Pub Date : 2024-10-08DOI: 10.1186/s42523-024-00342-3
Hang Sun, Luxi Wang, Fangyi Chen, Xiangyu Meng, Wenbin Zheng, Hui Peng, Hua Hao, Huiyun Chen, Ke-Jian Wang
Background: Our previous study revealed that feeding the antimicrobial peptide (AMP) product Scy-hepc significantly enhances the growth of mariculture fish through the activation of the GH-Jak2-STAT5-IGF1 axis. However, the contribution of gut microbiota to this growth enhancement remains unclear. This study aimed to elucidate the potential mechanism involved in intestinal absorption and modulation of gut microbiota in Epinephelus akaara following Scy-hepc feeding.
Results: The results showed that a 35 day regimen of Scy-hpec markedly promoted the growth of E. akaara compared to groups supplemented with either florfenicol, B. subtilis, or a vector. The growth enhancement is likely attributed to alterations in microbiota colonization in the foregut and midgut, characterized by an increasing abundance of potential probiotics (Rhizobiaceae and Lysobacter) and a decreased abundance of opportunistic pathogens (Psychrobacter and Brevundimonas) as determined by 16S rRNA analysis. Additionally, similar to the effect of florfenicol feeding, Scy-hepc significantly improved host survival rate by over 20% in response to a lethal dose challenge with Edwardsiella tarda. Further investigations demonstrated that Scy-hepc is absorbed by the fish foregut (20-40 min) and midgut (20-30 min) as confirmed by Western blot, ELISA, and Immunofluorescence. The absorption of Scy-hepc affected the swimming, swarming and surfing motility of Vibrio harveyi and Bacillus thuringiensis isolated from E. akaara's gut. Moreover, Scy-hepc induced the downregulation of 40 assembly genes and the upregulation expression of 5, with the most significant divergence in gene expression between opportunistic pathogens and probiotics concentrated in their motility genes (PomA/B, MotA/B).
Conclusions: In summary, this study shows that feeding AMP Scy-hepc can promote growth and bolster immunity in E. akaara. These beneficial effects are likely due to the absorption of Scy-hepc in the fish's foregut and midgut, which modulates the colonization and motility of commensal bacteria, leading to favorable changes in the composition of the foregut and midgut microbiota. Therefore, a profound understanding of the mechanisms by which antimicrobial peptides affect host gut microbiota will contribute to a comprehensive assessment of their advantages and potential application prospects as substitutes for antibiotics in fish health and improving aquaculture practices.
{"title":"The modulation of intestinal commensal bacteria possibly contributes to the growth and immunity promotion in Epinephelus akaara after feeding the antimicrobial peptide Scy-hepc.","authors":"Hang Sun, Luxi Wang, Fangyi Chen, Xiangyu Meng, Wenbin Zheng, Hui Peng, Hua Hao, Huiyun Chen, Ke-Jian Wang","doi":"10.1186/s42523-024-00342-3","DOIUrl":"https://doi.org/10.1186/s42523-024-00342-3","url":null,"abstract":"<p><strong>Background: </strong>Our previous study revealed that feeding the antimicrobial peptide (AMP) product Scy-hepc significantly enhances the growth of mariculture fish through the activation of the GH-Jak2-STAT5-IGF1 axis. However, the contribution of gut microbiota to this growth enhancement remains unclear. This study aimed to elucidate the potential mechanism involved in intestinal absorption and modulation of gut microbiota in Epinephelus akaara following Scy-hepc feeding.</p><p><strong>Results: </strong>The results showed that a 35 day regimen of Scy-hpec markedly promoted the growth of E. akaara compared to groups supplemented with either florfenicol, B. subtilis, or a vector. The growth enhancement is likely attributed to alterations in microbiota colonization in the foregut and midgut, characterized by an increasing abundance of potential probiotics (Rhizobiaceae and Lysobacter) and a decreased abundance of opportunistic pathogens (Psychrobacter and Brevundimonas) as determined by 16S rRNA analysis. Additionally, similar to the effect of florfenicol feeding, Scy-hepc significantly improved host survival rate by over 20% in response to a lethal dose challenge with Edwardsiella tarda. Further investigations demonstrated that Scy-hepc is absorbed by the fish foregut (20-40 min) and midgut (20-30 min) as confirmed by Western blot, ELISA, and Immunofluorescence. The absorption of Scy-hepc affected the swimming, swarming and surfing motility of Vibrio harveyi and Bacillus thuringiensis isolated from E. akaara's gut. Moreover, Scy-hepc induced the downregulation of 40 assembly genes and the upregulation expression of 5, with the most significant divergence in gene expression between opportunistic pathogens and probiotics concentrated in their motility genes (PomA/B, MotA/B).</p><p><strong>Conclusions: </strong>In summary, this study shows that feeding AMP Scy-hepc can promote growth and bolster immunity in E. akaara. These beneficial effects are likely due to the absorption of Scy-hepc in the fish's foregut and midgut, which modulates the colonization and motility of commensal bacteria, leading to favorable changes in the composition of the foregut and midgut microbiota. Therefore, a profound understanding of the mechanisms by which antimicrobial peptides affect host gut microbiota will contribute to a comprehensive assessment of their advantages and potential application prospects as substitutes for antibiotics in fish health and improving aquaculture practices.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1186/s42523-024-00338-z
Annemiek Maaskant, Bas Voermans, Evgeni Levin, Marcus C de Goffau, Nicole Plomp, Frank Schuren, Edmond J Remarque, Antoine Smits, Jan A M Langermans, Jaco Bakker, Roy Montijn
Background: Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets.
Results: The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea.
Conclusion: A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.
{"title":"Microbiome signature suggestive of lactose-intolerance in rhesus macaques (Macaca mulatta) with intermittent chronic diarrhea.","authors":"Annemiek Maaskant, Bas Voermans, Evgeni Levin, Marcus C de Goffau, Nicole Plomp, Frank Schuren, Edmond J Remarque, Antoine Smits, Jan A M Langermans, Jaco Bakker, Roy Montijn","doi":"10.1186/s42523-024-00338-z","DOIUrl":"10.1186/s42523-024-00338-z","url":null,"abstract":"<p><strong>Background: </strong>Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets.</p><p><strong>Results: </strong>The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea.</p><p><strong>Conclusion: </strong>A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1186/s42523-024-00337-0
Kate Keogh, David A Kenny, Pamela A Alexandre, Sinead M Waters, Emily McGovern, Mark McGee, Antonio Reverter
Background: Feed costs account for a high proportion of the variable cost of beef production, ultimately impacting overall profitability. Thus, improving feed efficiency of beef cattle, by way of determining the underlying genomic control and selecting for feed efficient cattle provides a method through which feed input costs may be reduced whilst also contributing to the environmental sustainability of beef production. The rumen microbiome dictates the feed degradation capacity and consequent nutrient supply in ruminants, thus potentially impacted by feed efficiency phenotype. Equally, liver tissue has been shown to be responsive to feed efficiency phenotype as well as dietary intake. However, although both the rumen microbiome and liver transcriptome have been shown to be impacted by host feed efficiency phenotype, knowledge of the interaction between the rumen microbiome and other peripheral tissues within the body, including the liver is lacking. Thus, the objective of this study was to compare two contrasting breed types (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI) over contrasting dietary phases (zero-grazed grass and high-concentrate), based on gene co-expression network analysis of liver transcriptome data and microbe co-abundance network of rumen microbiome data. Traits including RFI, dry matter intake (DMI) and growth rate (ADG), as well as rumen concentrations of volatile fatty acids were also included within the network analysis.
Results: Overall, DMI had the greatest number of connections followed by RFI, with ADG displaying the fewest number of significant connections. Hepatic genes related to lipid metabolism were correlated to both RFI and DMI phenotypes, whilst genes related to immune response were correlated to DMI. Despite the known relationship between RFI and DMI, the same microbes were not directly connected to these phenotypes, the Succiniclasticum genus was however, negatively connected to both RFI and ADG. Additionally, a stepwise regression analysis revealed significant roles for both Succiniclasticum genus and Roseburia.faecis sp. in predicting RFI, DMI and ADG.
Conclusions: Results from this study highlight the interactive relationships between rumen microbiome and hepatic transcriptome data of cattle divergent for RFI, whilst also increasing our understanding of the underlying biology of both DMI and ADG in beef cattle.
{"title":"Relationship between the rumen microbiome and liver transcriptome in beef cattle divergent for feed efficiency.","authors":"Kate Keogh, David A Kenny, Pamela A Alexandre, Sinead M Waters, Emily McGovern, Mark McGee, Antonio Reverter","doi":"10.1186/s42523-024-00337-0","DOIUrl":"https://doi.org/10.1186/s42523-024-00337-0","url":null,"abstract":"<p><strong>Background: </strong>Feed costs account for a high proportion of the variable cost of beef production, ultimately impacting overall profitability. Thus, improving feed efficiency of beef cattle, by way of determining the underlying genomic control and selecting for feed efficient cattle provides a method through which feed input costs may be reduced whilst also contributing to the environmental sustainability of beef production. The rumen microbiome dictates the feed degradation capacity and consequent nutrient supply in ruminants, thus potentially impacted by feed efficiency phenotype. Equally, liver tissue has been shown to be responsive to feed efficiency phenotype as well as dietary intake. However, although both the rumen microbiome and liver transcriptome have been shown to be impacted by host feed efficiency phenotype, knowledge of the interaction between the rumen microbiome and other peripheral tissues within the body, including the liver is lacking. Thus, the objective of this study was to compare two contrasting breed types (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI) over contrasting dietary phases (zero-grazed grass and high-concentrate), based on gene co-expression network analysis of liver transcriptome data and microbe co-abundance network of rumen microbiome data. Traits including RFI, dry matter intake (DMI) and growth rate (ADG), as well as rumen concentrations of volatile fatty acids were also included within the network analysis.</p><p><strong>Results: </strong>Overall, DMI had the greatest number of connections followed by RFI, with ADG displaying the fewest number of significant connections. Hepatic genes related to lipid metabolism were correlated to both RFI and DMI phenotypes, whilst genes related to immune response were correlated to DMI. Despite the known relationship between RFI and DMI, the same microbes were not directly connected to these phenotypes, the Succiniclasticum genus was however, negatively connected to both RFI and ADG. Additionally, a stepwise regression analysis revealed significant roles for both Succiniclasticum genus and Roseburia.faecis sp. in predicting RFI, DMI and ADG.</p><p><strong>Conclusions: </strong>Results from this study highlight the interactive relationships between rumen microbiome and hepatic transcriptome data of cattle divergent for RFI, whilst also increasing our understanding of the underlying biology of both DMI and ADG in beef cattle.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1186/s42523-024-00339-y
Jin Yan Lim, Yun Kit Yeoh, Maximiliano Canepa, Richard Knuckey, Dean R Jerry, David G Bourne
Fish health, growth and disease is intricately linked to its associated microbiome. Understanding the influence, source and ultimately managing the microbiome, particularly for vulnerable early life-stages, has been identified as one of the key requirements to improving farmed fish production. One tropical fish species of aquaculture importance farmed throughout the Asia-Pacific region is the giant grouper (Epinephelus lanceolatus). Variability in the health and survival of E. lanceolatus larvae is partially dependent on exposure to and development of its early microbiome. Here, we examined the development in the microbiome of commercially reared giant grouper larvae, its surrounding environment, and that from live food sources to understand the type of bacterial species larvae are exposed to, and where some of the sources of bacteria may originate. We show that species richness and microbial diversity of the larval microbiome significantly increased in the first 4 days after hatching, with the community composition continuing to shift over the initial 10 days in the hatchery facility. The dominant larval bacterial taxa appeared to be predominantly derived from live cultured microalgae and rotifer feeds and included Marixanthomonas, Candidatus Hepatincola, Meridianimaribacter and Vibrio. In contrast, a commercial probiotic added as part of the hatchery's operating procedure failed to establish in the larvae microbiome. Microbial source tracking indicated that feed was the largest influence on the composition of the giant grouper larvae microbiome (up to 55.9%), supporting attempts to modulate fish microbiomes in commercial hatcheries through improved diets. The marked abundances of Vibrio (up to 21.7% of 16S rRNA gene copies in larvae) highlights a need for rigorous quality control of feed material.
{"title":"The early life microbiome of giant grouper (Epinephelus lanceolatus) larvae in a commercial hatchery is influenced by microorganisms in feed.","authors":"Jin Yan Lim, Yun Kit Yeoh, Maximiliano Canepa, Richard Knuckey, Dean R Jerry, David G Bourne","doi":"10.1186/s42523-024-00339-y","DOIUrl":"https://doi.org/10.1186/s42523-024-00339-y","url":null,"abstract":"<p><p>Fish health, growth and disease is intricately linked to its associated microbiome. Understanding the influence, source and ultimately managing the microbiome, particularly for vulnerable early life-stages, has been identified as one of the key requirements to improving farmed fish production. One tropical fish species of aquaculture importance farmed throughout the Asia-Pacific region is the giant grouper (Epinephelus lanceolatus). Variability in the health and survival of E. lanceolatus larvae is partially dependent on exposure to and development of its early microbiome. Here, we examined the development in the microbiome of commercially reared giant grouper larvae, its surrounding environment, and that from live food sources to understand the type of bacterial species larvae are exposed to, and where some of the sources of bacteria may originate. We show that species richness and microbial diversity of the larval microbiome significantly increased in the first 4 days after hatching, with the community composition continuing to shift over the initial 10 days in the hatchery facility. The dominant larval bacterial taxa appeared to be predominantly derived from live cultured microalgae and rotifer feeds and included Marixanthomonas, Candidatus Hepatincola, Meridianimaribacter and Vibrio. In contrast, a commercial probiotic added as part of the hatchery's operating procedure failed to establish in the larvae microbiome. Microbial source tracking indicated that feed was the largest influence on the composition of the giant grouper larvae microbiome (up to 55.9%), supporting attempts to modulate fish microbiomes in commercial hatcheries through improved diets. The marked abundances of Vibrio (up to 21.7% of 16S rRNA gene copies in larvae) highlights a need for rigorous quality control of feed material.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1186/s42523-024-00328-1
Marissa L King, Xiaohui Xing, Greta Reintjes, Leeann Klassen, Kristin E Low, Trevor W Alexander, Matthew Waldner, Trushar R Patel, D Wade Abbott
Background: Inulin and inulin-derived fructooligosaccharides (FOS) are well-known prebiotics for use in companion animals and livestock. The mechanisms by which FOS contribute to health has not been fully established. Further, the fine chemistry of fructan structures from diverse sources, such as graminan-type fructans found in cereal crops, has not been fully elucidated. New methods to study fructan structure and microbial responses to these complex carbohydrates will be key for evaluating the prebiotic potency of cereal fructans found in cattle feeds. As the rumen microbiome composition is closely associated with their metabolic traits, such as feed utilization and waste production, prebiotics and probiotics represent promising additives to shift the microbial community toward a more productive state.
Results: Within this study, inulin, levan, and graminan-type fructans from winter wheat, spring wheat, and barley were used to assess the capacity of rumen-derived Bifidobacterium boum, Bifidobacterium merycicum, and Lactobacillus vitulinus to metabolize diverse fructans. Graminan-type fructans were purified and structurally characterized from the stems and kernels of each plant. All three bacterial species grew on FOS, inulin, and cereal crop fructans in pure cultures. L. vitulinus was the only species that could metabolize levan, albeit its growth was delayed. Fluorescently labelled polysaccharides (FLAPS) were used to demonstrate interactions with Gram-positive bacteria and confirm fructan metabolism at the single-cell level; these results were in agreement with the individual growth profiles of each species. The prebiotic potential of inulin was further investigated within naïve rumen microbial communities, where increased relative abundance of Bifidobacterium and Lactobacillus species occurred in a dose-dependent and temporal-related manner. This was supported by in situ analysis of rumen microbiota from cattle fed inulin. FLAPS probe derived from inulin and fluorescent in situ hybridization using taxon-specific probes confirmed that inulin interacts with Bifidobacteria and Lactobacilli at the single-cell level.
Conclusion: This research revealed that rumen-derived Bifidobacteria and Lactobacilli vary in their metabolism of structurally diverse fructans, and that inulin has limited prebiotic potential in the rumen. This knowledge establishes new methods for evaluating the prebiotic potential of fructans from diverse plant sources as prebiotic candidates for use in ruminants and other animals.
{"title":"In vitro and ex vivo metabolism of chemically diverse fructans by bovine rumen Bifidobacterium and Lactobacillus species.","authors":"Marissa L King, Xiaohui Xing, Greta Reintjes, Leeann Klassen, Kristin E Low, Trevor W Alexander, Matthew Waldner, Trushar R Patel, D Wade Abbott","doi":"10.1186/s42523-024-00328-1","DOIUrl":"https://doi.org/10.1186/s42523-024-00328-1","url":null,"abstract":"<p><strong>Background: </strong>Inulin and inulin-derived fructooligosaccharides (FOS) are well-known prebiotics for use in companion animals and livestock. The mechanisms by which FOS contribute to health has not been fully established. Further, the fine chemistry of fructan structures from diverse sources, such as graminan-type fructans found in cereal crops, has not been fully elucidated. New methods to study fructan structure and microbial responses to these complex carbohydrates will be key for evaluating the prebiotic potency of cereal fructans found in cattle feeds. As the rumen microbiome composition is closely associated with their metabolic traits, such as feed utilization and waste production, prebiotics and probiotics represent promising additives to shift the microbial community toward a more productive state.</p><p><strong>Results: </strong>Within this study, inulin, levan, and graminan-type fructans from winter wheat, spring wheat, and barley were used to assess the capacity of rumen-derived Bifidobacterium boum, Bifidobacterium merycicum, and Lactobacillus vitulinus to metabolize diverse fructans. Graminan-type fructans were purified and structurally characterized from the stems and kernels of each plant. All three bacterial species grew on FOS, inulin, and cereal crop fructans in pure cultures. L. vitulinus was the only species that could metabolize levan, albeit its growth was delayed. Fluorescently labelled polysaccharides (FLAPS) were used to demonstrate interactions with Gram-positive bacteria and confirm fructan metabolism at the single-cell level; these results were in agreement with the individual growth profiles of each species. The prebiotic potential of inulin was further investigated within naïve rumen microbial communities, where increased relative abundance of Bifidobacterium and Lactobacillus species occurred in a dose-dependent and temporal-related manner. This was supported by in situ analysis of rumen microbiota from cattle fed inulin. FLAPS probe derived from inulin and fluorescent in situ hybridization using taxon-specific probes confirmed that inulin interacts with Bifidobacteria and Lactobacilli at the single-cell level.</p><p><strong>Conclusion: </strong>This research revealed that rumen-derived Bifidobacteria and Lactobacilli vary in their metabolism of structurally diverse fructans, and that inulin has limited prebiotic potential in the rumen. This knowledge establishes new methods for evaluating the prebiotic potential of fructans from diverse plant sources as prebiotic candidates for use in ruminants and other animals.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: In the context of the RABOLA project, which aimed to identify operational practices that lead to the reduction of antibiotic use in dairy cattle farming, lyophilised Aloe arborescens was administered orally to cows during the dry-off and peripartum periods. In this specific paper we wanted to examine whether oral administration of Aloe arborescens, in combination with the topical application of a teat sealant could exert an effect on the microbial populations of three cow microbiomes (rumen, milk, rectum), between dry-off and peripartum. Dry-off and peripartum are critical physiological phases of the cow's life, where both the mammary gland and the gastrointestinal tract undergo dramatic modifications, hence the relevance of evaluating the effects of dietary treatments.
Methods: Thirty multiparous dairy cows were randomly allocated to three groups: Control (antibiotic treatment and internal teat sealant), Sealant (only internal teat sealant) and Aloe (internal teat sealant and Aloe arborescens homogenate administered orally). For 16S rRNA gene sequencing, rumen, rectum and milk samples were collected, not synchronously, at the most critical timepoints around dry-off and calving, considering the physiological activity of each biological site.
Results: The rumen microbiome was predominantly characterized by Bacteroidetes and Firmicutes followed by Proteobacteria, while the rectum exhibited a prevalence of Firmicutes and Bacteroidetes. The milk microbiome mainly comprised Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Alistipes spp., Ruminococcaceae UCG-10 group, Prevotellaceae UCG-001 group, and Bacteroides spp., involved in cellulose and hemicellulose degradation, enhancement of energy metabolism, and peptide breakdown, showed increment in the rectum microbiome with Aloe supplementation. The rectum microbiome in the Aloe group exhibited a significant increase in the Firmicutes to Bacteroidetes ratio and alpha-diversity at seven days after dry-off period. Beta-diversity showed a significant separation between treatments for the rectum and milk microbiomes. Aloe supplementation seemed to enrich milk microbial composition, whereas the Sealant group showed greater diversity compared to the Control group, albeit this included an increase in microorganisms frequently associated with mastitis.
Conclusions: Aloe arborescens administration during the dry-off period did not demonstrate any observable impact on the microbial composition of the rumen, a finding further supported by volatilome analysis. Instead, the oral Aloe supplementation at dry-off appears to significantly influence the composition of the dairy cow rectum and milk microbiomes in the following lactation.
{"title":"Aloe arborescens supplementation in drying-off dairy cows: influence on rumen, rectum and milk microbiomes.","authors":"Paola Cremonesi, Filippo Biscarini, Giuseppe Conte, Fiorenzo Piccioli-Cappelli, Stefano Morandi, Tiziana Silvetti, Simona Tringali, Erminio Trevisi, Bianca Castiglioni, Milena Brasca","doi":"10.1186/s42523-024-00336-1","DOIUrl":"10.1186/s42523-024-00336-1","url":null,"abstract":"<p><strong>Background: </strong>In the context of the RABOLA project, which aimed to identify operational practices that lead to the reduction of antibiotic use in dairy cattle farming, lyophilised Aloe arborescens was administered orally to cows during the dry-off and peripartum periods. In this specific paper we wanted to examine whether oral administration of Aloe arborescens, in combination with the topical application of a teat sealant could exert an effect on the microbial populations of three cow microbiomes (rumen, milk, rectum), between dry-off and peripartum. Dry-off and peripartum are critical physiological phases of the cow's life, where both the mammary gland and the gastrointestinal tract undergo dramatic modifications, hence the relevance of evaluating the effects of dietary treatments.</p><p><strong>Methods: </strong>Thirty multiparous dairy cows were randomly allocated to three groups: Control (antibiotic treatment and internal teat sealant), Sealant (only internal teat sealant) and Aloe (internal teat sealant and Aloe arborescens homogenate administered orally). For 16S rRNA gene sequencing, rumen, rectum and milk samples were collected, not synchronously, at the most critical timepoints around dry-off and calving, considering the physiological activity of each biological site.</p><p><strong>Results: </strong>The rumen microbiome was predominantly characterized by Bacteroidetes and Firmicutes followed by Proteobacteria, while the rectum exhibited a prevalence of Firmicutes and Bacteroidetes. The milk microbiome mainly comprised Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Alistipes spp., Ruminococcaceae UCG-10 group, Prevotellaceae UCG-001 group, and Bacteroides spp., involved in cellulose and hemicellulose degradation, enhancement of energy metabolism, and peptide breakdown, showed increment in the rectum microbiome with Aloe supplementation. The rectum microbiome in the Aloe group exhibited a significant increase in the Firmicutes to Bacteroidetes ratio and alpha-diversity at seven days after dry-off period. Beta-diversity showed a significant separation between treatments for the rectum and milk microbiomes. Aloe supplementation seemed to enrich milk microbial composition, whereas the Sealant group showed greater diversity compared to the Control group, albeit this included an increase in microorganisms frequently associated with mastitis.</p><p><strong>Conclusions: </strong>Aloe arborescens administration during the dry-off period did not demonstrate any observable impact on the microbial composition of the rumen, a finding further supported by volatilome analysis. Instead, the oral Aloe supplementation at dry-off appears to significantly influence the composition of the dairy cow rectum and milk microbiomes in the following lactation.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1186/s42523-024-00335-2
Sarah M Luecke, Godson Aryee, Devin B Holman, Kaycie N Schmidt, Layla E King, Matthew S Crouse, Alison K Ward, Carl R Dahlen, Joel S Caton, Samat Amat
Background: Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing.
Results: Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota.
Conclusion: Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
{"title":"Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle.","authors":"Sarah M Luecke, Godson Aryee, Devin B Holman, Kaycie N Schmidt, Layla E King, Matthew S Crouse, Alison K Ward, Carl R Dahlen, Joel S Caton, Samat Amat","doi":"10.1186/s42523-024-00335-2","DOIUrl":"https://doi.org/10.1186/s42523-024-00335-2","url":null,"abstract":"<p><strong>Background: </strong>Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing.</p><p><strong>Results: </strong>Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota.</p><p><strong>Conclusion: </strong>Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1186/s42523-024-00327-2
Ester Martínez-Renau, Antonio M Martín-Platero, Kasun H Bodawatta, Manuel Martín-Vivaldi, Manuel Martínez-Bueno, Michael Poulsen, Juan José Soler
Background: Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin.
Results: We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies.
Conclusions: Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
{"title":"Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds.","authors":"Ester Martínez-Renau, Antonio M Martín-Platero, Kasun H Bodawatta, Manuel Martín-Vivaldi, Manuel Martínez-Bueno, Michael Poulsen, Juan José Soler","doi":"10.1186/s42523-024-00327-2","DOIUrl":"10.1186/s42523-024-00327-2","url":null,"abstract":"<p><strong>Background: </strong>Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin.</p><p><strong>Results: </strong>We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies.</p><p><strong>Conclusions: </strong>Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1186/s42523-024-00334-3
Michael J Rothrock, Benjamin Zwirzitz, Walid G Al Hakeem, Adelumola Oladeinde, Jean Y Guard, Xiang Li
Hatcheries, where eggs from multiple breeder farms are incubated and hatched before being sent to different broiler farms, represent a nexus point in the commercial production of broilers in the United States. Considering all downstream microbial quality and safety aspects of broiler production (live production, processing, consumer use) can be potentially affected by the hatchery, a better understanding of microbial ecology within commercial hatcheries is essential. Therefore, a commercial broiler hatchery was biomapped using 16S rRNA amplicon-based microbiome analyses of four sample type categories (Air, Egg, Water, Facility) across five different places in the pre-hatch, hatch, and post-hatch areas. While distinct microbiota were found for each sample type category and hatchery area, microbial community analyses revealed that Egg microbiota trended towards clustering with the facility-related samples when moving from the prehatch to post-hatch areas, highlighting the potential effect of the hatchery environment in shaping the pre-harvest broiler-related microbiota. Prevalence analyses revealed 20 ASVs (Core20) present in the core microbiota of all sample types and areas, with each ASV possessing a unique distribution throughout the hatchery. Interestingly, three Enterobacteriaceae ASVs were in the Core20, including Salmonella. Subsequent analyses showed that Salmonella, while a minor prehatch and hatch Core20ASV, dominated the Enterobacteriaceae niche and total microbiota in the chick pad feces in the post-hatch area of the hatchery, and the presence of this Salmonella ASV in the post-hatch feces was associated with swabs of breakroom tables. These findings highlight the complexity of commercial hatchery microbiota, including identifying chick pad feces and breakroom tables as potentially important sampling or disinfection targets for hatchery managers to focus their Salmonella mitigation efforts to reduce loads entering live production farms.
孵化场是美国肉鸡商业化生产的关键点,来自多个种鸡场的种蛋在孵化场孵化后被送往不同的肉鸡养殖场。考虑到肉鸡生产的所有下游微生物质量和安全方面(活体生产、加工、消费者使用)都可能受到孵化场的影响,因此更好地了解商业孵化场内的微生物生态至关重要。因此,利用基于 16S rRNA 扩增子的微生物组分析,对孵化前、孵化中和孵化后五个不同地点的四类样本(空气、蛋、水、设施)进行了生物绘图。虽然在每个样品类型类别和孵化区都发现了不同的微生物群,但微生物群落分析表明,从孵化前到孵化后,蛋类微生物群趋向于与设施相关的样品聚集在一起,这突显了孵化环境在形成孵化前肉鸡相关微生物群方面的潜在影响。流行率分析表明,在所有样本类型和区域的核心微生物群中存在 20 种 ASV(Core20),每种 ASV 在整个孵化场都有独特的分布。有趣的是,Core20 中有三种肠杆菌科 ASV,其中包括沙门氏菌。随后的分析表明,沙门氏菌虽然是孵化前和孵化时的次要核心 20 ASV,但在孵化后区域的雏鸡垫粪便中却主宰了肠杆菌科生态位和总微生物群,孵化后粪便中沙门氏菌 ASV 的存在与休息室桌子上的拭子有关。这些发现突显了商业孵化场微生物群的复杂性,包括确定雏鸡垫粪便和休息室桌子可能是孵化场管理者的重要采样或消毒目标,以集中精力减轻沙门氏菌的危害,减少进入活体生产养殖场的沙门氏菌量。
{"title":"16S amplicon-based microbiome biomapping of a commercial broiler hatchery.","authors":"Michael J Rothrock, Benjamin Zwirzitz, Walid G Al Hakeem, Adelumola Oladeinde, Jean Y Guard, Xiang Li","doi":"10.1186/s42523-024-00334-3","DOIUrl":"10.1186/s42523-024-00334-3","url":null,"abstract":"<p><p>Hatcheries, where eggs from multiple breeder farms are incubated and hatched before being sent to different broiler farms, represent a nexus point in the commercial production of broilers in the United States. Considering all downstream microbial quality and safety aspects of broiler production (live production, processing, consumer use) can be potentially affected by the hatchery, a better understanding of microbial ecology within commercial hatcheries is essential. Therefore, a commercial broiler hatchery was biomapped using 16S rRNA amplicon-based microbiome analyses of four sample type categories (Air, Egg, Water, Facility) across five different places in the pre-hatch, hatch, and post-hatch areas. While distinct microbiota were found for each sample type category and hatchery area, microbial community analyses revealed that Egg microbiota trended towards clustering with the facility-related samples when moving from the prehatch to post-hatch areas, highlighting the potential effect of the hatchery environment in shaping the pre-harvest broiler-related microbiota. Prevalence analyses revealed 20 ASVs (Core20) present in the core microbiota of all sample types and areas, with each ASV possessing a unique distribution throughout the hatchery. Interestingly, three Enterobacteriaceae ASVs were in the Core20, including Salmonella. Subsequent analyses showed that Salmonella, while a minor prehatch and hatch Core20ASV, dominated the Enterobacteriaceae niche and total microbiota in the chick pad feces in the post-hatch area of the hatchery, and the presence of this Salmonella ASV in the post-hatch feces was associated with swabs of breakroom tables. These findings highlight the complexity of commercial hatchery microbiota, including identifying chick pad feces and breakroom tables as potentially important sampling or disinfection targets for hatchery managers to focus their Salmonella mitigation efforts to reduce loads entering live production farms.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1186/s42523-024-00333-4
Ginevra Lilli, Charlotte Sirot, Hayley Campbell, Fanny Hermand, Deirdre Brophy, Jean-François Flot, Conor T Graham, Isabelle F George
{"title":"Correction to: Do fish gut microbiotas vary across spatial scales? A case study of Diplodus vulgaris in the Mediterranean Sea.","authors":"Ginevra Lilli, Charlotte Sirot, Hayley Campbell, Fanny Hermand, Deirdre Brophy, Jean-François Flot, Conor T Graham, Isabelle F George","doi":"10.1186/s42523-024-00333-4","DOIUrl":"10.1186/s42523-024-00333-4","url":null,"abstract":"","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}