4SF1 in GSCs. Cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assay. To evaluate cell migration, invasion and apoptosis, we employed wound healing assay, transwell and flow cytometry, respectively. Furthermore, subcutaneous xenograft tumor models in nude mice were constructed to evaluate the impact of 4,5-dimethoxycanthin-6-one on GSCs in vivo by examining tumor growth and histological characteristics. 4,5-Dimethoxycanthin-6-one inhibited GSC formation and promoted stem cell differentiation in a concentration-dependent manner. Molecular docking models of 4,5-dimethoxycanthin-6-one with TM4SF1 and TSPAN1 were constructed. Then, the interaction between TSPAN1 and TM4SF1 in GSC was clarified. Moreover, 4,5-dimethoxycanthin-6-one significantly inhibited the expressions of TM4SF1 and TSPAN1 in vitro and in vivo. Overexpression of TSPAN1 partially reversed the inhibitory effects of 4,5-dimethoxycanthin-6-one on GSC formation, proliferation, migration and invasion. 4,5-Dimethoxycanthin-6-one inhibited GBM progression by inhibiting TSPAN1/TM4SF1 axis. 4,5-Dimethoxycanthin-6-one might be a novel and effective drug for the treatment of GBM.

胶质母细胞瘤干细胞(GSCs)与胶质母细胞瘤(GBM)的自我更新和耐药性有关。我们之前的研究发现,4,5-二甲氧基黄嘌呤-6-酮具有抑制 GBM 细胞增殖的潜力。本研究旨在阐明 4,5-二甲氧基黄嘌呤-6-酮在 GBM 生长过程中的分子机制。研究人员在人类 GBM 细胞系 U251 和 U87 中探讨了 4,5-二甲氧基黄嘌呤-6-酮对 GSC 形成和分化的影响。随后,通过分子模拟对接分析了4,5-二甲氧基黄嘌呤-6-酮与四跨蛋白1(TSPAN1)/跨膜4 L六家族成员1(TM4SF1)的结合。共免疫沉淀(Co-IP)和免疫荧光(IF)用于评估 TSPAN1 和 TM4SF1 在 GSCs 中的相互作用。通过细胞计数试剂盒-8(CCK-8)和集落形成试验检测细胞增殖。为了评估细胞迁移、侵袭和凋亡,我们分别采用了伤口愈合试验、透孔法和流式细胞术。此外,我们还构建了裸鼠皮下异种移植肿瘤模型,通过检测肿瘤生长和组织学特征来评估 4,5-二甲氧基黄嘌呤-6-酮对体内 GSCs 的影响。4,5-二甲氧基黄嘌呤-6-酮以浓度依赖的方式抑制了GSC的形成并促进了干细胞的分化。研究人员构建了4,5-二甲氧基黄嘌呤-6-酮与TM4SF1和TSPAN1的分子对接模型。然后,阐明了TSPAN1和TM4SF1在GSC中的相互作用。此外,4,5-二甲氧基黄嘌呤-6-酮能显著抑制TM4SF1和TSPAN1在体外和体内的表达。过量表达TSPAN1可部分逆转4,5-二甲氧基黄嘌呤-6-酮对GSC形成、增殖、迁移和侵袭的抑制作用。4,5-二甲氧基黄嘌呤-6-酮通过抑制 TSPAN1/TM4SF1 轴来抑制 GBM 的进展。4,5-二甲氧基黄嘌呤-6-酮可能是一种治疗GBM的新型有效药物。
{"title":"4,5-Dimethoxycanthin-6-one Inhibits Glioblastoma Stem Cell and Tumor Growth by Inhibiting TSPAN1 Interaction with TM4SF1.","authors":"Wei Li, Li-Jian Yang, Yuan-Yuan Xiong, Zeng-Shi Li, Xi Li, Yi Wen","doi":"10.1007/s11064-024-04211-y","DOIUrl":"10.1007/s11064-024-04211-y","url":null,"abstract":"<p><p>Glioblastoma stem cells (GSCs) have been implicated in the self-renewal and treatment resistance of glioblastoma (GBM). Our previous study found that 4,5-dimethoxycanthin-6-one has the potential to inhibit GBM cell proliferation. This current study aims to elucidate the molecular mechanism underlying the effects of 4,5-dimethoxycanthin-6-one in GBM development. The effect of 4,5-dimethoxycanthin-6-one on GSC formation and differentiation was explored in human GBM cell lines U251 and U87. Subsequently, 4,5-dimethoxycanthin-6-one binding to tetraspanin 1 (TSPAN1) / transmembrane 4 L six family member 1 (TM4SF1) was analyzed by molecular simulation docking. Co-immunoprecipitation (Co-IP) and immunofluorescence (IF) were used to assess the interactions between TSPAN1 and TM4SF1 in GSCs. Cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assay. To evaluate cell migration, invasion and apoptosis, we employed wound healing assay, transwell and flow cytometry, respectively. Furthermore, subcutaneous xenograft tumor models in nude mice were constructed to evaluate the impact of 4,5-dimethoxycanthin-6-one on GSCs in vivo by examining tumor growth and histological characteristics. 4,5-Dimethoxycanthin-6-one inhibited GSC formation and promoted stem cell differentiation in a concentration-dependent manner. Molecular docking models of 4,5-dimethoxycanthin-6-one with TM4SF1 and TSPAN1 were constructed. Then, the interaction between TSPAN1 and TM4SF1 in GSC was clarified. Moreover, 4,5-dimethoxycanthin-6-one significantly inhibited the expressions of TM4SF1 and TSPAN1 in vitro and in vivo. Overexpression of TSPAN1 partially reversed the inhibitory effects of 4,5-dimethoxycanthin-6-one on GSC formation, proliferation, migration and invasion. 4,5-Dimethoxycanthin-6-one inhibited GBM progression by inhibiting TSPAN1/TM4SF1 axis. 4,5-Dimethoxycanthin-6-one might be a novel and effective drug for the treatment of GBM.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ribosomal Protein Dynamics and Its Association with Actin Filaments and Local Translation in Axonal Growth Cones of Dorsal Root Ganglia Neurons. 背根神经节神经元轴突生长锥中核糖体蛋白的动态及其与肌动蛋白丝和局部翻译的关联
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-08 DOI: 10.1007/s11064-024-04195-9
Osamu Hoshi, Nobuyuki Takei

Local translation in growth cones plays a critical role in responses to extracellular stimuli, such as axon guidance cues. We previously showed that brain-derived neurotrophic factor activates translation and enhances novel protein synthesis through the activation of mammalian target of rapamycin complex 1 signaling in growth cones of dorsal root ganglion neurons. In this study, we focused on 40S ribosomal protein S6 (RPS6), 60S ribosomal protein P0/1/2 (RPP0/1/2), and actin filaments to determine how localization of ribosomal proteins changes with overall protein synthesis induced by neurotrophins. Our quantitative analysis using immunocytochemistry and super-resolution microscopy indicated that RPS6, RPP0/1/2, and actin tend to colocalize in the absence of stimulation, and that these ribosomal proteins tend to dissociate from actin and associate with each other when local protein synthesis is enhanced. We propose that this is because stimulation causes ribosomal subunits to associate with each other to form actively translating ribosomes (polysomes). This study further clarifies the role of cytoskeletal components in local translation in growth cones.

生长锥中的局部翻译在对轴突导向线索等细胞外刺激的反应中起着至关重要的作用。我们以前的研究表明,脑源性神经营养因子通过激活背根神经节神经元生长锥中的哺乳动物雷帕霉素复合体 1 信号靶激活翻译并增强新蛋白合成。在这项研究中,我们重点研究了 40S 核糖体蛋白 S6 (RPS6)、60S 核糖体蛋白 P0/1/2 (RPP0/1/2) 和肌动蛋白丝,以确定核糖体蛋白的定位如何随着神经营养素诱导的整体蛋白质合成而发生变化。我们利用免疫细胞化学和超分辨率显微镜进行的定量分析表明,在没有刺激的情况下,RPS6、RPP0/1/2 和肌动蛋白倾向于共定位,而当局部蛋白质合成增强时,这些核糖体蛋白倾向于与肌动蛋白分离并相互结合。我们认为这是因为刺激会导致核糖体亚基相互结合,形成活跃翻译的核糖体(多聚体)。这项研究进一步阐明了细胞骨架成分在生长锥局部翻译中的作用。
{"title":"Ribosomal Protein Dynamics and Its Association with Actin Filaments and Local Translation in Axonal Growth Cones of Dorsal Root Ganglia Neurons.","authors":"Osamu Hoshi, Nobuyuki Takei","doi":"10.1007/s11064-024-04195-9","DOIUrl":"10.1007/s11064-024-04195-9","url":null,"abstract":"<p><p>Local translation in growth cones plays a critical role in responses to extracellular stimuli, such as axon guidance cues. We previously showed that brain-derived neurotrophic factor activates translation and enhances novel protein synthesis through the activation of mammalian target of rapamycin complex 1 signaling in growth cones of dorsal root ganglion neurons. In this study, we focused on 40S ribosomal protein S6 (RPS6), 60S ribosomal protein P0/1/2 (RPP0/1/2), and actin filaments to determine how localization of ribosomal proteins changes with overall protein synthesis induced by neurotrophins. Our quantitative analysis using immunocytochemistry and super-resolution microscopy indicated that RPS6, RPP0/1/2, and actin tend to colocalize in the absence of stimulation, and that these ribosomal proteins tend to dissociate from actin and associate with each other when local protein synthesis is enhanced. We propose that this is because stimulation causes ribosomal subunits to associate with each other to form actively translating ribosomes (polysomes). This study further clarifies the role of cytoskeletal components in local translation in growth cones.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. MAMs 和线粒体质量控制:概述及其在阿尔茨海默病中的作用。
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-13 DOI: 10.1007/s11064-024-04205-w
Jian-Sheng Luo, Wen-Hu Zhai, Ling-Ling Ding, Xian-Jie Zhang, Jia Han, Jia-Qi Ning, Xue-Meng Chen, Wen-Cai Jiang, Ru-Yu Yan, Meng-Jie Chen

Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.

阿尔茨海默病(AD)是最普遍的神经退行性疾病,以逐渐发病和缓慢进展为特征,给全球公共卫生带来了巨大挑战。线粒体相关膜(MAMs)是线粒体和内质网之间信号转导和物质运输的重要中心,在阿尔茨海默病的各种病理机制中发挥着关键作用。线粒体质量控制系统失调被认为是导致线粒体功能障碍和随后的神经退行性病变的一个基本因素。最近的研究强调了 MAMs 在调节线粒体质量控制中的作用。本综述将深入探讨AD线粒体质量控制失衡的分子机制,并全面概述MAMs在调节线粒体质量控制中的作用。
{"title":"MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease.","authors":"Jian-Sheng Luo, Wen-Hu Zhai, Ling-Ling Ding, Xian-Jie Zhang, Jia Han, Jia-Qi Ning, Xue-Meng Chen, Wen-Cai Jiang, Ru-Yu Yan, Meng-Jie Chen","doi":"10.1007/s11064-024-04205-w","DOIUrl":"10.1007/s11064-024-04205-w","url":null,"abstract":"<p><p>Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell RNA Sequencing Identifies a Novel Subtype of Microglia with High Cd74 Expression that Facilitates White Matter Inflammation During Chronic Cerebral Hypoperfusion. 单细胞 RNA 测序鉴定出一种 Cd74 高表达的新型小胶质细胞亚型,它在慢性脑灌注不足过程中促进了白质炎症。
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-16 DOI: 10.1007/s11064-024-04206-9
Wenchao Cheng, Yuhan Wang, Chang Cheng, Xiuying Chen, Lan Zhang, Wen Huang

Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.

血管性痴呆(VaD)导致老年人群认知能力逐渐下降,但却缺乏可用的治疗措施。小胶质细胞介导的神经炎症与血管性痴呆的发病机制密切相关,但传统的小胶质细胞 M1/M2 表型分类仍具有局限性和争议性。本研究旨在探讨小胶质细胞是否会在 VaD 中转变为新的亚型。研究人员构建了慢性脑灌注不足(CCH)大鼠模型来模拟 VaD。通过磁激活细胞分拣技术分离小胶质细胞,并通过单细胞 RNA 测序(scRNA-seq)和生物信息学进行分析。通过体内实验进一步验证了 scRNA-seq 和生物信息学推断的结果。在这项研究中,小胶质细胞被分为八个集群。与Sham组相比,MG5群在CCH组白质中的比例明显增加,被命名为慢性缺血相关小胶质细胞(CIAM)。免疫和炎症相关基因,包括 RT1-Db1、RT1-Da、RT1-Ba、Cd74、Spp1、C3 和 Cd68 在 CIAM 中明显上调。富集分析表明,CIAM 具有诱发神经炎症的功能。进一步的研究发现,Cd74 与涉及炎症、细胞增殖和分化的最丰富的 GO 术语相关。此外,腺相关病毒介导的小胶质细胞特异性Cd74敲除降低了白质中CIAM的丰度,从而缓解了炎症细胞因子水平,减轻了白质病变,改善了CCH大鼠的认知障碍。这些研究结果表明,Cd74是CIAM引发神经炎症和诱导小胶质细胞分化为CIAM的核心分子,提示Cd74可能是VaD的潜在治疗靶点。
{"title":"Single-cell RNA Sequencing Identifies a Novel Subtype of Microglia with High Cd74 Expression that Facilitates White Matter Inflammation During Chronic Cerebral Hypoperfusion.","authors":"Wenchao Cheng, Yuhan Wang, Chang Cheng, Xiuying Chen, Lan Zhang, Wen Huang","doi":"10.1007/s11064-024-04206-9","DOIUrl":"10.1007/s11064-024-04206-9","url":null,"abstract":"<p><p>Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luteolin Mitigates D-Galactose-Induced Brain Ageing in Rats: SIRT1-Mediated Neuroprotection. 木犀草素能缓解D-半乳糖诱导的大鼠脑衰老:SIRT1 介导的神经保护。
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-11 DOI: 10.1007/s11064-024-04203-y
Reham L Younis, Rehab M El-Gohary, Asmaa A Ghalwash, Islam Ibrahim Hegab, Maram M Ghabrial, Azza M Aboshanady, Raghad A Mostafa, Alaa H Abd El-Azeem, Eman E Farghal, Asmaa A E Belal, Haidy Khattab

Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.

叶黄素是一种存在于多种植物中的重要天然多酚。大量研究证实了叶黄素在神经退行性疾病中的保护作用,但对其在 D-半乳糖(D-gal)诱导的脑衰老中的治疗作用的研究仍然缺乏。本研究探讨了叶黄素对 D-gal 诱导的脑老化的潜在神经保护作用。研究人员将 40 只大鼠随机分为四组:对照组、木犀草素组、D-gal 组和木犀草素注射 D-gal 组。所有组均接受行为、胆碱能功能和海马线粒体呼吸评估。检测海马氧化、神经炎症、衰老和凋亡指标。评估了 SIRT1、BDNF 和 RAGE 的基因表达。还进行了海马组织病理学研究,以及 GFAP 和 Ki67 免疫反应。我们的研究结果表明,叶黄素能有效缓解 D-gal 诱导的认知障碍,并逆转胆碱能异常。此外,叶黄素还能显著减轻D-gal诱导的海马氧化应激、线粒体功能障碍、神经炎症和衰老,并能显著减少神经元凋亡和上调海马SIRT1 mRNA的表达。总之,我们的研究结果表明,叶黄素通过抗氧化、抗衰老、抗炎症和抗凋亡作用,可减轻D-gal诱发的脑衰老,改善线粒体功能,促进老龄大鼠海马神经再生,这可能是由于SIRT1的上调所致。木犀草素可能是治疗脑衰老相关异常的一种很有前景的方法。
{"title":"Luteolin Mitigates D-Galactose-Induced Brain Ageing in Rats: SIRT1-Mediated Neuroprotection.","authors":"Reham L Younis, Rehab M El-Gohary, Asmaa A Ghalwash, Islam Ibrahim Hegab, Maram M Ghabrial, Azza M Aboshanady, Raghad A Mostafa, Alaa H Abd El-Azeem, Eman E Farghal, Asmaa A E Belal, Haidy Khattab","doi":"10.1007/s11064-024-04203-y","DOIUrl":"10.1007/s11064-024-04203-y","url":null,"abstract":"<p><p>Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression. LINC00894 通过稳定 EIF5 和促进 ATF4 介导的 FGF21 和 ACOD1 表达调控脑缺血再灌注损伤
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-26 DOI: 10.1007/s11064-024-04213-w
Yifei Chen, Hengxiang Cui, Zhuanzhuan Han, Lei Xu, Lin Wang, Yuefei Zhang, Lijun Liu

The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.

非编码 RNA LINC00894 可调节肿瘤增殖和耐药性。然而,它在大脑中的作用仍不清楚。利用 RNA 拉低结合质谱法和 RNA 结合蛋白免疫沉淀法,确定了 EIF5 与 LINC00894 的相互作用。此外,在SH-SY5Y和BE(2)-M17(M17)神经母细胞瘤细胞中,LINC00894敲除会降低EIF5蛋白的表达,而LINC00894过表达则会增加EIF5蛋白的表达。此外,LINC00894 还影响了 EIF5 的泛素化修饰。腺相关病毒(AAV)介导的LINC00894过表达抑制了活化Caspase-3的表达,同时提高了一过性大脑中动脉闭塞再灌注(MCAO/R)大鼠和小鼠的EIF5蛋白水平。同时,在氧-葡萄糖剥夺和再氧合(OGD/R)体外模型中,LINC00894敲除会增加凋亡细胞的数量和活化Caspase-3的表达,而过表达则会降低它们。此外,LINC00894 还能调节 ATF4 蛋白在 OGD/R 和常氧条件下的表达。LINC00894 基因敲除还降低了谷氨酸-半胱氨酸连接酶催化亚基(GCLC)和 ATF4 的表达,下调了谷胱甘肽(GSH)以及体外 GSH 与氧化 GSH 的比率(GSH:GSSG)。通过RNA-seq结合qRT-PCR和免疫印迹,我们发现成纤维细胞生长因子21(FGF21)和醋酸脱羧酶1(ACOD1)作为ATF4靶基因在MCAO/R模型中受到LINC00894的调控。最后,我们发现 ATF4 可转录调控 FGF21 和 ACOD1 的表达;在 OGD/R 模型中,在 LINC00894 敲除的细胞中异位过表达 FGF21 或 ACOD1 可降低活化的 Caspase-3 的表达。我们的研究结果表明,LINC00894通过稳定EIF5和促进EIF5-ATF4依赖性诱导FGF21和ACOD1来调节脑缺血损伤。
{"title":"LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression.","authors":"Yifei Chen, Hengxiang Cui, Zhuanzhuan Han, Lei Xu, Lin Wang, Yuefei Zhang, Lijun Liu","doi":"10.1007/s11064-024-04213-w","DOIUrl":"10.1007/s11064-024-04213-w","url":null,"abstract":"<p><p>The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress. 人脐带间充质干细胞(hUC-MSCs)通过调节炎症和氧化应激在缓解缺血性脑卒中诱发的脑损伤中的神经保护作用
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-18 DOI: 10.1007/s11064-024-04212-x
Guangyang Liu, Daohui Wang, Jianru Jia, Chunhua Hao, Qinggang Ge, Liqiang Xu, Chenliang Zhang, Xin Li, Yi Mi, Herui Wang, Li Miao, Yaoyao Chen, Jingwen Zhou, Xiaodan Xu, Yongjun Liu

Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.

中风导致的脑损伤死亡率很高,仍然是全球面临的一项重大医学挑战。近年来,利用人体脐带间充质干细胞(hUC-MSCs)在不同的成人和新生儿中风动物模型中治疗中风的研究备受关注。然而,利用脐带间充质干细胞全身给药治疗缺血性中风的研究还不够深入。在本研究中,我们进行了各种实验来探索 hUC 间充质干细胞对大鼠神经的保护作用。我们的研究结果表明,静脉注射 2 × 10^7 cells/kg 的高剂量 hUC-间充质干细胞可明显改善缺血性中风导致的脑损伤。这种改善是在诱导大鼠一过性大脑中动脉闭塞(MCAO)和随后的再灌注一天后观察到的。值得注意的是,单次给药 hUC 间充质干细胞的疗效超过了依达拉奉,即使后者连续使用三天也是如此。从机理上讲,来自 hUC-间充质干细胞的分泌因子(如 HGF、BDNF 和 TNFR1)可改善 MDA 和 T-SOD 的水平,从而调节氧化应激。特别是,TNFR1 还能改善与氧化应激相关的重要蛋白质 NQO-1 和 HO-1 的表达。更重要的是,TNFR1 通过调节血液中 IL-6 的水平,在减少炎症方面发挥了重要作用。此外,TNFR1 还能影响血脑屏障(BBB)的通透性,这一点在伊凡蓝实验和 ZO-1 蛋白表达中均有体现。这项研究突破了传统方法,为临床用药和试验提供了一种新策略。
{"title":"Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress.","authors":"Guangyang Liu, Daohui Wang, Jianru Jia, Chunhua Hao, Qinggang Ge, Liqiang Xu, Chenliang Zhang, Xin Li, Yi Mi, Herui Wang, Li Miao, Yaoyao Chen, Jingwen Zhou, Xiaodan Xu, Yongjun Liu","doi":"10.1007/s11064-024-04212-x","DOIUrl":"10.1007/s11064-024-04212-x","url":null,"abstract":"<p><p>Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Omega-3 Attenuates Disrupted Neurotransmission and Partially Protects Metabolic Dysfunction Caused by Obesity in Wistar Rats. 欧米茄-3 可减轻肥胖对 Wistar 大鼠神经传递的干扰,并部分保护肥胖引起的代谢功能障碍。
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-03 DOI: 10.1007/s11064-024-04201-0
Gabriel de Farias Fraga, Fernanda da Silva Rodrigues, Jeferson Jantsch, Victor Silva Dias, Vitória Milczarski, Fernanda Wickert, Camila Pereira Medeiros, Sarah Eller, Alethéa Gatto Barschak, Marcia Giovenardi, Renata Padilha Guedes

Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide (LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.

奥米加-3(n3)是一种多不饱和脂肪酸,以其抗炎和保护神经的特性而闻名。肥胖与慢性炎症有关,慢性炎症会破坏新陈代谢、肠道生理机能和中枢神经系统功能。本研究旨在确定补充 n3 是否能干扰肥胖对接受食堂饮食(CAF)的 Wistar 大鼠脑内线粒体活性、肠道屏障和神经递质水平的影响。我们检测了四组大鼠的脂肪组织、骨骼肌、血浆、肠道和大脑皮层:CT组(控制饮食)、CTn3组(控制饮食并补充n3)、CAF组和CAFn3组(CAF和n3)。饮食提供 13 周,最后 5 周补充 n3。在 CAF 组中,脂肪组织电子传递链复合物 I、II 和 III 的活性较高,骨骼肌中复合物 III 和 IV 的活性也较高。CAF组血浆中的醋酸盐水平降低,CAF组的脂多糖(LPS)水平升高,而CAFn3组则降低。CAF组肠道中的Claudin-5含量较低,补充n3无影响。在大脑皮层中,CAF组的多巴胺水平降低,而n3则可逆转。多巴胺代谢物 DOPAC 也显示出补充效应,而 HVA 则显示出饮食效应。接受补充剂的 CAF 组血清素水平升高。因此,我们证明了接受 CAF 的大鼠线粒体、血浆、肠道和大脑的紊乱,以及补充 n3 对内毒素血症和神经递质水平的潜在益处。
{"title":"Omega-3 Attenuates Disrupted Neurotransmission and Partially Protects Metabolic Dysfunction Caused by Obesity in Wistar Rats.","authors":"Gabriel de Farias Fraga, Fernanda da Silva Rodrigues, Jeferson Jantsch, Victor Silva Dias, Vitória Milczarski, Fernanda Wickert, Camila Pereira Medeiros, Sarah Eller, Alethéa Gatto Barschak, Marcia Giovenardi, Renata Padilha Guedes","doi":"10.1007/s11064-024-04201-0","DOIUrl":"10.1007/s11064-024-04201-0","url":null,"abstract":"<p><p>Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide (LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. 芬戈莫德对神经精神疾病和神经系统疾病患者心理症状和认知功能的治疗潜力。
IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-06-26 DOI: 10.1007/s11064-024-04199-5
Fatemeh Rahmati-Dehkordi, Hadi Khanifar, Nazanin Najari, Zeinab Tamtaji, Abdolkarim Talebi Taheri, Michael Aschner, Mehdi Shafiee Ardestani, Hamed Mirzaei, Ehsan Dadgostar, Fatemeh Nabavizadeh, Omid Reza Tamtaji

Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.

神经精神疾病和神经系统疾病给全球健康造成了沉重负担,这凸显了对创新治疗方法的需求。芬戈莫德(Fingolimod,FTY720)是治疗多发性硬化症的常用药物,对各种神经精神疾病和神经系统疾病具有良好的疗效。芬戈莫德通过靶向多种细胞和分子过程,如细胞凋亡、氧化应激、神经炎症和自噬,发挥其神经保护作用。通过调节免疫细胞贩运和神经元功能的关键调节因子--Sphingosine-1-Phosphate 受体的活性,它还能影响突触活动并强化记忆的形成。在海马中,芬戈莫德可降低谷氨酸水平,提高GABA水平,这表明它在调节突触传递和神经元兴奋性方面具有潜在作用。综上所述,芬戈莫德已成为治疗神经精神疾病和神经系统疾病的一种有前途的神经保护剂。芬戈莫德具有广泛的细胞和分子效应,包括对细胞凋亡、氧化应激、神经炎症、自噬和突触可塑性的调节作用,为这些使人衰弱的疾病提供了一种全面的治疗方法。要全面阐明芬戈莫德的作用机制,优化其在神经精神疾病和神经系统疾病治疗中的应用,还需要进一步的研究。
{"title":"Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders.","authors":"Fatemeh Rahmati-Dehkordi, Hadi Khanifar, Nazanin Najari, Zeinab Tamtaji, Abdolkarim Talebi Taheri, Michael Aschner, Mehdi Shafiee Ardestani, Hamed Mirzaei, Ehsan Dadgostar, Fatemeh Nabavizadeh, Omid Reza Tamtaji","doi":"10.1007/s11064-024-04199-5","DOIUrl":"10.1007/s11064-024-04199-5","url":null,"abstract":"<p><p>Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neurochemical Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1