首页 > 最新文献

bioRxiv : the preprint server for biology最新文献

英文 中文
Chronic RNA G-quadruplex Accumulation in Aging and Alzheimer's Disease. RNA G-四链体在衰老和阿尔茨海默病中的新作用。
Pub Date : 2025-01-13 DOI: 10.1101/2023.10.02.560545
Lena Kallweit, Eric D Hamlett, Hannah Saternos, Anah Gilmore, Ann-Charlotte Granholm, Scott Horowitz

Introduction: As the world population ages, new molecular targets in aging and Alzheimer's Disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. METHODS: In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD.

Results: We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with accumulation of phospho-tau immunostaining contained rG4s, that rG4 structure can drive tau aggregation, and that rG4 staining density depended on APOE genotype in the human tissue examined.

Discussion: Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation is linked to proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.

随着世界人口的老龄化,需要针对老龄化和阿尔茨海默病(AD)的新分子靶点来对抗预期涌入的新AD病例。到目前为止,RNA结构在衰老和神经退行性变中的作用在很大程度上尚未被探索。在这项研究中,我们检查了衰老和AD患者海马死后组织中RNA G-四链体(rG4s)的形成。我们发现,随着年龄和AD严重程度的增加,rG4免疫染色在海马中的患病率显著增加。我们进一步发现,神经原纤维缠结(NFT)含有rG4s,rG4结构可以驱动tau聚集,并且rG4的形成取决于所检查的人类组织中的APOE基因型。结合先前显示rG4结构对应激的依赖性以及rG4在寡聚蛋白方面的极端能力的研究,我们提出了一种神经退行性变模型,其中慢性rG4的形成驱动蛋白稳定崩溃。我们提出,进一步研究神经退行性变中的RNA结构是未来治疗和诊断的关键途径。
{"title":"Chronic RNA G-quadruplex Accumulation in Aging and Alzheimer's Disease.","authors":"Lena Kallweit, Eric D Hamlett, Hannah Saternos, Anah Gilmore, Ann-Charlotte Granholm, Scott Horowitz","doi":"10.1101/2023.10.02.560545","DOIUrl":"10.1101/2023.10.02.560545","url":null,"abstract":"<p><strong>Introduction: </strong>As the world population ages, new molecular targets in aging and Alzheimer's Disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. METHODS: In this study, we examined human hippocampal <i>postmortem</i> tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD.</p><p><strong>Results: </strong>We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with accumulation of phospho-tau immunostaining contained rG4s, that rG4 structure can drive tau aggregation, and that rG4 staining density depended on APOE genotype in the human tissue examined.</p><p><strong>Discussion: </strong>Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation is linked to proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592952/pdf/nihpp-2023.10.02.560545v1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteostasis and lysosomal repair deficits in transdifferentiated neurons of Alzheimer's disease. 阿尔茨海默病神经元的蛋白稳态和溶酶体质量控制缺陷
Pub Date : 2025-01-13 DOI: 10.1101/2023.03.27.534444
Ching-Chieh Chou, Ryan Vest, Miguel A Prado, Joshua Wilson-Grady, Joao A Paulo, Yohei Shibuya, Patricia Moran-Losada, Ting-Ting Lee, Jian Luo, Steven P Gygi, Jeffery W Kelly, Daniel Finley, Marius Wernig, Tony Wyss-Coray, Judith Frydman

Aging is the most prominent risk factor for Alzheimer's disease (AD). However, the cellular mechanisms linking neuronal proteostasis decline to the characteristic aberrant protein deposits in AD brains remain elusive. Here, we develop transdifferentiated neurons (tNeurons) from human dermal fibroblasts as a neuronal model that retains aging hallmarks and exhibits AD-linked vulnerabilities. Remarkably, AD tNeurons accumulate proteotoxic deposits, including phospho-Tau and Aβ, resembling those in AD patient and APP mouse brains. Quantitative tNeuron proteomics identify aging and AD-linked deficits in proteostasis and organelle homeostasis, most notably in endosome-lysosomal components. Lysosomal deficits in aged tNeurons, including constitutive lysosomal damage and ESCRT-mediated lysosomal repair defects, are exacerbated in AD tNeurons and linked to inflammatory cytokine secretion and cell death. Supporting lysosomal deficits' centrality in AD, compounds ameliorating lysosomal function reduce Aβ deposits and cytokine secretion. Thus, the tNeuron model system reveals impaired lysosomal homeostasis as an early event of aging and AD.

蛋白稳态和细胞器平衡失调在人类衰老和阿尔茨海默病(AD)中的作用仍不清楚。通过分析人类供体成纤维细胞及其相应的转分化神经元(tNeurons)中整个蛋白质组的变化,我们发现衰老和阿尔茨海默病协同损害了多种蛋白稳态通路,其中最显著的是溶酶体质量控制(LQC)。我们尤其发现,ESCRT 介导的溶酶体修复缺陷与散发性和 PSEN1 家族性 AD 都有关联。在成纤维细胞中检测到了与衰老和 AD 相关的缺陷,但在 tNeurons 中却严重加剧,导致神经元的脆弱性、未修复的溶酶体损伤、炎症因子分泌和细胞毒性增强。令人惊讶的是,来自老年和注意力缺失症供体的 tNeurons 会自发产生与 LQC 标记、LAMP1/2 阳性溶酶体和蛋白稳态因子共定位的淀粉样β包涵体;我们在注意力缺失症患者和 APP 转基因小鼠的脑组织中也观察到了类似的包涵体。重要的是,增强溶酶体功能的化合物能广泛改善这些与注意力缺失症相关的病症。我们的研究结果证明,神经元中细胞自主的溶酶体功能障碍是衰老和注意力缺失症发病机制中的一个核心弱点。
{"title":"Proteostasis and lysosomal repair deficits in transdifferentiated neurons of Alzheimer's disease.","authors":"Ching-Chieh Chou, Ryan Vest, Miguel A Prado, Joshua Wilson-Grady, Joao A Paulo, Yohei Shibuya, Patricia Moran-Losada, Ting-Ting Lee, Jian Luo, Steven P Gygi, Jeffery W Kelly, Daniel Finley, Marius Wernig, Tony Wyss-Coray, Judith Frydman","doi":"10.1101/2023.03.27.534444","DOIUrl":"10.1101/2023.03.27.534444","url":null,"abstract":"<p><p>Aging is the most prominent risk factor for Alzheimer's disease (AD). However, the cellular mechanisms linking neuronal proteostasis decline to the characteristic aberrant protein deposits in AD brains remain elusive. Here, we develop transdifferentiated neurons (tNeurons) from human dermal fibroblasts as a neuronal model that retains aging hallmarks and exhibits AD-linked vulnerabilities. Remarkably, AD tNeurons accumulate proteotoxic deposits, including phospho-Tau and Aβ, resembling those in AD patient and APP mouse brains. Quantitative tNeuron proteomics identify aging and AD-linked deficits in proteostasis and organelle homeostasis, most notably in endosome-lysosomal components. Lysosomal deficits in aged tNeurons, including constitutive lysosomal damage and ESCRT-mediated lysosomal repair defects, are exacerbated in AD tNeurons and linked to inflammatory cytokine secretion and cell death. Supporting lysosomal deficits' centrality in AD, compounds ameliorating lysosomal function reduce Aβ deposits and cytokine secretion. Thus, the tNeuron model system reveals impaired lysosomal homeostasis as an early event of aging and AD.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9265432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic multisensory integration follows subjective confidence rather than objective performance. 自动线索组合和元认知置信度报告中的常见计算。
Pub Date : 2025-01-12 DOI: 10.1101/2023.06.07.544029
Yi Gao, Kai Xue, Brian Odegaard, Dobromir Rahnev

It is well known that sensory information from one modality can automatically affect judgments from a different sensory modality. However, it remains unclear what determines the strength of the influence of an irrelevant sensory cue from one modality on a perceptual judgment for a different modality. Here we test whether the strength of multisensory impact by an irrelevant sensory cue depends on participants' objective accuracy or subjective confidence for that cue. We created visual motion stimuli with low vs. high overall motion energy, where high-energy stimuli yielded higher confidence but lower accuracy in a visual-only task. We then tested the impact of the low- and high-energy visual stimuli on auditory motion perception. We found that the high-energy visual stimuli influenced the auditory motion judgments more strongly than the low-energy visual stimuli, consistent with their higher confidence but contrary to their lower accuracy. A computational model assuming common principles underlying confidence reports and multisensory integration captured these effects. Our findings show that automatic multisensory integration follows subjective confidence rather than objective performance and suggest the existence of common computations across vastly different stages of perceptual decision making.

适当的感知决策需要对感官不确定性的准确估计和利用。这种估计已经在低水平多感官线索组合和置信度的元认知估计的背景下进行了研究,但目前尚不清楚这两种不确定性估计是否具有相同的计算基础。我们创造了低和高整体运动能量的视觉刺激,这样,高能量的刺激在视觉任务中导致更高的信心,但更低的准确性。重要的是,我们在一个单独的任务中测试了低能量和高能量视觉刺激对听觉运动感知的影响。尽管与听觉任务无关,但两种视觉刺激都可能通过自动低级机制影响听觉判断。更重要的是,我们发现高能视觉刺激对听觉判断的影响比低能量视觉刺激更强烈。这种效应与信心一致,但与视觉任务中高能量刺激和低能量刺激之间的准确性差异相反。这些影响是通过一个简单的计算模型捕捉到的,该模型假设了置信度报告和多感官线索组合的共同计算原理。我们的研究结果揭示了自动感觉处理和元认知置信度报告之间的深层联系,并表明知觉决策的不同阶段依赖于共同的计算原理。
{"title":"Automatic multisensory integration follows subjective confidence rather than objective performance.","authors":"Yi Gao, Kai Xue, Brian Odegaard, Dobromir Rahnev","doi":"10.1101/2023.06.07.544029","DOIUrl":"10.1101/2023.06.07.544029","url":null,"abstract":"<p><p>It is well known that sensory information from one modality can automatically affect judgments from a different sensory modality. However, it remains unclear what determines the strength of the influence of an irrelevant sensory cue from one modality on a perceptual judgment for a different modality. Here we test whether the strength of multisensory impact by an irrelevant sensory cue depends on participants' objective accuracy or subjective confidence for that cue. We created visual motion stimuli with low vs. high overall motion energy, where high-energy stimuli yielded higher confidence but lower accuracy in a visual-only task. We then tested the impact of the low- and high-energy visual stimuli on auditory motion perception. We found that the high-energy visual stimuli influenced the auditory motion judgments more strongly than the low-energy visual stimuli, consistent with their higher confidence but contrary to their lower accuracy. A computational model assuming common principles underlying confidence reports and multisensory integration captured these effects. Our findings show that automatic multisensory integration follows subjective confidence rather than objective performance and suggest the existence of common computations across vastly different stages of perceptual decision making.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PDZ Domains from the Junctional Proteins Afadin and ZO-1 Act as Mechanosensors. 连接蛋白Afadin和ZO-1的PDZ结构域作为机械传感器。
Pub Date : 2025-01-11 DOI: 10.1101/2023.09.24.559210
Vipul T Vachharajani, Matthew P DeJong, Soumya Dutta, Jonathan Chapman, Eashani Ghosh, Abhishek Singharoy, Alexander R Dunn

Intercellular adhesion complexes must withstand mechanical forces to maintain tissue cohesion while also retaining the capacity for dynamic remodeling during tissue morphogenesis and repair. Many cell-cell adhesion complexes contain at least one PSD95/Dlg/ZO-1 (PDZ) domain situated between the adhesion molecule and the actin cytoskeleton. However, PDZ-mediated interactions are characteristically nonspecific, weak, and transient, with multiple binding partners per PDZ domain, micromolar dissociation constants, and bond lifetimes of seconds or less. Here, we demonstrate that the bonds between the PDZ domain of the cytoskeletal adaptor protein afadin and the intracellular domains of the adhesion molecules nectin-1 and JAM-A form molecular catch bonds that reinforce in response to mechanical load. In contrast, the bond between the PDZ3-SH3-GUK (PSG) domain of the cytoskeletal adaptor ZO-1 and the JAM-A intracellular domain becomes dramatically weaker in response to ∼2 pN of load, the amount generated by single molecules of the cytoskeletal motor protein myosin II. Thus, physiologically relevant forces can exert dramatic and opposite effects on the stability of two of the major linkages between cell-cell adhesion proteins and the F-actin cytoskeleton. Our data demonstrate that that PDZ domains can serve as force-responsive mechanical anchors at cell-cell adhesion complexes. More broadly, our findings suggest that mechanical force may serve as a previously unsuspected regulator of the hundreds of PDZ-ligand interactions present in animal cells.

细胞间黏附复合物必须承受机械力以维持组织内聚,同时在组织形态发生和修复过程中保持动态重塑的能力。大多数细胞-细胞黏附复合物至少含有一个位于黏附分子和肌动蛋白细胞骨架之间的PSD95/Dlg/ZO-1 (PDZ)结构域。然而,PDZ介导的相互作用具有非特异性、弱和瞬态的特点,每个PDZ结构域有几个结合伙伴,微摩尔解离常数,键寿命为几秒或更短。在这里,我们证明了细胞骨架接头蛋白afadin的PDZ结构域与粘附分子nectin-1和JAM-A的胞内结构域之间的键形成分子捕获键,并在机械负荷下加强。相反,细胞骨架适配器ZO-1的PDZ3-SH3-GUK (PSG)结构域和JAM-A胞内结构域之间的键在响应于2 pN的负载(细胞骨架运动蛋白myosin II的单分子产生的量)时显着变弱。这些结果表明,PDZ结构域可以作为细胞-细胞粘附复合物的力响应机械锚点,并且机械载荷可以增强PDZ-肽相互作用的选择性。这些结果表明,PDZ的机械敏感性可能有助于生成细胞-细胞连接的复杂分子组织,并允许连接复合物响应机械负荷动态重塑。
{"title":"PDZ Domains from the Junctional Proteins Afadin and ZO-1 Act as Mechanosensors.","authors":"Vipul T Vachharajani, Matthew P DeJong, Soumya Dutta, Jonathan Chapman, Eashani Ghosh, Abhishek Singharoy, Alexander R Dunn","doi":"10.1101/2023.09.24.559210","DOIUrl":"10.1101/2023.09.24.559210","url":null,"abstract":"<p><p>Intercellular adhesion complexes must withstand mechanical forces to maintain tissue cohesion while also retaining the capacity for dynamic remodeling during tissue morphogenesis and repair. Many cell-cell adhesion complexes contain at least one PSD95/Dlg/ZO-1 (PDZ) domain situated between the adhesion molecule and the actin cytoskeleton. However, PDZ-mediated interactions are characteristically nonspecific, weak, and transient, with multiple binding partners per PDZ domain, micromolar dissociation constants, and bond lifetimes of seconds or less. Here, we demonstrate that the bonds between the PDZ domain of the cytoskeletal adaptor protein afadin and the intracellular domains of the adhesion molecules nectin-1 and JAM-A form molecular catch bonds that reinforce in response to mechanical load. In contrast, the bond between the PDZ3-SH3-GUK (PSG) domain of the cytoskeletal adaptor ZO-1 and the JAM-A intracellular domain becomes dramatically weaker in response to ∼2 pN of load, the amount generated by single molecules of the cytoskeletal motor protein myosin II. Thus, physiologically relevant forces can exert dramatic and opposite effects on the stability of two of the major linkages between cell-cell adhesion proteins and the F-actin cytoskeleton. Our data demonstrate that that PDZ domains can serve as force-responsive mechanical anchors at cell-cell adhesion complexes. More broadly, our findings suggest that mechanical force may serve as a previously unsuspected regulator of the hundreds of PDZ-ligand interactions present in animal cells.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92157874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans. BIBSNet:一个用于MRI扫描的深度学习婴儿图像大脑分割网络。
Pub Date : 2025-01-11 DOI: 10.1101/2023.03.22.533696
Timothy J Hendrickson, Paul Reiners, Lucille A Moore, Jacob T Lundquist, Begim Fayzullobekova, Anders J Perrone, Erik G Lee, Julia Moser, Trevor K M Day, Dimitrios Alexopoulos, Martin Styner, Omid Kardan, Taylor A Chamberlain, Anurima Mummaneni, Henrique A Caldas, Brad Bower, Sally Stoyell, Tabitha Martin, Sooyeon Sung, Ermias A Fair, Kenevan Carter, Jonathan Uriarte-Lopez, Amanda R Rueter, Essa Yacoub, Monica D Rosenberg, Christopher D Smyser, Jed T Elison, Alice Graham, Damien A Fair, Eric Feczko

Objectives: Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying typical and atypical brain development. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here we introduce a deep neural network BIBSNet ( B aby and I nfant B rain S egmentation Neural Net work), an open-source, community-driven model for robust and generalizable brain segmentation leveraging data augmentation and a large sample size of manually annotated images.

Experimental design: Included in model training and testing were MR brain images from 90 participants with an age range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually annotated real images along with synthetic segmentation images produced using SynthSeg, the model was trained using a 10-fold procedure. Model performance of segmentations was assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance on derivative data, including cortical thickness, resting state connectivity and brain region volumes.

Principal observations: BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons. Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF segmentations across nearly all metrics.

Conclusions: BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible segmentation labels, and can be easily included in other processing pipelines. BIBSNet provides a viable alternative for segmenting the brain in the earliest stages of development.

目的:婴儿磁共振(MR)图像的大脑分割在研究发育性心理健康和疾病方面至关重要。婴儿大脑在出生后的头几年经历了许多变化,这使得大多数现有算法难以进行组织分割。在这里,我们介绍了一个深度神经网络BIBSNet(婴儿和婴儿大脑分割神经网络),这是一个开源的社区驱动模型,依赖于数据增强和大量手动注释图像的样本量,以促进生成稳健和可推广的大脑分割。实验设计:模型训练和测试包括84名年龄在0-8个月(月经后中位年龄为13.57个月)的参与者的MR大脑图像。使用手动注释的真实和合成分割图像,使用10倍交叉验证程序对模型进行训练。使用金标准手动注释、联合标签融合(JLF)和BIBSNet生成的分割,对DCAN实验室婴儿ABCD BIDS处理管道处理的MRI数据进行测试,以评估模型性能。主要观察结果:使用组分析,结果表明使用BIBSNet分割产生的皮层指标优于JLF分割。此外,在分析个体差异时,BIBSNet分割的表现甚至更好。结论:在所分析的所有年龄组中,BIBSNet分割比JLF分割显示出显著的改进。与JLF相比,BIBSNet模型的速度快了600倍,并且可以很容易地包含在其他处理管道中。
{"title":"BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans.","authors":"Timothy J Hendrickson, Paul Reiners, Lucille A Moore, Jacob T Lundquist, Begim Fayzullobekova, Anders J Perrone, Erik G Lee, Julia Moser, Trevor K M Day, Dimitrios Alexopoulos, Martin Styner, Omid Kardan, Taylor A Chamberlain, Anurima Mummaneni, Henrique A Caldas, Brad Bower, Sally Stoyell, Tabitha Martin, Sooyeon Sung, Ermias A Fair, Kenevan Carter, Jonathan Uriarte-Lopez, Amanda R Rueter, Essa Yacoub, Monica D Rosenberg, Christopher D Smyser, Jed T Elison, Alice Graham, Damien A Fair, Eric Feczko","doi":"10.1101/2023.03.22.533696","DOIUrl":"10.1101/2023.03.22.533696","url":null,"abstract":"<p><strong>Objectives: </strong>Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying typical and atypical brain development. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here we introduce a deep neural network BIBSNet ( <b>B</b> aby and <b>I</b> nfant <b>B</b> rain <b>S</b> egmentation Neural <b>Net</b> work), an open-source, community-driven model for robust and generalizable brain segmentation leveraging data augmentation and a large sample size of manually annotated images.</p><p><strong>Experimental design: </strong>Included in model training and testing were MR brain images from 90 participants with an age range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually annotated real images along with synthetic segmentation images produced using SynthSeg, the model was trained using a 10-fold procedure. Model performance of segmentations was assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance on derivative data, including cortical thickness, resting state connectivity and brain region volumes.</p><p><strong>Principal observations: </strong>BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons. Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF segmentations across nearly all metrics.</p><p><strong>Conclusions: </strong>BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible segmentation labels, and can be easily included in other processing pipelines. BIBSNet provides a viable alternative for segmenting the brain in the earliest stages of development.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9465054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of bidirectional network cores in the brain with perceptual awareness and cognition. 大脑双向网络核心与有意识感知和认知的关联。
Pub Date : 2025-01-09 DOI: 10.1101/2024.04.30.591001
Tomoya Taguchi, Jun Kitazono, Shuntaro Sasai, Masafumi Oizumi

The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.

大脑是一个由相互作用的区域组成的复杂网络。为了了解这一复杂网络的作用和机制,需要阐明其与特定认知功能相关的结构特征。在这些关系中,神经科学的最新发展突出了网络双向性与有意识感知之间的联系。鉴于前馈和反馈信号在有意识感知中的重要作用,人们推测具有双向互动的子网络至关重要。然而,由于网络的复杂性,这种子网络与有意识感知之间的联系仍不清楚。在本研究中,我们提出了一个从大脑活动中提取具有强烈双向互动的子网络(称为网络的 "核心")的框架。我们将这一框架应用于静息态和基于任务的 fMRI 数据,以识别形成强双向核心的区域。然后,我们探讨了这些核心与有意识感知和认知功能的关联。中心核心主要包括对有意识感知至关重要的大脑皮层区域,而不是皮层下区域。此外,这些核心还包括之前报道过的电刺激会改变意识知觉的区域。这些结果表明,双向核心与意识知觉之间存在联系。荟萃分析以及核心结构与皮层功能连接梯度的比较表明,中央核心与低阶感觉运动功能有关。一项消融研究强调了将双向性而不仅仅是相互作用强度纳入这些结果的重要性。所提出的框架为我们提供了新的视角,让我们了解具有强烈双向交互作用的网络核心在意识知觉和低阶感觉运动功能中的作用。
{"title":"Association of bidirectional network cores in the brain with perceptual awareness and cognition.","authors":"Tomoya Taguchi, Jun Kitazono, Shuntaro Sasai, Masafumi Oizumi","doi":"10.1101/2024.04.30.591001","DOIUrl":"10.1101/2024.04.30.591001","url":null,"abstract":"<p><p>The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the \"cores\" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered bacteria launch and control an oncolytic virus. 工程细菌启动并控制溶瘤病毒。
Pub Date : 2025-01-07 DOI: 10.1101/2023.09.28.559873
Zakary S Singer, Jonathan Pabón, Hsinyen Huang, William Sun, Hongsheng Luo, Kailyn Rhyah Grant, Ijeoma Obi, Courtney Coker, Charles M Rice, Tal Danino

The ability of bacteria and viruses to selectively replicate in tumors has led to synthetic engineering of new microbial therapies. Here we design a cooperative strategy whereby S. typhimurium bacteria transcribe and deliver the Senecavirus A RNA genome inside host cells, launching a potent oncolytic viral infection. "Encapsidated" by bacteria, the viral genome can further bypass circulating antiviral antibodies to reach the tumor and initiate replication and spread within immune mice. Finally, we engineer the virus to require a bacterially delivered protease to achieve virion maturation, demonstrating bacterial control over the virus. This work extends bacterially delivered therapeutics to viral genomes, and shows how a consortium of microbes can achieve a cooperative aim.

细菌和病毒在肿瘤中选择性复制的能力导致了新的微生物疗法的合成工程。在这里,我们设计了一种合作策略,通过该策略,鼠伤寒沙门氏菌在宿主细胞内转录并递送Senecavirus a RNA基因组,从而引发强大的溶瘤病毒感染。然后,我们对病毒进行改造,使其需要细菌递送的蛋白酶来实现病毒粒子的成熟,从而证明细菌对病毒的控制。这项工作将细菌递送的治疗方法扩展到病毒基因组,并通过工程微生物相互作用控制病毒种群。一句话总结:细菌被设计成一个合成的“衣壳”,传递Senecavirus a基因组并控制其传播。
{"title":"Engineered bacteria launch and control an oncolytic virus.","authors":"Zakary S Singer, Jonathan Pabón, Hsinyen Huang, William Sun, Hongsheng Luo, Kailyn Rhyah Grant, Ijeoma Obi, Courtney Coker, Charles M Rice, Tal Danino","doi":"10.1101/2023.09.28.559873","DOIUrl":"10.1101/2023.09.28.559873","url":null,"abstract":"<p><p>The ability of bacteria and viruses to selectively replicate in tumors has led to synthetic engineering of new microbial therapies. Here we design a cooperative strategy whereby <i>S. typhimurium</i> bacteria transcribe and deliver the Senecavirus A RNA genome inside host cells, launching a potent oncolytic viral infection. \"Encapsidated\" by bacteria, the viral genome can further bypass circulating antiviral antibodies to reach the tumor and initiate replication and spread within immune mice. Finally, we engineer the virus to require a bacterially delivered protease to achieve virion maturation, demonstrating bacterial control over the virus. This work extends bacterially delivered therapeutics to viral genomes, and shows how a consortium of microbes can achieve a cooperative aim.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-based identification and isolation of micronucleated cells to dissect cellular consequences. 基于图像识别和分离微核细胞,剖析细胞后果。
Pub Date : 2025-01-07 DOI: 10.1101/2023.05.04.539483
Lucian DiPeso, Sriram Pendyala, Heather Z Huang, Douglas M Fowler, Emily M Hatch

Recent advances in isolating cells based on visual phenotypes have transformed our ability to identify the mechanisms and consequences of complex traits. Micronucleus (MN) formation is a frequent outcome of genome instability, triggers extensive disease-associated changes in genome structure and signaling coincident with MN rupture, and is almost exclusively defined by visual analysis. Automated MN detection in microscopy images has proved extremely challenging, limiting unbiased discovery of the mechanisms and consequences of MN formation and rupture. In this study we describe two new MN segmentation modules: a rapid model for classifying micronucleated cells and their rupture status (VCS MN), and a robust model for accurate MN segmentation (MNFinder) from a broad range of fluorescence microscopy images. As a proof-of-concept, we define the transcriptome of non-transformed human cells with intact or ruptured MN after inducing chromosome missegregation by combining VCS MN with photoactivation-based cell isolation and RNASeq. Surprisingly, we find that neither MN formation nor rupture triggers a strong unique transcriptional response. Instead, transcriptional changes appear correlated with small increases in aneuploidy in these cell classes. Our MN segmentation modules overcome a significant challenge with reproducible MN quantification, and, joined with visual cell sorting, enable the application of powerful functional genomics assays, including pooled CRISPR screens and time-resolved analyses of cellular and genetic consequences, to a wide-range of questions in MN biology.

根据视觉表型分离细胞的最新进展改变了我们识别复杂性状的机制和后果的能力。微核(MN)的形成是基因组不稳定性的一种常见结果,与 MN 破裂同时引发基因组结构和信号转导的广泛疾病相关变化,并且几乎完全由视觉分析来定义。在显微镜图像中自动检测 MN 已被证明极具挑战性,这限制了对 MN 形成和破裂的机制和后果的无偏见发现。在这项研究中,我们介绍了两个新的 MN 分割模块:一个是用于微核细胞及其破裂状态分类的快速精确模型(VCS MN),另一个是从各种显微镜图像中准确分割 MN 的强大模型(MNFinder)。作为概念验证,我们通过将 VCS MN 与基于光激活的细胞分离和 RNASeq 结合,定义了诱导染色体错分离后具有完整或破裂 MN 的非转化人体细胞的转录组。令人惊讶的是,我们发现 MN 的形成或破裂都不会引发独特的转录反应。相反,转录变化与这些细胞类的非整倍体增加相关。我们的 MN 切分模块克服了 MN 定量的可重复性这一重大挑战,并与可视细胞分选相结合,使强大的功能基因组学测定(包括集合 CRISPR 筛选和细胞与遗传后果的时间分辨分析)得以应用于 MN 生物学中的各种问题。
{"title":"Image-based identification and isolation of micronucleated cells to dissect cellular consequences.","authors":"Lucian DiPeso, Sriram Pendyala, Heather Z Huang, Douglas M Fowler, Emily M Hatch","doi":"10.1101/2023.05.04.539483","DOIUrl":"10.1101/2023.05.04.539483","url":null,"abstract":"<p><p>Recent advances in isolating cells based on visual phenotypes have transformed our ability to identify the mechanisms and consequences of complex traits. Micronucleus (MN) formation is a frequent outcome of genome instability, triggers extensive disease-associated changes in genome structure and signaling coincident with MN rupture, and is almost exclusively defined by visual analysis. Automated MN detection in microscopy images has proved extremely challenging, limiting unbiased discovery of the mechanisms and consequences of MN formation and rupture. In this study we describe two new MN segmentation modules: a rapid model for classifying micronucleated cells and their rupture status (VCS MN), and a robust model for accurate MN segmentation (MNFinder) from a broad range of fluorescence microscopy images. As a proof-of-concept, we define the transcriptome of non-transformed human cells with intact or ruptured MN after inducing chromosome missegregation by combining VCS MN with photoactivation-based cell isolation and RNASeq. Surprisingly, we find that neither MN formation nor rupture triggers a strong unique transcriptional response. Instead, transcriptional changes appear correlated with small increases in aneuploidy in these cell classes. Our MN segmentation modules overcome a significant challenge with reproducible MN quantification, and, joined with visual cell sorting, enable the application of powerful functional genomics assays, including pooled CRISPR screens and time-resolved analyses of cellular and genetic consequences, to a wide-range of questions in MN biology.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9610318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid transfer proteins and a PI 4-kinase initiate nuclear phosphoinositide signaling. 脂质转移蛋白和一种 PI 4- 激酶启动了核磷酸肌醇信号转导。
Pub Date : 2025-01-07 DOI: 10.1101/2023.05.08.539894
Noah D Carrillo, Mo Chen, Tianmu Wen, Poorwa Awasthi, Trevor J Wolfe, Colin Sterling, Vincent L Cryns, Richard A Anderson

Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei, where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes that regulate Akt activation. However, this pathway is dependent on poorly characterized nuclear PIP n pools. Here we report that PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, accumulate in the nucleoplasm in response to stress and supply nuclear PIP n pools. PITPα/β and the PI 4-kinase PI4KIIα bind p53 and are required to generate p53-PI4P, which is further phosphorylated to synthesize p53-PIP n complexes that regulate nuclear Akt activation and stress-resistance. Remarkably, PITPα/β and PI4KIIα initiate PIP n -linkage to multiple proteins that are detectable by immunoblotting and [ 3 H] myo -inositol metabolic labeling and are resistant to denaturation, suggesting a posttranslational modification.

In brief: Phosphatidylinositol transfer proteins initiate the nuclear PIP n -linked protein network in membrane-free regions.

磷脂酰肌醇(PIP n)信使存在于细胞核的非膜状区域,它们在那里组装成磷脂酰肌醇(PI)3-激酶(PI3K)/Akt 通路,这种通路与细胞膜定位的通路不同。在核通路中,PI 激酶/磷酸酶与 p53 肿瘤抑制蛋白(野生型和突变型)结合,生成 p53-PIP n 复合物,从而调节 Akt 的活化。然而,这一途径依赖于特征不清的核 PIP n 池。在这里,我们报告了 PI 转运蛋白(PITPs),它在膜间转运 PI 以实现膜定位的 PIP n 合成,在应激反应时在核质中积累并供应核 PIP n 池。PITPα/β 和 PI 4-kinase PI4KIIα 结合 p53 并生成 p53-PI4P,p53-PI4P 进一步磷酸化合成 p53-PIP n 复合物,从而调节核 Akt 的活化和抗应激能力。值得注意的是,PITPα/β 和 PI4KIIα 能使 PIP n 链接到多种蛋白质上,这些蛋白质可通过免疫印迹法和 [ 3 H] 肌醇代谢标记法检测到,并且耐变性,这表明这是一种翻译后修饰:磷脂酰肌醇转移蛋白在无膜区域启动了核 PIP n 链接蛋白网络。
{"title":"Lipid transfer proteins and a PI 4-kinase initiate nuclear phosphoinositide signaling.","authors":"Noah D Carrillo, Mo Chen, Tianmu Wen, Poorwa Awasthi, Trevor J Wolfe, Colin Sterling, Vincent L Cryns, Richard A Anderson","doi":"10.1101/2023.05.08.539894","DOIUrl":"10.1101/2023.05.08.539894","url":null,"abstract":"<p><p>Phosphoinositide (PIP <sub>n</sub> ) messengers are present in non-membranous regions of nuclei, where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP <sub>n</sub> complexes that regulate Akt activation. However, this pathway is dependent on poorly characterized nuclear PIP <sub>n</sub> pools. Here we report that PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP <sub>n</sub> synthesis, accumulate in the nucleoplasm in response to stress and supply nuclear PIP <sub>n</sub> pools. PITPα/β and the PI 4-kinase PI4KIIα bind p53 and are required to generate p53-PI4P, which is further phosphorylated to synthesize p53-PIP <sub>n</sub> complexes that regulate nuclear Akt activation and stress-resistance. Remarkably, PITPα/β and PI4KIIα initiate PIP <sub>n</sub> -linkage to multiple proteins that are detectable by immunoblotting and [ <sup>3</sup> H] <i>myo</i> -inositol metabolic labeling and are resistant to denaturation, suggesting a posttranslational modification.</p><p><strong>In brief: </strong>Phosphatidylinositol transfer proteins initiate the nuclear PIP <sub>n</sub> -linked protein network in membrane-free regions.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9506084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophysiology and Morphology of Human Cortical Supragranular Pyramidal Cells in a Wide Age Range. 不同年龄段人类皮层上锥体细胞的电生理学和形态学。
Pub Date : 2025-01-06 DOI: 10.1101/2024.06.13.598792
Pál Barzó, Ildikó Szöts, Martin Tóth, Éva Adrienn Csajbók, Gábor Molnár, Gábor Tamás

The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 years of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition and age-related neurodegenerative diseases.

大脑皮层的基本兴奋神经元--锥体细胞是局部回路中最重要的信号整合器。它们的形态学和电生理学特性颇具特色,在年轻和成年大脑皮层中,这些特性随着年龄的增长基本保持不变。然而,大脑在一生中会经历若干动态变化,如早期发育阶段和老年期大脑认知能力衰退阶段。我们开始寻找从出生到 85 岁这一广泛年龄范围内的颅上锥体细胞的内在细胞变化。在出生后的第一年,阈下和阈上电生理特性发生了变化,表明锥体细胞随着成熟而兴奋性降低,但也暂时变得更加精确。根据我们的研究结果,来自不同生命阶段的三维重建的形态特征显示出一致的形态特性,而对幼年和老年锥体细胞树突棘的系统分析显示,棘的形状分布存在明显的显著差异。总之,发育和衰老过程中发生的变化可能会对大脑皮层锥体细胞的特性产生持久影响。了解这些变化对于揭示大脑发育、认知和与年龄相关的神经退行性疾病的复杂机制非常重要。
{"title":"Electrophysiology and Morphology of Human Cortical Supragranular Pyramidal Cells in a Wide Age Range.","authors":"Pál Barzó, Ildikó Szöts, Martin Tóth, Éva Adrienn Csajbók, Gábor Molnár, Gábor Tamás","doi":"10.1101/2024.06.13.598792","DOIUrl":"10.1101/2024.06.13.598792","url":null,"abstract":"<p><p>The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 years of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition and age-related neurodegenerative diseases.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv : the preprint server for biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1