Background: The impact of radiologists' characteristics has become a major focus of recent research. However, the markers of diagnostic efficacy and confidence in dense and non-dense breasts are poorly understood.
Purpose: This study aims to assess the relationship between radiologists' characteristics and diagnostic performance across dense and non-dense breasts.
Materials and methods: Radiologists specialising in breast imaging (n = 128) who had 0.5-40 (13±10.6) years of experience reading mammograms were recruited. Participants independently interpreted a test set containing 60 digital mammograms (40 normal and 20 abnormal) with similarly distributed breast densities. Diagnostic performance measures were analysed via Jamovi software (version 1.6.22).
Results: In dense breasts, breast-imaging fellowship completion significantly improved specificity (p = 0.004), location sensitivity (p = 0.01) and the area under the curve (AUC) of the receiver operating characteristic (p = 0.03). Only participation in BreastScreen reading significantly improved all performance metrics: specificity (p = 0.04), sensitivity (p = 0.005), location sensitivity (p < 0.001) and AUC (p < 0.001). Reading > 100 mammograms weekly significantly improved sensitivity (p = 0.03), location sensitivity (p = 0.001), and AUC (p = 0.03).In non-dense breasts, breast fellowship completion significantly improved sensitivity (p = 0.02), location sensitivity (p = 0.04) and AUC (p = 0.002). Participation in BreastScreen reading and reading > 100 mammograms weekly significantly improved only sensitivity (p = 0.002 and p = 0.003, respectively) and location sensitivity (p < 0.001 and p < 0.001, respectively).
Conclusion: Participating in screening programs, breast fellowships and reading > 100 mammograms weekly are important indicators of the diagnostic performance of radiologists across dense and non-dense breasts. In dense breasts, optimal performance resulted from participation in a breast screening program.
Background: Magnetic resonance imaging (MRI) biomarkers can diagnose and prognosticate kidney disease. Renal volume validation studies are however scarce, and measurements are limited by use of contrast agent or advanced post-processing.
Purpose: To validate a widely available non-contrast-enhanced MRI method for quantification of renal cortical and medullary volumes in pigs; investigate observer variability of cortical and medullary volumes in humans; and present reference values for renal cortical and medullary volumes in adolescents.
Materials and methods: Cortical and medullary volumes were quantified from transaxial in-vivo water-excited MR images in six pigs and 15 healthy adolescents (13-16years). Pig kidneys were excised, and renal cortex and medulla were separately quantified by the water displacement method. Both limits of agreement by the Bland-Altman method and reference ranges are presented as 2.5-97.5 percentiles.
Results: Agreement between MRI and ex-vivo quantification were -7 mL (-10-0 mL) for total parenchyma, -4 mL (-9-3 mL) for cortex, and -2 mL (-7-2 mL) for medulla. Intraobserver variability for pig and human kidneys were <5% for total parenchyma, cortex, and medulla. Interobserver variability for both pig and human kidneys were ≤4% for total parenchyma and cortex, and 6% and 12% for medulla. Reference ranges indexed for body surface area and sex were 54-103 mL/m2 (boys) and 56-103 mL/m2 (girls) for total parenchyma, 39-62 mL/m2 and 36-68 mL/m2 for cortex, and 16-45 mL/m2 and 17-42 mL/m2 for medulla.
Conclusion: The proposed widely available non-contrast-enhanced MRI method can quantify cortical and medullary renal volumes and can be directly implemented clinically.
Early detection of lung cancer recurrence on imaging is critical for better clinical prognosis. The 'enhancing nodule in post-radiation fibrosis sign' is an important sign which helps detect recurrent lung cancer early on CT chest.
Background: During the ongoing global SARS-CoV-2 pandemic, there is a high demand for quick and reliable methods for early identification of infected patients. Due to its widespread availability, chest-CT is commonly used to detect early pulmonary manifestations and for follow-ups.
Purpose: This study aims to analyze image quality and reproducibility of readings of scans using low-dose chest CT protocols in patients suspected of SARS-CoV-2 infection.
Materials and methods: Two radiologists retrospectively analyzed 100 low-dose chest CT scans of patients suspected of SARS-CoV-2 infection using two protocols on devices from two vendors regarding image quality based on a Likert scale. After 3 weeks, quality ratings were repeated to allow for analysis of intra-reader in addition to the inter-reader agreement. Furthermore, radiation dose and presence as well as distribution of radiological features were noted.
Results: The exams' effective radiation doses were in median in the submillisievert range (median of 0.53 mSv, IQR: 0.35 mSv). While most scans were rated as being of optimal quality, 38% of scans were scored as suboptimal, yet only one scan was non-diagnostic. Inter-reader and intra-reader reliability showed almost perfect agreement with Cohen's kappa of 0.82 and 0.87.
Conclusion: Overall, in this study, we present two protocols for submillisievert low-dose chest CT demonstrating appropriate or better image quality with almost perfect inter-reader and intra-reader agreement in patients suspected of SARS-CoV-2 infection.