首页 > 最新文献

bioRxiv : the preprint server for biology最新文献

英文 中文
Atlas-Guided Discovery of Transcription Factors for T Cell Programming. 多组学图谱辅助发现转录因子,实现特定细胞状态编程。
Pub Date : 2025-11-02 DOI: 10.1101/2023.01.03.522354
H Kay Chung, Cong Liu, Anamika Battu, Alexander N Jambor, Brandon M Pratt, Fucong Xie, Brian P Riesenberg, Eduardo Casillas, Ming Sun, Elisa Landoni, Yanpei Li, Qidang Ye, Daniel Joo, Jarred Green, Zaid Syed, Nolan J Brown, Mattew Smith, Shixin Ma, Brent Chick, Victoria Tripple, Shirong Tan, Z Audrey Wang, Jun Wang, Bryan Mcdonald, Peixiang He, Qiyuan Yang, Timothy Chen, Siva Karthik Varanasi, Michael LaPorte, Thomas H Mann, Dan Chen, Filipe Hoffmann, Josephine Ho, Jennifer Modliszewski, April Williams, Yusha Liu, Zhen Wang, Jieyuan Liu, Yiming Gao, Zhiting Hu, Ukrae H Cho, Longwei Liu, Yingxiao Wang, Diana C Hargreaves, Gianpietro Dotti, Barbara Savoldo, Jessica E Thaxton, J Justin Milner, Wei Wang, Susan M Kaech

CD8+ T cells differentiate into diverse states that shape immune outcomes in cancer and chronic infection. To systematically define the transcription factors (TFs) driving these states, we built a comprehensive atlas integrating transcriptional and epigenetic data across nine CD8+ T cell states and inferred TF activity profiles. Our analysis catalogued TF activity fingerprints, uncovering regulatory mechanisms governing selective cell state differentiation. Leveraging this platform, we focused on two transcriptionally similar but functionally opposing states critical in tumor and viral contexts: terminally exhausted T cells (TEXterm), which are dysfunctional, and tissue-resident memory T cells (TRM), which are protective. Global TF community analysis revealed distinct biological pathways and TF-driven networks underlying protective versus dysfunctional states. Through in vivo CRISPR screening integrated with single-cell RNA sequencing (in vivo Perturb-seq), we delineated that TFs selectively govern TEXterm. We identified HIC1 and GFI1 as shared regulators of TEXterm and TRM differentiation and KLF6 as a unique regulator of TRM. Importantly, we discovered novel TEXterm single-state TFs, including ZSCAN20 and JDP2 with no prior known function in T cells. Targeted deletion of these TFs enhanced tumor control and synergized with immune checkpoint blockade. Consistently, their depletion in human T cells reduces the expression of inhibitory receptors and improves effector function. By decoupling exhaustion-selective from protective TRM programs, our platform enables more precise engineering of T cell states, advancing rational design of effective immunotherapies.

同一类型的细胞可以呈现出不同的状态,具有不同的功能。有效的细胞疗法可以通过特异性驱动理想的细胞状态来实现,这需要阐明关键转录因子(TFs)。在这里,我们在系统水平上整合了表观基因组和转录组数据,以无偏见的方式确定了定义不同 CD8 + T 细胞状态的 TF。这些TF图谱可用于细胞状态编程,以最大限度地发挥T细胞的治疗潜力。例如,可以对 T 细胞进行编程,以避免终末衰竭状态(Tex Term),这是一种功能失调的 T 细胞状态,通常出现在肿瘤或慢性感染中。然而,Tex Term 与有益的组织驻留记忆 T 状态(T RM)在位置和转录特征方面表现出高度的相似性。我们的生物信息学分析预测,新型 TF Zscan20 在 Tex Term 中具有独特的活性。同样,敲除 Zscan20 会阻碍 Tex Term 在体内的分化,但不会影响 T RM 的分化。此外,扰乱 Zscan20 会使 T 细胞进入一种类似效应器的状态,这种状态会带来卓越的肿瘤和病毒控制能力,并与免疫检查点疗法产生协同作用。我们还发现 Jdp2 和 Nfil3 是强大的 Tex Term 驱动因子。一句话总结:多组学图谱能够系统鉴定细胞状态转录因子,用于治疗性细胞状态编程。
{"title":"Atlas-Guided Discovery of Transcription Factors for T Cell Programming.","authors":"H Kay Chung, Cong Liu, Anamika Battu, Alexander N Jambor, Brandon M Pratt, Fucong Xie, Brian P Riesenberg, Eduardo Casillas, Ming Sun, Elisa Landoni, Yanpei Li, Qidang Ye, Daniel Joo, Jarred Green, Zaid Syed, Nolan J Brown, Mattew Smith, Shixin Ma, Brent Chick, Victoria Tripple, Shirong Tan, Z Audrey Wang, Jun Wang, Bryan Mcdonald, Peixiang He, Qiyuan Yang, Timothy Chen, Siva Karthik Varanasi, Michael LaPorte, Thomas H Mann, Dan Chen, Filipe Hoffmann, Josephine Ho, Jennifer Modliszewski, April Williams, Yusha Liu, Zhen Wang, Jieyuan Liu, Yiming Gao, Zhiting Hu, Ukrae H Cho, Longwei Liu, Yingxiao Wang, Diana C Hargreaves, Gianpietro Dotti, Barbara Savoldo, Jessica E Thaxton, J Justin Milner, Wei Wang, Susan M Kaech","doi":"10.1101/2023.01.03.522354","DOIUrl":"10.1101/2023.01.03.522354","url":null,"abstract":"<p><p>CD8+ T cells differentiate into diverse states that shape immune outcomes in cancer and chronic infection. To systematically define the transcription factors (TFs) driving these states, we built a comprehensive atlas integrating transcriptional and epigenetic data across nine CD8+ T cell states and inferred TF activity profiles. Our analysis catalogued TF activity fingerprints, uncovering regulatory mechanisms governing selective cell state differentiation. Leveraging this platform, we focused on two transcriptionally similar but functionally opposing states critical in tumor and viral contexts: terminally exhausted T cells (TEXterm), which are dysfunctional, and tissue-resident memory T cells (TRM), which are protective. Global TF community analysis revealed distinct biological pathways and TF-driven networks underlying protective versus dysfunctional states. Through in vivo CRISPR screening integrated with single-cell RNA sequencing (in vivo Perturb-seq), we delineated that TFs selectively govern TEXterm. We identified HIC1 and GFI1 as shared regulators of TEXterm and TRM differentiation and KLF6 as a unique regulator of TRM. Importantly, we discovered novel TEXterm single-state TFs, including ZSCAN20 and JDP2 with no prior known function in T cells. Targeted deletion of these TFs enhanced tumor control and synergized with immune checkpoint blockade. Consistently, their depletion in human T cells reduces the expression of inhibitory receptors and improves effector function. By decoupling exhaustion-selective from protective TRM programs, our platform enables more precise engineering of T cell states, advancing rational design of effective immunotherapies.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10294329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An anatomical substrate of credit assignment in reinforcement learning. 强化学习中学分分配的解剖学基础。
Pub Date : 2025-10-27 DOI: 10.1101/2020.02.18.954354
J Kornfeld, Y Wang, M Januszewski, A Rother, P Schubert, M Goldman, V Jain, W Denk, M S Fee

A key problem in learning is credit assignment. Biological systems lack a plausible mechanism to implement the backpropagation approach, a method that underlies much of the dramatic progress in artificial intelligence. Here, we use automated connectomic analysis to show that the synaptic architecture of songbird basal ganglia (Area X) supports local credit assignment using a variant of a node perturbation algorithm proposed in a model of reinforcement learning. Using two volume electron microscopy (vEM) datasets, we find that key predictions of the model hold true: axons that encode exploratory variability terminate predominantly on dendritic shafts, while axons that encode song timing (context) terminate predominantly on spines. Based on the detailed EM data, we then built a biophysical model of reinforcement learning that suggests that the synaptic dichotomy between variability and context encoding axons facilitates efficient learning. In combination, these findings provide strong evidence for a general, biologically plausible credit assignment model in vertebrate basal ganglia learning.

学习中的一个关键问题是学分分配。生物系统缺乏一种可行的机制来实现反向传播方法,这种方法是人工智能取得巨大进步的基础。在这里,我们使用自动连接组分析来证明鸣禽基底神经节(X区)的突触结构支持局部信用分配,使用强化学习模型中提出的节点扰动算法的变体。使用两个体积电子显微镜(vEM)数据集,我们发现该模型的关键预测是正确的:编码探索性变异性的轴突主要终止于树突轴,而编码歌曲计时(上下文)的轴突主要终止于棘。基于详细的EM数据,我们建立了一个强化学习的生物物理模型,该模型表明变异性和上下文编码轴突之间的突触二分法促进了有效的学习。综上所述,这些发现为脊椎动物基底神经节学习中普遍的、生物学上合理的学分分配模型提供了强有力的证据。使用自动连接组分析和生物物理模型,我们展示了基底神经节如何在突触水平上解决信用分配问题。
{"title":"An anatomical substrate of credit assignment in reinforcement learning.","authors":"J Kornfeld, Y Wang, M Januszewski, A Rother, P Schubert, M Goldman, V Jain, W Denk, M S Fee","doi":"10.1101/2020.02.18.954354","DOIUrl":"10.1101/2020.02.18.954354","url":null,"abstract":"<p><p>A key problem in learning is credit assignment. Biological systems lack a plausible mechanism to implement the backpropagation approach, a method that underlies much of the dramatic progress in artificial intelligence. Here, we use automated connectomic analysis to show that the synaptic architecture of songbird basal ganglia (Area X) supports local credit assignment using a variant of a node perturbation algorithm proposed in a model of reinforcement learning. Using two volume electron microscopy (vEM) datasets, we find that key predictions of the model hold true: axons that encode exploratory variability terminate predominantly on dendritic shafts, while axons that encode song timing (context) terminate predominantly on spines. Based on the detailed EM data, we then built a biophysical model of reinforcement learning that suggests that the synaptic dichotomy between variability and context encoding axons facilitates efficient learning. In combination, these findings provide strong evidence for a general, biologically plausible credit assignment model in vertebrate basal ganglia learning.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"98 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12636467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76190740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity-dependent mitochondrial transport in peri-synaptic glia drives motor function. 突触周围胶质细胞中活动依赖的线粒体运输驱动运动功能。
Pub Date : 2025-10-25 DOI: 10.1101/2021.11.29.470476
Dunham D Clark, Sonja A Zolnoski, Emily L Heckman, Michael R Kann, Sarah D Ackerman

Neurons have an outsized metabolic demand, requiring continuous metabolic support from non-neuronal cells called glia. When this support fails, toxic metabolic byproducts accumulate, ultimately leading to excitotoxicity and neurodegeneration. Astrocytes, the primary synapse-associated glial cell type, are known to provide essential metabolites ( e.g. lactate) to sustain neuronal function. Here, we leverage the well-characterized Drosophila motor circuit to investigate another means of astrocyte-to-neuron metabolic support: activity-dependent trafficking of astrocyte mitochondria. Following optogenetic activation, motor neuron mitochondria migrate away from synapses. By contrast, astrocytic mitochondria accumulated peri-synaptically, and at times, were transferred into neighboring neurons. A genetic screen identified the mitochondrial adaptor protein Milton as a key regulator of this process. Astrocyte-specific milton knockdown disrupted regular mitochondrial trafficking, resulting in locomotor deficits, dysfunctional motor activity, and altered synapse number at the neuromuscular junction. These findings suggest that astrocytes dynamically redistribute mitochondria to buffer metabolic demand at synapses, highlighting a potential mechanism by which glia protect neural circuits from metabolic failure and neurodegeneration.

神经元有巨大的代谢需求,需要来自被称为神经胶质的非神经元细胞的持续代谢支持。当这种支持失效时,有毒的代谢副产物积累,最终导致兴奋性毒性和神经变性。星形胶质细胞是主要的突触相关胶质细胞类型,已知提供必要的代谢物(如乳酸)来维持神经元功能。在这里,我们利用特征良好的果蝇运动回路来研究星形胶质细胞到神经元代谢支持的另一种方式:星形胶质细胞线粒体的活性依赖性运输。光遗传激活后,运动神经元线粒体从突触迁移。相反,星形细胞线粒体在突触周围积聚,有时会转移到邻近的神经元。基因筛选鉴定出线粒体接头蛋白Milton是这一过程的关键调节因子。星形胶质细胞特异性米尔顿敲除破坏了正常的线粒体运输,导致运动缺陷、运动活动功能障碍和神经肌肉连接处突触数量的改变。这些发现表明星形胶质细胞动态地重新分配线粒体以缓冲突触的代谢需求,突出了胶质细胞保护神经回路免受代谢衰竭和神经变性的潜在机制。
{"title":"Activity-dependent mitochondrial transport in peri-synaptic glia drives motor function.","authors":"Dunham D Clark, Sonja A Zolnoski, Emily L Heckman, Michael R Kann, Sarah D Ackerman","doi":"10.1101/2021.11.29.470476","DOIUrl":"10.1101/2021.11.29.470476","url":null,"abstract":"<p><p>Neurons have an outsized metabolic demand, requiring continuous metabolic support from non-neuronal cells called glia. When this support fails, toxic metabolic byproducts accumulate, ultimately leading to excitotoxicity and neurodegeneration. Astrocytes, the primary synapse-associated glial cell type, are known to provide essential metabolites ( <i>e.g.</i> lactate) to sustain neuronal function. Here, we leverage the well-characterized <i>Drosophila</i> motor circuit to investigate another means of astrocyte-to-neuron metabolic support: activity-dependent trafficking of astrocyte mitochondria. Following optogenetic activation, motor neuron mitochondria migrate away from synapses. By contrast, astrocytic mitochondria accumulated peri-synaptically, and at times, were transferred into neighboring neurons. A genetic screen identified the mitochondrial adaptor protein Milton as a key regulator of this process. Astrocyte-specific <i>milton</i> knockdown disrupted regular mitochondrial trafficking, resulting in locomotor deficits, dysfunctional motor activity, and altered synapse number at the neuromuscular junction. These findings suggest that astrocytes dynamically redistribute mitochondria to buffer metabolic demand at synapses, highlighting a potential mechanism by which glia protect neural circuits from metabolic failure and neurodegeneration.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12633265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90883568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mental Effort Cost Learning is Retrospective. 脑力劳动成本学习是回溯性的。
Pub Date : 2025-10-20 DOI: 10.1101/2022.11.26.518013
Asako Mitsuto, Rei Akaishi, Keiichi Onoda, Kenji Morita, Toshikazu Kawagoe, Tetsuya Yamamoto, Shuhei Yamaguchi, Ritsuko Hanajima, Andrew Westbrook

To understand why people avoid mental effort, it is crucial to reveal the mechanisms by which we learn and decide about mental effort costs. This study investigated whether mental effort cost learning aligns with temporal-difference (TD) learning or alternative mechanisms. Model-based fMRI analyses showed no correlation between cost prediction errors (CPEs) and activity in the dorsomedial frontal cortex/dorsal anterior cingulate cortex (dmFC/dACC) or striatum at the time of a fully informative effort cue about upcoming effort demands, contradicting the TD hypothesis. Instead, CPEs correlate with dmFC/dACC (positively) and caudate (negatively) activity at effort completion. Furthermore, only activity patterns at effort completion predict subsequent choices. These results show that decision policies are updated retrospectively at effort completion, updating expected costs with prediction error between experienced effort and prior expectations, demonstrating mental effort cost learning is retrospective, and imply that adaptive learning of mental effort cost does not follow canonical TD learning.

为了理解为什么人们会逃避脑力劳动,揭示我们学习和决定脑力劳动成本的机制是至关重要的。本研究探讨了心理努力成本学习是否与时间差异(TD)学习或其他机制一致。基于模型的fMRI分析显示,当获得关于即将到来的努力需求的充分信息提示时,成本预测误差(cpe)与背内侧额叶皮层/背前扣带皮层(dmFC/dACC)或纹状体的活动没有相关性,这与TD假设相矛盾。相反,cpe与努力完成时的dmFC/dACC(正相关)和尾状核(负相关)活动相关。此外,只有努力完成时的活动模式才能预测随后的选择。研究结果表明,决策策略在努力完成时具有回溯性更新,期望成本的更新具有经验努力与先前期望之间的预测误差,表明心理努力成本学习具有回溯性,并暗示心理努力成本的适应性学习不遵循规范的TD学习。意义说明:了解人们如何了解心理努力成本对于推进动机和认知控制理论至关重要。然而,支持这种学习的算法仍然不清楚。这项研究解决了这一差距,并发现通常用于解释奖励学习的时间差异学习不能解释人们如何学习努力。相反,决策政策是在工作完成时回顾性地更新的,这是基于经验工作和先前期望之间的预测误差。这些发现揭示了心理努力成本学习从根本上是回溯性的,并暗示它依赖于不同于标准时间差异学习的机制。
{"title":"Mental Effort Cost Learning is Retrospective.","authors":"Asako Mitsuto, Rei Akaishi, Keiichi Onoda, Kenji Morita, Toshikazu Kawagoe, Tetsuya Yamamoto, Shuhei Yamaguchi, Ritsuko Hanajima, Andrew Westbrook","doi":"10.1101/2022.11.26.518013","DOIUrl":"10.1101/2022.11.26.518013","url":null,"abstract":"<p><p>To understand why people avoid mental effort, it is crucial to reveal the mechanisms by which we learn and decide about mental effort costs. This study investigated whether mental effort cost learning aligns with temporal-difference (TD) learning or alternative mechanisms. Model-based fMRI analyses showed no correlation between cost prediction errors (CPEs) and activity in the dorsomedial frontal cortex/dorsal anterior cingulate cortex (dmFC/dACC) or striatum at the time of a fully informative effort cue about upcoming effort demands, contradicting the TD hypothesis. Instead, CPEs correlate with dmFC/dACC (positively) and caudate (negatively) activity at effort completion. Furthermore, only activity patterns at effort completion predict subsequent choices. These results show that decision policies are updated retrospectively at effort completion, updating expected costs with prediction error between experienced effort and prior expectations, demonstrating mental effort cost learning is retrospective, and imply that adaptive learning of mental effort cost does not follow canonical TD learning.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12633211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88711892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of astrocytes across species. 增强型AAVs允许遗传途径进入不同物种的少突胶质细胞和不同群体的星形胶质细胞。
Pub Date : 2025-10-12 DOI: 10.1101/2023.09.20.558718
John K Mich, Smrithi Sunil, Nelson Johansen, Refugio A Martinez, Jiatai Liu, Bryan B Gore, Joseph T Mahoney, Mckaila Leytze, Yoav Ben-Simon, Darren Bertagnolli, Ravi Bhowmik, Yemeserach Bishaw, Krissy Brouner, Jazmin Campos, Ryan Canfield, Tamara Casper, Nicholas P Donadio, Nadezhda I Dotson, Tom Egdorf, Amanda Gary, Shane Gibson, Jeff Goldy, Erin L Groce, Kenta M Hagihara, Daniel Hirschstein, Han Hou, Will D Laird, Elizabeth Liang, Luke Loftus, Nicholas Lusk, Jocelin Malone, Naomi X Martin, Deja Monet, Josh S Nagra, Dakota Newman, Nhan-Kiet Ngo, Paul A Olsen, Victoria Omstead, Ximena Opitz-Araya, Aaron Oster, Christina Alice Pom, Lydia Potekhina, Melissa Reding, Christine Rimorin, Augustin Ruiz, Adriana E Sedeno-Cortes, Nadiya V Shapovalova, Michael Taormina, Naz Taskin, Michael Tieu, Nasmil J Valera Cuevas, Sharon W Way, Natalie Weed, Vonn Wright, Zizhen Yao, Thomas Zhou, Delissa A McMillen, Michael Kunst, Medea McGraw, Bargavi Thyagarajan, Jack Waters, Trygve Bakken, Nick Dee, Shenqin Yao, Kimberly A Smith, Karel Svoboda, Kaspar Podgorski, Yoshiko Kojima, Gregory D Horwitz, Hongkui Zeng, Tanya L Daigle, Ed S Lein, Bosiljka Tasic, Jonathan T Ting, Boaz P Levi

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have also revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and the astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity across transgenes and in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.

正确的大脑功能需要不同群体的神经元和神经胶质的组装和功能。单细胞基因表达研究主要集中在神经元细胞多样性的表征上;然而,最近的研究揭示了胶质细胞,特别是星形胶质细胞的多样性。为了更好地了解神经胶质细胞类型及其在神经生物学中的作用,我们建立了一套新的基于腺相关病毒(AAV)的遗传工具,以使星形胶质细胞和少突胶质细胞能够进行遗传访问。这些少突胶质细胞和星形胶质细胞增强子AAVs具有高度特异性(通常>95%的细胞类型特异性),表达水平可变,我们的星形胶质细胞增强因子AAVs显示出多种不同的表达模式,反映了星形胶质细胞类型的空间分布。为了提供最佳的神经胶质特异性功能工具,对几种增强子AAV进行了优化,以获得更高的表达水平,在大鼠和猕猴中显示出功能性和特异性,在传统启动子改变活性的癫痫中显示出维持特异性活性,并用于驱动星形胶质细胞中的功能性转基因,包括Cre重组酶和乙酰胆碱反应传感器iAChSnFR。星形胶质细胞特异性iAChSnFR揭示了伏隔核星形胶质细胞在强化学习过程中明显的奖赏依赖性乙酰胆碱反应。总之,这组胶质增强剂AAVs将能够表征星形胶质细胞和少突胶质细胞群体及其在物种、疾病状态和行为时代中的作用。
{"title":"Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of astrocytes across species.","authors":"John K Mich, Smrithi Sunil, Nelson Johansen, Refugio A Martinez, Jiatai Liu, Bryan B Gore, Joseph T Mahoney, Mckaila Leytze, Yoav Ben-Simon, Darren Bertagnolli, Ravi Bhowmik, Yemeserach Bishaw, Krissy Brouner, Jazmin Campos, Ryan Canfield, Tamara Casper, Nicholas P Donadio, Nadezhda I Dotson, Tom Egdorf, Amanda Gary, Shane Gibson, Jeff Goldy, Erin L Groce, Kenta M Hagihara, Daniel Hirschstein, Han Hou, Will D Laird, Elizabeth Liang, Luke Loftus, Nicholas Lusk, Jocelin Malone, Naomi X Martin, Deja Monet, Josh S Nagra, Dakota Newman, Nhan-Kiet Ngo, Paul A Olsen, Victoria Omstead, Ximena Opitz-Araya, Aaron Oster, Christina Alice Pom, Lydia Potekhina, Melissa Reding, Christine Rimorin, Augustin Ruiz, Adriana E Sedeno-Cortes, Nadiya V Shapovalova, Michael Taormina, Naz Taskin, Michael Tieu, Nasmil J Valera Cuevas, Sharon W Way, Natalie Weed, Vonn Wright, Zizhen Yao, Thomas Zhou, Delissa A McMillen, Michael Kunst, Medea McGraw, Bargavi Thyagarajan, Jack Waters, Trygve Bakken, Nick Dee, Shenqin Yao, Kimberly A Smith, Karel Svoboda, Kaspar Podgorski, Yoshiko Kojima, Gregory D Horwitz, Hongkui Zeng, Tanya L Daigle, Ed S Lein, Bosiljka Tasic, Jonathan T Ting, Boaz P Levi","doi":"10.1101/2023.09.20.558718","DOIUrl":"10.1101/2023.09.20.558718","url":null,"abstract":"<p><p>Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have also revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and the astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity across transgenes and in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell growth rates coordinate across the width of the leaf to remain flat. 细胞的生长速率在叶片的宽度上保持一致以保持平坦。
Pub Date : 2025-09-30 DOI: 10.1101/2022.11.01.514736
Kate Harline, Brendan Lane, Antoine Fruleux, Gabriella Mosca, Sören Strauss, Nik Tavakolian, James W Satterlee, Chun-Biu Li, Abhyudai Singh, Arezki Boudaoud, Richard S Smith, Adrienne H K Roeder

The growth and division of cells in plant leaves is highly dynamic in time and space, even though cells cannot move relative to their neighbors. Thus, organ shape must emerge from carefully coordinated growth, especially in leaves that remain relatively flat as they grow. Here we explored the phenotype of the jagged and wavy (jaw-D) mutant in Arabidopsis thaliana, in which the leaves do not remain flat. It has previously been shown that the jaw-D mutant phenotype is caused by the overexpression of miR319, which represses TCP transcription factors, thus delaying maturation of the leaf. We analyzed cell dynamics in wild type and jaw-D by performing time lapse live imaging of developing leaves. We found that the progression of maturation from the tip of the leaf downward was delayed in jaw-D relative to wild type based on several markers of maturation, in agreement with the role of TCP transcription factors in promoting maturation. We further found that these changes in maturation were accompanied by differences in the coordination of growth across the leaf, particularly across the medial-lateral axis, causing growth conflicts that prevent the leaf from remaining flat. Although leaf flatness is often framed as a problem that requires the local synchronization of growth on the abaxial vs adaxial sides of the leaf, our results based on the jaw-D phenotype suggest that wild-type plants also need to coordinate growth more globally across the leaf blade to maintain flatness.

植物叶片中细胞的生长和分裂在时间和空间上是高度动态的,即使细胞不能相对于它们的邻居移动。因此,器官的形状必须经过精心协调的生长,尤其是在生长过程中保持相对平坦的叶子中。在这里,我们探索了拟南芥中锯齿状和波浪状(颚- d)突变体的表型,其中叶子不保持平坦。先前的研究表明,jaw-D突变表型是由miR319过表达引起的,miR319抑制TCP转录因子,从而延迟了叶片的成熟。我们通过对发育中的叶片进行延时实时成像,分析了野生型和颚- d的细胞动力学。我们发现,基于几个成熟标记,相对于野生型,下颌d从叶尖向下的成熟进程被延迟,这与TCP转录因子在促进成熟中的作用一致。我们进一步发现,这些成熟的变化伴随着叶片间生长协调性的差异,特别是在中-侧轴上,导致生长冲突,从而阻止叶片保持平坦。虽然叶片平整度通常被认为是一个需要叶片背面和正面局部同步生长的问题,但我们基于颚- d表型的研究结果表明,野生型植物还需要在叶片上协调更多的全球生长以保持平整度。
{"title":"Cell growth rates coordinate across the width of the leaf to remain flat.","authors":"Kate Harline, Brendan Lane, Antoine Fruleux, Gabriella Mosca, Sören Strauss, Nik Tavakolian, James W Satterlee, Chun-Biu Li, Abhyudai Singh, Arezki Boudaoud, Richard S Smith, Adrienne H K Roeder","doi":"10.1101/2022.11.01.514736","DOIUrl":"10.1101/2022.11.01.514736","url":null,"abstract":"<p><p>The growth and division of cells in plant leaves is highly dynamic in time and space, even though cells cannot move relative to their neighbors. Thus, organ shape must emerge from carefully coordinated growth, especially in leaves that remain relatively flat as they grow. Here we explored the phenotype of the <i>jagged and wavy</i> (<i>jaw-D</i>) mutant in <i>Arabidopsis thaliana</i>, in which the leaves do not remain flat. It has previously been shown that the <i>jaw-D</i> mutant phenotype is caused by the overexpression of <i>miR319</i>, which represses TCP transcription factors, thus delaying maturation of the leaf. We analyzed cell dynamics in wild type and <i>jaw-D</i> by performing time lapse live imaging of developing leaves. We found that the progression of maturation from the tip of the leaf downward was delayed in <i>jaw-D</i> relative to wild type based on several markers of maturation, in agreement with the role of TCP transcription factors in promoting maturation. We further found that these changes in maturation were accompanied by differences in the coordination of growth across the leaf, particularly across the medial-lateral axis, causing growth conflicts that prevent the leaf from remaining flat. Although leaf flatness is often framed as a problem that requires the local synchronization of growth on the abaxial vs adaxial sides of the leaf, our results based on the <i>jaw-D</i> phenotype suggest that wild-type plants also need to coordinate growth more globally across the leaf blade to maintain flatness.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12621980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87243120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bioluminescent Activity Dependent (BLADe) Platform for Converting Intracellular Activity to Photoreceptor Activation. 将神经元活性转化为光受体激活的生物发光活性依赖(BLADe)平台。
Pub Date : 2025-09-30 DOI: 10.1101/2023.06.25.546469
Emmanuel L Crespo, Akash Pal, Mansi Prakash, Alexander D Silvagnoli, Zohair Zaidi, Manuel Gomez-Ramirez, Maya O Tree, Nathan C Shaner, Diane Lipscombe, Christopher I Moore, Ute Hochgeschwender

Genetically encoded sensors and actuators have advanced the ability to observe and manipulate cellular activity, yet few non-invasive strategies enable cells to directly couple their intracellular states to user-defined outputs. We developed a bioluminescent activity-dependent (BLADe) platform that facilitates programmable feedback through genetically encoded light generation. Using calcium (Ca2+) flux as a model, we engineered a Ca2+-dependent luciferase that functions as both a reporter and an activity-gated light source capable of photoactivating light-sensing actuators. In neurons, the presence of luciferin triggers Ca2+ dependent local illumination that provides activity dependent gene expression by activating a light-sensitive transcription factor and control of neural dynamics through opsin activation in single cells, populations and intact tissue. BLADe can be expanded to couple any signal that bioluminescent enzymes can be engineered to detect with the wide variety of photosensing actuators. This modular strategy of coupling an activity dependent light emitter to a light sensing actuator offers a generalizable framework for state dependent cell-autonomous control across biological systems.

我们开发了一个平台,利用钙依赖性萤光素酶将神经元活动转化为同一细胞内光感测结构域的激活。该平台基于Gaussia萤光素酶变体,其具有由钙调素-M13序列分裂的高光发射,该序列依赖于钙离子(Ca2+)的流入以进行功能重建。在荧光素、腔肠菌素(CTZ)存在的情况下,Ca2+内流导致光发射,从而驱动光感受器的激活,包括光遗传学通道和LOV结构域。转化萤光素酶的关键特征是在基线条件下发光低到足以不激活光感受器,而在Ca2+和荧光素存在下发光高到足以激活光敏元件。我们证明了这种活性依赖性传感器和积分器在体外和体内改变神经元个体和群体的膜电位和驱动转录方面的性能。
{"title":"A Bioluminescent Activity Dependent (BLADe) Platform for Converting Intracellular Activity to Photoreceptor Activation.","authors":"Emmanuel L Crespo, Akash Pal, Mansi Prakash, Alexander D Silvagnoli, Zohair Zaidi, Manuel Gomez-Ramirez, Maya O Tree, Nathan C Shaner, Diane Lipscombe, Christopher I Moore, Ute Hochgeschwender","doi":"10.1101/2023.06.25.546469","DOIUrl":"10.1101/2023.06.25.546469","url":null,"abstract":"<p><p>Genetically encoded sensors and actuators have advanced the ability to observe and manipulate cellular activity, yet few non-invasive strategies enable cells to directly couple their intracellular states to user-defined outputs. We developed a bioluminescent activity-dependent (BLADe) platform that facilitates programmable feedback through genetically encoded light generation. Using calcium (Ca<sup>2+</sup>) flux as a model, we engineered a Ca<sup>2+</sup>-dependent luciferase that functions as both a reporter and an activity-gated light source capable of photoactivating light-sensing actuators. In neurons, the presence of luciferin triggers Ca<sup>2+</sup> dependent local illumination that provides activity dependent gene expression by activating a light-sensitive transcription factor and control of neural dynamics through opsin activation in single cells, populations and intact tissue. BLADe can be expanded to couple any signal that bioluminescent enzymes can be engineered to detect with the wide variety of photosensing actuators. This modular strategy of coupling an activity dependent light emitter to a light sensing actuator offers a generalizable framework for state dependent cell-autonomous control across biological systems.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/59/2a/nihpp-2023.06.25.546469v1.PMC10327117.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10664894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell autonomous polarization by the planar cell polarity signaling pathway. 细胞自主极化通过平面细胞极性信号通路。
Pub Date : 2025-09-29 DOI: 10.1101/2023.09.26.559449
Alexis T Weiner, Silas Boye Nissen, Kaye Suyama, Bomsoo Cho, Gandhy Pierre-Louis, Jeffrey D Axelrod

As epithelial cells polarize in the tissue plane, the Planar Cell Polarity (PCP) signaling module segregates two distinct molecular subcomplexes to opposite sides of cells. Homodimers of the atypical cadherin Flamingo form bridges linking opposite complexes in neighboring cells, coordinating their direction of polarization. Feedback is required for cell polarization, but whether feedback requires intercellular and/or intracellular pathways is unknown. Using novel tools, we show that cells lacking Flamingo, or bearing a homodimerization-deficient Flamingo, polarize autonomously, indicating that functional PCP subcomplexes form and segregate cell-autonomously. Furthermore, we identify feedback pathways and propose an asymmetry amplifying mechanism that operate cell-autonomously. The intrinsic logic of PCP signaling is therefore more similar to that in single cell systems than was previously recognized.

平面细胞极性(PCP)信号使上皮细胞在与其顶端-基底轴正交的平面中极化。核心PCP信号模块既在细胞内产生分子不对称性,又协调相邻细胞之间的极化方向。核心蛋白的两个亚复合体分离到细胞的相对两侧,形成极性轴。非典型钙粘蛋白火烈鸟的同源二聚体被认为是这些亚复合物组装的支架,也是细胞间极性信号传导所必需的。火烈鸟同源二聚体在支架和细胞间通讯中的核心作用表明,通过火烈鸟传递细胞间信号的细胞应该不会极化。我们发现,缺乏火烈鸟的细胞,或者携带不能同源二聚的截短的火烈鸟,实际上会发生极化。细胞极化需要正反馈和负反馈,在多细胞组织中,反馈可能涉及细胞内和细胞间途径。我们确定了正反馈和负反馈途径,这些途径使细胞自主运作以驱动极化。
{"title":"Cell autonomous polarization by the planar cell polarity signaling pathway.","authors":"Alexis T Weiner, Silas Boye Nissen, Kaye Suyama, Bomsoo Cho, Gandhy Pierre-Louis, Jeffrey D Axelrod","doi":"10.1101/2023.09.26.559449","DOIUrl":"10.1101/2023.09.26.559449","url":null,"abstract":"<p><p>As epithelial cells polarize in the tissue plane, the Planar Cell Polarity (PCP) signaling module segregates two distinct molecular subcomplexes to opposite sides of cells. Homodimers of the atypical cadherin Flamingo form bridges linking opposite complexes in neighboring cells, coordinating their direction of polarization. Feedback is required for cell polarization, but whether feedback requires intercellular and/or intracellular pathways is unknown. Using novel tools, we show that cells lacking Flamingo, or bearing a homodimerization-deficient Flamingo, polarize autonomously, indicating that functional PCP subcomplexes form and segregate cell-autonomously. Furthermore, we identify feedback pathways and propose an asymmetry amplifying mechanism that operate cell-autonomously. The intrinsic logic of PCP signaling is therefore more similar to that in single cell systems than was previously recognized.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/3e/nihpp-2023.09.26.559449v1.PMC10557733.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41123282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leptin antagonism improves Rett syndrome phenotype in symptomatic Mecp2-deficient mice. 瘦素拮抗剂可改善无症状雄性 Mecp2 缺失小鼠的 Rett 综合征表型。
Pub Date : 2025-09-29 DOI: 10.1101/2023.02.03.526251
Yasmine Belaidouni, Diabe Diabira, Pascal Salin, Melanie Brosset-Heckel, Victoria Valsamides, Jean-Charles Graziano, Catarina Santos, Clement Menuet, Gary Wayman, Jean-Luc Gaiarsa

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder caused by mutations in MECP2. Elevated circulating levels of the adipocyte hormone leptin are consistently observed in patients and in mouse models, yet their contribution to disease progression has remained unclear. Here, we show that reducing leptin signaling, either pharmacologically or genetically, significantly alleviates RTT-like phenotypes in Mecp2-deficient mice. In males, these interventions preserved general health, prevented weight loss, and improved breathing and locomotor functions. At the neuronal level, they restored excitatory/inhibitory balance in the hippocampus and somatosensory cortex and rescued hippocampal synaptic plasticity. In females, delaying the pathological rise of leptin levels postponed symptom progression. These findings uncover leptin as a key contributor to RTT pathophysiology and position leptin-targeted interventions as a promising therapeutic strategy for this currently untreatable disorder.

雷特综合征(RTT)是一种严重的神经发育障碍性疾病,由 X 连锁基因 MECP2(甲基-CpG 结合蛋白 2)的新突变引起。在 RTT 患者和该疾病的啮齿动物模型中,脂肪细胞激素瘦素的循环水平会升高。瘦素以大量大脑结构为靶点,调节一系列发育和生理功能,而这些功能在 RTT 中都会发生改变。我们假设瘦素水平的升高可能会导致 RTT 发病。因此,我们的研究表明,通过药物拮抗瘦素或通过基因减少瘦素的产生,可以防止健康状况恶化、体重减轻以及呼吸和运动障碍的发展。在神经元水平上,抗瘦素策略可挽救海马兴奋/抑制失衡和突触可塑性损伤。因此,以瘦素为靶点可能是治疗 RTT 的一种新方法。
{"title":"Leptin antagonism improves Rett syndrome phenotype in symptomatic Mecp2-deficient mice.","authors":"Yasmine Belaidouni, Diabe Diabira, Pascal Salin, Melanie Brosset-Heckel, Victoria Valsamides, Jean-Charles Graziano, Catarina Santos, Clement Menuet, Gary Wayman, Jean-Luc Gaiarsa","doi":"10.1101/2023.02.03.526251","DOIUrl":"10.1101/2023.02.03.526251","url":null,"abstract":"<p><p>Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder caused by mutations in MECP2. Elevated circulating levels of the adipocyte hormone leptin are consistently observed in patients and in mouse models, yet their contribution to disease progression has remained unclear. Here, we show that reducing leptin signaling, either pharmacologically or genetically, significantly alleviates RTT-like phenotypes in Mecp2-deficient mice. In males, these interventions preserved general health, prevented weight loss, and improved breathing and locomotor functions. At the neuronal level, they restored excitatory/inhibitory balance in the hippocampus and somatosensory cortex and rescued hippocampal synaptic plasticity. In females, delaying the pathological rise of leptin levels postponed symptom progression. These findings uncover leptin as a key contributor to RTT pathophysiology and position leptin-targeted interventions as a promising therapeutic strategy for this currently untreatable disorder.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10685305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional genomic analysis of non-canonical DNA regulatory elements of the aryl hydrocarbon receptor. 芳烃受体的非经典DNA调控元件的功能基因组分析。
Pub Date : 2025-09-29 DOI: 10.1101/2023.05.01.538985
Shayan Shahriar, Tajhal D Patel, Manjula Nakka, Sandra L Grimm, Cristian Coarfa, Daniel A Gorelick

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor activated by environmental toxicants like halogenated and polycyclic aromatic hydrocarbons, which then binds to DNA and regulates gene expression. AHR is implicated in numerous physiological processes, including liver and immune function, cell cycle control, oncogenesis, and metabolism. Traditionally, AHR binds a consensus DNA sequence (GCGTG), the xenobiotic response element (XRE), recruits coregulators, and modulates gene expression. Yet, recent evidence suggests AHR can also regulate gene expression via a non-consensus sequence (GGGA), termed the non-consensus XRE (NC-XRE). The prevalence and functional significance of NC-XRE motifs in the genome have remained unclear. While ChIP and reporter studies hinted at AHR-NC-XRE interactions, direct evidence for transcriptional regulation in a native context was lacking. In this study, we analyzed AHR binding to NC-XRE sequences genome-wide in mouse liver, integrating ChIP-seq and RNA-seq data to identify candidate AHR target genes containing NC-XRE motifs in their regulatory regions. We found NC-XRE motifs in 82% of AHR-bound DNA, significantly enriched compared to random regions, and present in promoters and enhancers of AHR targets. Functional genomics on the Serpine1 gene revealed that deleting NC-XRE motifs reduced TCDD-induced Serpine1 upregulation, demonstrating direct regulation. These findings provide the first direct evidence for AHR-mediated regulation via NC-XRE in a natural genomic context, advancing our understanding of AHR-bound DNA and its impact on gene expression and physiological relevance.

芳烃受体(AHR)是一种配体依赖性转录因子,它结合DNA并调节基因对卤代和多环芳烃的反应。AHR还调节肝脏和免疫系统的发育和功能。在经典途径中,AHR结合一个被称为外源性反应元件(XRE)的共有DNA序列,招募蛋白质协同调节因子,并调节靶基因表达。新出现的证据表明,AHR可能通过一种额外的途径调节基因表达,即与一种称为非共有XRE(NC-XRE)的非共有DNA序列结合。NC-XRE基序在基因组中的普遍性尚不清楚。使用染色质免疫沉淀和报告基因的研究提供了AHR-NC-XRE相互作用的间接证据,但缺乏在自然基因组背景下调节转录的AHR-NCXRE相互作用的直接证据。在这里,我们在全基因组范围内分析了AHR与小鼠肝脏中NC-XRE DNA的结合。我们整合了ChIP-seq和RNA-seq数据,并鉴定了在调控区具有NC-XRE基序的假定AHR靶基因。我们还在单个基因座,即小鼠Serpine1基因上进行了功能基因组学研究。从Serpine1启动子中删除NC-XRE基序降低了AHR配体TCDD对Serpine1的上调。我们得出结论,AHR通过NC-XRE DNA上调Serpine1。NC-XRE基序在AHR结合的基因组的整个区域普遍存在。总之,我们的结果表明AHR通过NC-XRE基序调节基因。我们的研究结果还将提高我们识别AHR靶基因及其生理相关性的能力。
{"title":"Functional genomic analysis of non-canonical DNA regulatory elements of the aryl hydrocarbon receptor.","authors":"Shayan Shahriar, Tajhal D Patel, Manjula Nakka, Sandra L Grimm, Cristian Coarfa, Daniel A Gorelick","doi":"10.1101/2023.05.01.538985","DOIUrl":"10.1101/2023.05.01.538985","url":null,"abstract":"<p><p>The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor activated by environmental toxicants like halogenated and polycyclic aromatic hydrocarbons, which then binds to DNA and regulates gene expression. AHR is implicated in numerous physiological processes, including liver and immune function, cell cycle control, oncogenesis, and metabolism. Traditionally, AHR binds a consensus DNA sequence (GCGTG), the xenobiotic response element (XRE), recruits coregulators, and modulates gene expression. Yet, recent evidence suggests AHR can also regulate gene expression via a non-consensus sequence (GGGA), termed the non-consensus XRE (NC-XRE). The prevalence and functional significance of NC-XRE motifs in the genome have remained unclear. While ChIP and reporter studies hinted at AHR-NC-XRE interactions, direct evidence for transcriptional regulation in a native context was lacking. In this study, we analyzed AHR binding to NC-XRE sequences genome-wide in mouse liver, integrating ChIP-seq and RNA-seq data to identify candidate AHR target genes containing NC-XRE motifs in their regulatory regions. We found NC-XRE motifs in 82% of AHR-bound DNA, significantly enriched compared to random regions, and present in promoters and enhancers of AHR targets. Functional genomics on the Serpine1 gene revealed that deleting NC-XRE motifs reduced TCDD-induced Serpine1 upregulation, demonstrating direct regulation. These findings provide the first direct evidence for AHR-mediated regulation via NC-XRE in a natural genomic context, advancing our understanding of AHR-bound DNA and its impact on gene expression and physiological relevance.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/49/nihpp-2023.05.01.538985v1.PMC10187216.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10425783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv : the preprint server for biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1