In thicker polymer active layers charge collection efficiency suffers due to low carrier mobility and increased recombination losses. In thin absorber polymer solar cell to increase absorption, light-trapping techniques and plasmonic structures are essential. This study investigates the effect of shell thickness on the photocurrent density of a poly(3-hexylthiophene): phenyl-C61- butyric acid methyl ester (P3HT:PCBM) polymer based solar cell incorporating core–shell nanoparticles with configurations of Au–Ag and Ag-Au core–shell nanoparticles. Through a series of simulation, the photocurrent density was calculated as a function of shell thickness. The results demonstrate that, for both nanoparticle configurations, the photocurrent density generally increases with shell thickness, reaching an optimal point before stabilizing or slightly decreasing. Additionally, the effects of dielectric shells made of SiO₂ and Al₂O₃ on its performance parameters were analyzed. The study also found that the photocurrent decreases with increasing shell thickness for both SiO₂ and Al₂O₃ shells, with a more pronounced decrease for SiO₂ due to its smaller refractive index and greater change in shorter wavelengths. The photocurrent density of 13.74 mA/cm2 is achieved for a cell with a thickness of 80 nm without nanoparticles. This value increases to 16.62 mA/cm2 for a cell incorporating Ag nanoparticles and reaches 19.3 mA/cm2 for a cell with Au–Ag core–shell nanoparticles at the optimal shell thickness. The power conversion efficiency of the polymer solar cell increases from 7.02% without nanoparticles to 8.67% with Ag, 8.45% with Au, and reaches the highest value of 10.26% with Au–Ag core–shell nanoparticles, highlighting the superior performance of the core–shell configuration. This superior performance is attributed to the enhanced plasmonic effects of the Au–Ag combination, which facilitates better light trapping and absorption. These findings underscore the importance of optimizing shell thickness and material composition in core–shell nanoparticles and dielectric shells to maximize the efficiency of photovoltaic cells.