This article explores the reinforcement of the chief characteristics of the polymer blends made of polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) via incorporation of ZnO (zinc oxide) nanofiller. The resulting PVA/PVDF/ZnO polymer nanocomposites were fabricated by the solution casting approach and characterized by key techniques such as XRD, FESEM, UV-Vis-NIR photo-spectrometer, impedance analyzer and FTIR spectrometer to examine the enhancement in structural parameters, surface morphology, optical and electrical parameters, and mechanism of functional groups. respectively. By optimizing and enhancing the wt% of ZnO nanoparticles, the resulting nanocomposites demonstrate improved structural (increase in crystalline size from 63 nm to 70 nm, reduction in dislocation density from 9.61 × 10− 5 to 6.49 × 10− 5 m− 2) and optical parameters (reduction in optical bandgap from 5.02 eV to 4.44 eV, increase in refractive index and Urbach energy from 1.98 to 2.10 and 1.5 to 4.0 eV, respectively); and dielectric performance (augmentation in dielectric constant and ac conductivity from ~ 12 to 60 and 0.003 to 0.009 S/mm, respectively) making them appropriate for a broad range of industrial applications. In FTIR spectra, the transmittance peaks at 880 cm⁻¹ and 833 cm⁻¹ indicate the -C-C-C chain characteristic of PVDF, while peaks at 1402 cm⁻¹ and 2920 cm⁻¹ correspond to -CH₂ groups in both PVA and PVDF. Additionally, peaks at 1068 cm⁻¹ and 1704 cm⁻¹ relate to -C-O and -C = O stretching, and the broad peak from 3500 cm⁻¹ to 3800 cm⁻¹ represents hydroxyl groups, with intensity increased by ZnO nanofiller. The uniform dispersion of ZnO within the PVA/PVDF polymer blends plays a key role in reinforcing the interfacial bonding between the polymers, leading to superior structural integrity and enhanced recyclability. This approach offers a sustainable pathway for the progress of high-performance polymeric nanocomposites with potential applications in electronics.