Pub Date : 2024-08-06DOI: 10.1186/s42523-024-00332-5
Robert M Murphy, Veronica M Sinotte, Ana Cuesta-Maté, Justinn Renelies-Hamilton, Mikael Lenz-Strube, Michael Poulsen
Microbiome assembly critically impacts the ability of hosts to access beneficial symbiont functions. Fungus-farming termites have co-evolved with a fungal cultivar as a primary food source and complex gut microbiomes, which collectively perform complementary degradation of plant biomass. A large subset of the bacterial community residing within termite guts are inherited (vertically transmitted) from parental colonies, while the fungal symbiont is, in most termite species, acquired from the environment (horizontally transmitted). It has remained unknown how the gut microbiota sustains incipient colonies prior to the acquisition of the fungal cultivar, and how, if at all, bacterial contributions are modulated by fungus garden establishment. Here, we test the latter by determining the composition and predicted functions of the gut microbiome using metabarcoding and shotgun metagenomics, respectively. We focus our functional predictions on bacterial carbohydrate-active enzyme and nitrogen cycling genes and verify compositional patterns of the former through enzyme activity assays. Our findings reveal that the vast majority of microbial functions are encoded in the inherited microbiome, and that the establishment of fungal gardens incurs only minor modulations of predicted bacterial capacities for carbohydrate and nitrogen metabolism. While we cannot rule out that other symbiont functions are gained post-fungus garden establishment, our findings suggest that fungus-farming termite hosts are equipped with a near-complete set of gut microbiome functions at the earliest stages of colony life. This inherited, incipient bacterial microbiome likely contributes to the high extent of functional specificity and coevolution observed between termite hosts, gut microbiomes, and the fungal cultivar.
{"title":"Shaping the tripartite symbiosis: are termite microbiome functions directed by the environmentally acquired fungal cultivar?","authors":"Robert M Murphy, Veronica M Sinotte, Ana Cuesta-Maté, Justinn Renelies-Hamilton, Mikael Lenz-Strube, Michael Poulsen","doi":"10.1186/s42523-024-00332-5","DOIUrl":"10.1186/s42523-024-00332-5","url":null,"abstract":"<p><p>Microbiome assembly critically impacts the ability of hosts to access beneficial symbiont functions. Fungus-farming termites have co-evolved with a fungal cultivar as a primary food source and complex gut microbiomes, which collectively perform complementary degradation of plant biomass. A large subset of the bacterial community residing within termite guts are inherited (vertically transmitted) from parental colonies, while the fungal symbiont is, in most termite species, acquired from the environment (horizontally transmitted). It has remained unknown how the gut microbiota sustains incipient colonies prior to the acquisition of the fungal cultivar, and how, if at all, bacterial contributions are modulated by fungus garden establishment. Here, we test the latter by determining the composition and predicted functions of the gut microbiome using metabarcoding and shotgun metagenomics, respectively. We focus our functional predictions on bacterial carbohydrate-active enzyme and nitrogen cycling genes and verify compositional patterns of the former through enzyme activity assays. Our findings reveal that the vast majority of microbial functions are encoded in the inherited microbiome, and that the establishment of fungal gardens incurs only minor modulations of predicted bacterial capacities for carbohydrate and nitrogen metabolism. While we cannot rule out that other symbiont functions are gained post-fungus garden establishment, our findings suggest that fungus-farming termite hosts are equipped with a near-complete set of gut microbiome functions at the earliest stages of colony life. This inherited, incipient bacterial microbiome likely contributes to the high extent of functional specificity and coevolution observed between termite hosts, gut microbiomes, and the fungal cultivar.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1186/s42523-024-00329-0
Judith Revault, Yves Desdevises, Élodie Magnanou
Background: While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load.
Results: Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish.
Conclusions: Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.
{"title":"Link between bacterial communities and contrasted loads in ectoparasitic monogeneans from the external mucus of two wild sparid species (Teleostei).","authors":"Judith Revault, Yves Desdevises, Élodie Magnanou","doi":"10.1186/s42523-024-00329-0","DOIUrl":"10.1186/s42523-024-00329-0","url":null,"abstract":"<p><strong>Background: </strong>While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load.</p><p><strong>Results: </strong>Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish.</p><p><strong>Conclusions: </strong>Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1186/s42523-024-00330-7
Tess E Stapleton, LeAnn M Lindsey, Hari Sundar, M Denise Dearing
Gut microbiota are intrinsic to an herbivorous lifestyle, but very little is known about how plant secondary compounds (PSCs), which are often toxic, influence these symbiotic partners. Here we interrogated the possibility of unique functional core microbiomes in populations of two species of woodrat (Neotoma lepida and bryanti) that have independently converged to feed on the same toxic diet (creosote bush; Larrea tridentata) and compared them to populations that do not feed on creosote bush. Leveraging this natural experiment, we collected samples across a large geographic region in the U.S. desert southwest from 20 populations (~ 150 individuals) with differential ingestion of creosote bush and analyzed three gut regions (foregut, cecum, hindgut) using16S sequencing and shotgun metagenomics. In each gut region sampled, we found a distinctive set of microbes in individuals feeding on creosote bush that were more abundant than other ASVs, enriched in creosote feeding woodrats, and occurred more frequently than would be predicted by chance. Creosote core members were from microbial families e.g., Eggerthellaceae, known to metabolize plant secondary compounds and three of the identified core KEGG orthologs (4-hydroxybenzoate decarboxylase, benzoyl-CoA reductase subunit B, and 2-pyrone-4, 6-dicarboxylate lactonase) coded for enzymes that play important roles in metabolism of plant secondary compounds. The results support the hypothesis that the ingestion of creosote bush sculpts the microbiome across all major gut regions to select for functional characteristics associated with the degradation of the PSCs in this unique diet.
肠道微生物群是草食性生活方式所固有的,但人们对通常有毒的植物次生化合物(PSCs)如何影响这些共生伙伴知之甚少。在这里,我们研究了两种木鼠(Neotoma lepida 和 bryanti)种群中独特的功能性核心微生物群的可能性,这两种木鼠各自以相同的有毒食物(杂酚油灌木;Larrea tridentata)为食,并将它们与不以杂酚油灌木为食的种群进行了比较。利用这一自然实验,我们在美国西南部沙漠的一个大地理区域收集了 20 个不同摄食杂酚油灌木的种群(约 150 个个体)的样本,并利用 16S 测序和霰弹枪元基因组学分析了三个肠道区域(前肠、盲肠和后肠)。在取样的每个肠道区域,我们都发现以杂酚油灌木为食的个体体内存在一组独特的微生物,它们的数量比其他 ASV 更多,富集于以杂酚油为食的林鼠体内,而且出现的频率比偶然预测的要高。杂酚油核心成员来自已知代谢植物次生化合物的微生物科(如蛋壳菌科),已确定的三个核心 KEGG 同源物(4-羟基苯甲酸脱羧酶、苯甲酰-CoA 还原酶亚基 B 和 2-吡喃酮-4,6-二羧酸内酯酶)编码的酶在植物次生化合物代谢中发挥重要作用。研究结果支持这样的假设:摄入杂酚油灌木会改变肠道所有主要区域的微生物组,从而选择与降解这种独特食物中的植物次生化合物相关的功能特性。
{"title":"Rodents consuming the same toxic diet harbor a unique functional core microbiome.","authors":"Tess E Stapleton, LeAnn M Lindsey, Hari Sundar, M Denise Dearing","doi":"10.1186/s42523-024-00330-7","DOIUrl":"10.1186/s42523-024-00330-7","url":null,"abstract":"<p><p>Gut microbiota are intrinsic to an herbivorous lifestyle, but very little is known about how plant secondary compounds (PSCs), which are often toxic, influence these symbiotic partners. Here we interrogated the possibility of unique functional core microbiomes in populations of two species of woodrat (Neotoma lepida and bryanti) that have independently converged to feed on the same toxic diet (creosote bush; Larrea tridentata) and compared them to populations that do not feed on creosote bush. Leveraging this natural experiment, we collected samples across a large geographic region in the U.S. desert southwest from 20 populations (~ 150 individuals) with differential ingestion of creosote bush and analyzed three gut regions (foregut, cecum, hindgut) using16S sequencing and shotgun metagenomics. In each gut region sampled, we found a distinctive set of microbes in individuals feeding on creosote bush that were more abundant than other ASVs, enriched in creosote feeding woodrats, and occurred more frequently than would be predicted by chance. Creosote core members were from microbial families e.g., Eggerthellaceae, known to metabolize plant secondary compounds and three of the identified core KEGG orthologs (4-hydroxybenzoate decarboxylase, benzoyl-CoA reductase subunit B, and 2-pyrone-4, 6-dicarboxylate lactonase) coded for enzymes that play important roles in metabolism of plant secondary compounds. The results support the hypothesis that the ingestion of creosote bush sculpts the microbiome across all major gut regions to select for functional characteristics associated with the degradation of the PSCs in this unique diet.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1186/s42523-024-00331-6
Muhammad Zeeshan Akram, Ester Arévalo Sureda, Luke Comer, Matthias Corion, Nadia Everaert
Background: Variations in body weight (BW) remain a significant challenge within broiler flocks, despite uniform management practices. Chicken growth traits are influenced by gut microbiota, which are in turn shaped by early-life events like different hatching environments and timing of first feeding. Chicks hatched in hatcheries (HH) experience prolonged feed deprivation, which could adversely impact early microbiota colonization. Conversely, hatching on-farm (HOF) allows early feeding, potentially fostering a more favorable gut environment for beneficial microbial establishment. This study investigates whether BW differences among broilers are linked to the disparities in gut microbiota characteristics and whether hatching systems (HS) impact the initial microbial colonization of broilers differing in BW, which in turn affects their growth patterns. Male Ross-308 chicks, either hatched in a hatchery or on-farm, were categorized into low (LBW) and high (HBW) BW groups on day 7, making a two-factorial design (HS × BW). Production parameters were recorded periodically. On days 7, 14, and 38, cecal volatile fatty acid (VFA) and microbiota composition and function (using 16 S rRNA gene sequencing and PICRUSt2) were examined.
Results: HOF chicks had higher day 1 BW, but HH chicks caught up within first week, with no further HS-related performance differences. The HBW chicks remained heavier attributed to higher feed intake rather than improved feed efficiency. HBW group had higher acetate concentration on day 14, while LBW group exhibited higher isocaproate on day 7 and isobutyrate on days 14 and 38. Microbiota analyses revealed diversity and composition were primarily influenced by BW than by HS, with HS having minimal impact on BW-related microbiota. The HBW group on various growth stages was enriched in VFA-producing bacteria like unclassified Lachnospiraceae, Alistipes and Faecalibacterium, while the LBW group had higher abundances of Lactobacillus, Akkermansia and Escherichia-Shigella. HBW microbiota presented higher predicted functional potential compared to the LBW group, with early colonizers exhibiting greater metabolic activity than late colonizers.
Conclusions: Despite differences in hatching conditions, the effects of HS on broiler performance were transient, and barely impacting BW-related microbiota. BW variations among broilers are likely linked to differences in feed intake, VFA profiles, and distinct microbiota compositions and functions.
{"title":"Assessing the impact of hatching system and body weight on the growth performance, caecal short-chain fatty acids, and microbiota composition and functionality in broilers.","authors":"Muhammad Zeeshan Akram, Ester Arévalo Sureda, Luke Comer, Matthias Corion, Nadia Everaert","doi":"10.1186/s42523-024-00331-6","DOIUrl":"10.1186/s42523-024-00331-6","url":null,"abstract":"<p><strong>Background: </strong>Variations in body weight (BW) remain a significant challenge within broiler flocks, despite uniform management practices. Chicken growth traits are influenced by gut microbiota, which are in turn shaped by early-life events like different hatching environments and timing of first feeding. Chicks hatched in hatcheries (HH) experience prolonged feed deprivation, which could adversely impact early microbiota colonization. Conversely, hatching on-farm (HOF) allows early feeding, potentially fostering a more favorable gut environment for beneficial microbial establishment. This study investigates whether BW differences among broilers are linked to the disparities in gut microbiota characteristics and whether hatching systems (HS) impact the initial microbial colonization of broilers differing in BW, which in turn affects their growth patterns. Male Ross-308 chicks, either hatched in a hatchery or on-farm, were categorized into low (LBW) and high (HBW) BW groups on day 7, making a two-factorial design (HS × BW). Production parameters were recorded periodically. On days 7, 14, and 38, cecal volatile fatty acid (VFA) and microbiota composition and function (using 16 S rRNA gene sequencing and PICRUSt2) were examined.</p><p><strong>Results: </strong>HOF chicks had higher day 1 BW, but HH chicks caught up within first week, with no further HS-related performance differences. The HBW chicks remained heavier attributed to higher feed intake rather than improved feed efficiency. HBW group had higher acetate concentration on day 14, while LBW group exhibited higher isocaproate on day 7 and isobutyrate on days 14 and 38. Microbiota analyses revealed diversity and composition were primarily influenced by BW than by HS, with HS having minimal impact on BW-related microbiota. The HBW group on various growth stages was enriched in VFA-producing bacteria like unclassified Lachnospiraceae, Alistipes and Faecalibacterium, while the LBW group had higher abundances of Lactobacillus, Akkermansia and Escherichia-Shigella. HBW microbiota presented higher predicted functional potential compared to the LBW group, with early colonizers exhibiting greater metabolic activity than late colonizers.</p><p><strong>Conclusions: </strong>Despite differences in hatching conditions, the effects of HS on broiler performance were transient, and barely impacting BW-related microbiota. BW variations among broilers are likely linked to differences in feed intake, VFA profiles, and distinct microbiota compositions and functions.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1186/s42523-024-00320-9
Walaa A Eraqi, Walaa A El-Sabbagh, Ramy K Aziz, Mostafa S Elshahed, Noha H Youssef, Nora M Elkenawy
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
{"title":"Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy.","authors":"Walaa A Eraqi, Walaa A El-Sabbagh, Ramy K Aziz, Mostafa S Elshahed, Noha H Youssef, Nora M Elkenawy","doi":"10.1186/s42523-024-00320-9","DOIUrl":"10.1186/s42523-024-00320-9","url":null,"abstract":"<p><p>Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1186/s42523-024-00326-3
Mary Jane Drake, Scott G Daniel, Linda D Baker, Nagaraju Indugu, Kyle Bittinger, Charlene Dickens, Joseph P Zackular, Dipti Pitta, Laurel E Redding
Zinc is an essential trace element required in the diet of all species. While the effects of zinc have been studied in growing calves, little is known about the effect of zinc on the microbiota of the gestating cow or her neonatal calf. Understanding factors that shape the gut health of neonatal animals and evaluating the effect of dietary supplements in adult gestating animals is important in promoting animal health and informing feeding practices. The aims of this study were to determine the effect of dietary zinc on the microbiota and resistome of the gestating cow and calf. Gestating cows received standard (40 ppm) or high (205 ppm) dietary zinc levels from dry off to calving. Fecal samples were collected from cows upon enrollment and at calving and from neonatal calves. Fecal samples underwent 16S rRNA sequencing and a subset also underwent shotgun metagenomic sequencing. The effect of zinc supplementation on the diversity and composition of the cow and calf microbiome and resistome was assessed. Alpha and beta diversity and composition of the microbiota were significantly altered over time but not by treatment in the cows, with alpha diversity decreasing and 14 genera found at significantly higher relative abundances at calving compared to enrollment. Levels of 27 antimicrobial resistance genes significantly increased over time. Only a small number of taxa were differentially expressed at calving in treatment and control groups, including Faecalibacterium, Bacteroides, Turicibacter, and Bifidobacterium pseudolongum. No effect of the dam's treatment group was observed on the diversity or composition of the neonatal calf microbiota. The calf resistome, which was relatively rich and diverse compared to the cow, was also unaffected by the dam's treatment group. The impact of high levels of dietary zinc thus appeared to be minimal, with no observed changes in alpha or beta diversity, and few changes in the relative abundance of a small number of taxa and antimicrobial resistance genes.
{"title":"Effects of dietary zinc on the gut microbiome and resistome of the gestating cow and neonatal calf.","authors":"Mary Jane Drake, Scott G Daniel, Linda D Baker, Nagaraju Indugu, Kyle Bittinger, Charlene Dickens, Joseph P Zackular, Dipti Pitta, Laurel E Redding","doi":"10.1186/s42523-024-00326-3","DOIUrl":"10.1186/s42523-024-00326-3","url":null,"abstract":"<p><p>Zinc is an essential trace element required in the diet of all species. While the effects of zinc have been studied in growing calves, little is known about the effect of zinc on the microbiota of the gestating cow or her neonatal calf. Understanding factors that shape the gut health of neonatal animals and evaluating the effect of dietary supplements in adult gestating animals is important in promoting animal health and informing feeding practices. The aims of this study were to determine the effect of dietary zinc on the microbiota and resistome of the gestating cow and calf. Gestating cows received standard (40 ppm) or high (205 ppm) dietary zinc levels from dry off to calving. Fecal samples were collected from cows upon enrollment and at calving and from neonatal calves. Fecal samples underwent 16S rRNA sequencing and a subset also underwent shotgun metagenomic sequencing. The effect of zinc supplementation on the diversity and composition of the cow and calf microbiome and resistome was assessed. Alpha and beta diversity and composition of the microbiota were significantly altered over time but not by treatment in the cows, with alpha diversity decreasing and 14 genera found at significantly higher relative abundances at calving compared to enrollment. Levels of 27 antimicrobial resistance genes significantly increased over time. Only a small number of taxa were differentially expressed at calving in treatment and control groups, including Faecalibacterium, Bacteroides, Turicibacter, and Bifidobacterium pseudolongum. No effect of the dam's treatment group was observed on the diversity or composition of the neonatal calf microbiota. The calf resistome, which was relatively rich and diverse compared to the cow, was also unaffected by the dam's treatment group. The impact of high levels of dietary zinc thus appeared to be minimal, with no observed changes in alpha or beta diversity, and few changes in the relative abundance of a small number of taxa and antimicrobial resistance genes.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1186/s42523-024-00321-8
Marwa Mamdouh Tawfik, Marlene Lorgen-Ritchie, Elżbieta Król, Stuart McMillan, Fernando Norambuena, Daniel I Bolnick, Alex Douglas, Douglas R Tocher, Mónica B Betancor, Samuel A M Martin
To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.
为了促进可持续水产养殖,近几十年来大西洋鲑鱼(Salmo salar)饲料的配方发生了变化,重点是用植物性替代品取代标准的海洋性成分,越来越多的替代品在鱼类表现方面取得了成功。然而,人们对这些植物性饲料在首次投喂时及其后可能对肠道微生物群产生的影响知之甚少。营养编程(NP)是一种在鱼类生命早期阶段让其接触植物性(V)膳食的策略,可促进鱼类充分利用植物性成分,并防止鱼类在生命后期接触富含植物的膳食可能产生的不利影响。我们研究了 NP 对肠道微生物群的影响,方法是让鱼类在首次摄食植物配料(V 类鱼)时短暂摄食两周(刺激阶段),并与摄食海洋性食物(M 类鱼)的鱼类进行比较。结果表明,与 M 型鱼相比,V 型鱼不仅在首次投喂后 16 周(中间阶段)和 22 周(挑战阶段)保持了生长性能,而且还调节了肠道微生物群。PERMANOVA 一般效应显示,不同鱼类组(V 鱼与 M 鱼)和不同阶段(刺激阶段与中间阶段与挑战阶段)的肠道微生物群存在差异。然而,两个组别和阶段之间没有交互效应,这表明 V 型饮食(营养史)在不同时间点/阶段对鱼的影响是持续的。此外,V 型饮食在 16 wpff 时对大西洋鲑肠道微生物群产生了显著的累积调节作用,但在 2 wpff 时未显示出这种作用,尽管两组鱼在 16 wpff 时都摄入了 M 型饮食。营养史/饮食制度是主要的 NP 影响因素,而环境和宿主因素则对 M 型鱼的微生物群组成有显著影响。与 V 型鱼相比,M 型鱼在两个月龄时氨基酸代谢的微生物代谢反应更高,这表明微生物群在消化 M 型饲料中的必需氨基酸方面发挥了作用。在 NP 之后的生命后期,V 型鱼在两个 wpff 阶段发现的粘蛋白 O 过度降解现象得到了缓解,这表明鱼类对 V 型饲料具有生理适应性和耐受性。未来的研究需要更全面地探讨微生物群如何在功能上促进净营养过程。
{"title":"Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages.","authors":"Marwa Mamdouh Tawfik, Marlene Lorgen-Ritchie, Elżbieta Król, Stuart McMillan, Fernando Norambuena, Daniel I Bolnick, Alex Douglas, Douglas R Tocher, Mónica B Betancor, Samuel A M Martin","doi":"10.1186/s42523-024-00321-8","DOIUrl":"10.1186/s42523-024-00321-8","url":null,"abstract":"<p><p>To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1186/s42523-024-00325-4
Y Choi, S J Lee, H S Kim, J S Eom, S U Jo, L L Guan, S S Lee
Background: Pinus koraiensis cone essential oil (PEO) contains functional compounds such as monoterpene hydrocarbons, and the administration of PEO reduced methane (CH4) emissions during growing phase of goats. However, the mode of action of PEO driven CH4 reduction is not known, especially how the administration of PEO can affect rumen microbiota and host metabolism in goats during the fattening phase. This study aimed to elucidate the potential microbial and host responses PEO supplementation in goats using metataxonomics (prokaryotes and protozoa) and metabolomics (rumen fluid and serum).
Results: Ten fattening Korean native goats were divided into two dietary groups: control (CON; basal diet without additives) and PEO (basal diet + 1.5 g/d of PEO) with a 2 × 2 crossover design and the treatment lasted for 11 weeks. Administration of PEO reduced CH4 concentrations in the exhaled gas from eructation by 12.0-13.6% (P < 0.05). Although the microbial composition of prokaryotes (bacteria and archaea) and protozoa in the rumen was not altered after PEO administration. MaAsLin2 analysis revealed that the abundance of Selenomonas, Christensenellaceae R-7 group, and Anaerovibrio were enriched in the rumen of PEO supplemented goats (Q < 0.1). Co-occurrence network analysis revealed that Lachnospiraceae AC2044 group and Anaerovibrio were the keystone taxa in the CON and PEO groups, respectively. Methane metabolism (P < 0.05) was enriched in the CON group, whereas metabolism of sulfur (P < 0.001) and propionate (P < 0.1) were enriched in the PEO group based on microbial predicted functions. After PEO administration, the abundance of 11 rumen and 4 serum metabolites increased, whereas that of 25 rumen and 14 serum metabolites decreased (P < 0.1). Random forest analysis identified eight ruminal metabolites that were altered after PEO administration, among which four were associated with propionate production, with predictive accuracy ranging from 0.75 to 0.88. Additionally, we found that serum sarcosine (serum metabolite) was positively correlated with CH4 emission parameters and abundance of Methanobrevibacter in the rumen (|r|≥ 0.5, P < 0.05).
Conclusions: This study revealed that PEO administration reduced CH4 emission from of fattening goats with altered microbial interactions and metabolites in the rumen and host. Importantly, PEO administration affected utilizes various mechanisms such as formate, sulfur, methylated amines metabolism, and propionate production, collectively leading to CH4 reduction. The knowledge is important for future management strategies to maintain animal production and health while mitigate CH4 emission.
{"title":"Metataxonomic and metabolomic profiling revealed Pinus koraiensis cone essential oil reduced methane emission through affecting ruminal microbial interactions and host-microbial metabolism.","authors":"Y Choi, S J Lee, H S Kim, J S Eom, S U Jo, L L Guan, S S Lee","doi":"10.1186/s42523-024-00325-4","DOIUrl":"10.1186/s42523-024-00325-4","url":null,"abstract":"<p><strong>Background: </strong>Pinus koraiensis cone essential oil (PEO) contains functional compounds such as monoterpene hydrocarbons, and the administration of PEO reduced methane (CH<sub>4</sub>) emissions during growing phase of goats. However, the mode of action of PEO driven CH<sub>4</sub> reduction is not known, especially how the administration of PEO can affect rumen microbiota and host metabolism in goats during the fattening phase. This study aimed to elucidate the potential microbial and host responses PEO supplementation in goats using metataxonomics (prokaryotes and protozoa) and metabolomics (rumen fluid and serum).</p><p><strong>Results: </strong>Ten fattening Korean native goats were divided into two dietary groups: control (CON; basal diet without additives) and PEO (basal diet + 1.5 g/d of PEO) with a 2 × 2 crossover design and the treatment lasted for 11 weeks. Administration of PEO reduced CH<sub>4</sub> concentrations in the exhaled gas from eructation by 12.0-13.6% (P < 0.05). Although the microbial composition of prokaryotes (bacteria and archaea) and protozoa in the rumen was not altered after PEO administration. MaAsLin2 analysis revealed that the abundance of Selenomonas, Christensenellaceae R-7 group, and Anaerovibrio were enriched in the rumen of PEO supplemented goats (Q < 0.1). Co-occurrence network analysis revealed that Lachnospiraceae AC2044 group and Anaerovibrio were the keystone taxa in the CON and PEO groups, respectively. Methane metabolism (P < 0.05) was enriched in the CON group, whereas metabolism of sulfur (P < 0.001) and propionate (P < 0.1) were enriched in the PEO group based on microbial predicted functions. After PEO administration, the abundance of 11 rumen and 4 serum metabolites increased, whereas that of 25 rumen and 14 serum metabolites decreased (P < 0.1). Random forest analysis identified eight ruminal metabolites that were altered after PEO administration, among which four were associated with propionate production, with predictive accuracy ranging from 0.75 to 0.88. Additionally, we found that serum sarcosine (serum metabolite) was positively correlated with CH<sub>4</sub> emission parameters and abundance of Methanobrevibacter in the rumen (|r|≥ 0.5, P < 0.05).</p><p><strong>Conclusions: </strong>This study revealed that PEO administration reduced CH<sub>4</sub> emission from of fattening goats with altered microbial interactions and metabolites in the rumen and host. Importantly, PEO administration affected utilizes various mechanisms such as formate, sulfur, methylated amines metabolism, and propionate production, collectively leading to CH<sub>4</sub> reduction. The knowledge is important for future management strategies to maintain animal production and health while mitigate CH<sub>4</sub> emission.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1186/s42523-024-00318-3
K A Stark, G Rinaldi, A Costain, S Clare, C Tolley, A Almeida, C McCarthy, K Harcourt, C Brandt, T D Lawley, M Berriman, A S MacDonald, J E Forde-Thomas, B J Hulme, K F Hoffmann, C Cantacessi, A Cortés
Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.
{"title":"Gut microbiota and immune profiling of microbiota-humanised versus wildtype mouse models of hepatointestinal schistosomiasis.","authors":"K A Stark, G Rinaldi, A Costain, S Clare, C Tolley, A Almeida, C McCarthy, K Harcourt, C Brandt, T D Lawley, M Berriman, A S MacDonald, J E Forde-Thomas, B J Hulme, K F Hoffmann, C Cantacessi, A Cortés","doi":"10.1186/s42523-024-00318-3","DOIUrl":"10.1186/s42523-024-00318-3","url":null,"abstract":"<p><p>Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1186/s42523-024-00324-5
Dewei Du, Yanzhe Wang, Yongji Gao, Lei Feng, Ziye Zhang, Zhiyong Hu
Background: The rumen is a crucial digestive organ for dairy cows. The rumen microbiota assists in the digestion of plant feed through microbe-mediated fermentation, during which the plant feed is transformed into nutrients for the cow's use. Variations in the composition and function of the rumen microbiome affect the energy utilization efficiency of dairy cows, which is one of the reasons for the varying body condition scores (BCSs). This study focused on prepartum Holstein dairy cows to analyze differences in rumen microbiota and metabolites among cows with different BCSs. Twelve prepartum dairy cows were divided into two groups, low BCS (LBCS, BCS = 2.75, n = 6) and high BCS (HBCS, BCS = 3.5, n = 6), to explore differences in microbial composition and metabolites.
Results: In the HBCS group, the genera within the phylum Firmicutes exhibited stronger correlations and greater abundances. Phyla such as Firmicutes, Patescibacteria, Acidobacteriota, Euryarchaeota, and Desulfobacterota, in addition to most of their constituent microbial groups, were significantly more abundant in the HBCS group than in the LBCS group. At the genus level, the abundances of Anaerovibrio, Veillonellaceae_UCG_001, Ruminococcus_gauvreauii_group, Blautia, Eubacterium, Prevotellaceae_YAB2003_group, Schwartzia, and Halomonas significantly increased in the HBCS group. The citrate cycle, involved in carbohydrate metabolism, exhibited a significant enrichment trend, with a notable increase in the abundance of its key substrate, citrate, in the HBCS group. This increase was significantly positively correlated with the differential bacterial genera.
Conclusion: In this study, prepartum dairy cows with higher BCS exhibited greater abundance of Firmicutes. This study provides theoretical support for microbiological research on dairy cows with different BCSs and suggests that regulating the rumen microbiome could help maintain prepartum dairy cows within an optimal BCS range.
{"title":"Analysis of differences in the rumen microbiome and metabolic function in prepartum dairy cows with different body condition scores.","authors":"Dewei Du, Yanzhe Wang, Yongji Gao, Lei Feng, Ziye Zhang, Zhiyong Hu","doi":"10.1186/s42523-024-00324-5","DOIUrl":"10.1186/s42523-024-00324-5","url":null,"abstract":"<p><strong>Background: </strong>The rumen is a crucial digestive organ for dairy cows. The rumen microbiota assists in the digestion of plant feed through microbe-mediated fermentation, during which the plant feed is transformed into nutrients for the cow's use. Variations in the composition and function of the rumen microbiome affect the energy utilization efficiency of dairy cows, which is one of the reasons for the varying body condition scores (BCSs). This study focused on prepartum Holstein dairy cows to analyze differences in rumen microbiota and metabolites among cows with different BCSs. Twelve prepartum dairy cows were divided into two groups, low BCS (LBCS, BCS = 2.75, n = 6) and high BCS (HBCS, BCS = 3.5, n = 6), to explore differences in microbial composition and metabolites.</p><p><strong>Results: </strong>In the HBCS group, the genera within the phylum Firmicutes exhibited stronger correlations and greater abundances. Phyla such as Firmicutes, Patescibacteria, Acidobacteriota, Euryarchaeota, and Desulfobacterota, in addition to most of their constituent microbial groups, were significantly more abundant in the HBCS group than in the LBCS group. At the genus level, the abundances of Anaerovibrio, Veillonellaceae_UCG_001, Ruminococcus_gauvreauii_group, Blautia, Eubacterium, Prevotellaceae_YAB2003_group, Schwartzia, and Halomonas significantly increased in the HBCS group. The citrate cycle, involved in carbohydrate metabolism, exhibited a significant enrichment trend, with a notable increase in the abundance of its key substrate, citrate, in the HBCS group. This increase was significantly positively correlated with the differential bacterial genera.</p><p><strong>Conclusion: </strong>In this study, prepartum dairy cows with higher BCS exhibited greater abundance of Firmicutes. This study provides theoretical support for microbiological research on dairy cows with different BCSs and suggests that regulating the rumen microbiome could help maintain prepartum dairy cows within an optimal BCS range.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}