Pub Date : 2025-09-08DOI: 10.1101/2023.10.02.560589
Jason R Klug, Xunyi Yan, Hilary A Hoffman, Max D Engelhardt, Fumitaka Osakada, Edward M Callaway, Xin Jin
The striatal direct and indirect pathways constitute the core for basal ganglia function in action control. Although both striatal D1- and D2-spiny projection neurons (SPNs) receive excitatory inputs from the cerebral cortex, whether or not they share inputs from the same cortical neurons, and how pathway-specific corticostriatal projections control behavior remain largely unknown. Here using a G-deleted rabies system in mice, we found that more than two-thirds of excitatory inputs to D2-SPNs also target D1-SPNs, while only one-third do so vice versa. Optogenetic stimulation of striatal D1- vs. D2-SPN-projecting cortical neurons differently regulate locomotion, reinforcement learning and sequence behavior, implying the functional dichotomy of pathway-specific corticostriatal subcircuits. These results reveal the partially segregated yet asymmetrically overlapping cortical projections on striatal D1- vs. D2-SPNs, and that the pathway-specific corticostriatal subcircuits distinctly control behavior. It has important implications in a wide range of neurological and psychiatric diseases affecting cortico-basal ganglia circuitry.
{"title":"Asymmetric cortical projections to striatal direct and indirect pathways distinctly control actions.","authors":"Jason R Klug, Xunyi Yan, Hilary A Hoffman, Max D Engelhardt, Fumitaka Osakada, Edward M Callaway, Xin Jin","doi":"10.1101/2023.10.02.560589","DOIUrl":"10.1101/2023.10.02.560589","url":null,"abstract":"<p><p>The striatal direct and indirect pathways constitute the core for basal ganglia function in action control. Although both striatal D1- and D2-spiny projection neurons (SPNs) receive excitatory inputs from the cerebral cortex, whether or not they share inputs from the same cortical neurons, and how pathway-specific corticostriatal projections control behavior remain largely unknown. Here using a G-deleted rabies system in mice, we found that more than two-thirds of excitatory inputs to D2-SPNs also target D1-SPNs, while only one-third do so <i>vice versa</i>. Optogenetic stimulation of striatal D1- vs. D2-SPN-projecting cortical neurons differently regulate locomotion, reinforcement learning and sequence behavior, implying the functional dichotomy of pathway-specific corticostriatal subcircuits. These results reveal the partially segregated yet asymmetrically overlapping cortical projections on striatal D1- vs. D2-SPNs, and that the pathway-specific corticostriatal subcircuits distinctly control behavior. It has important implications in a wide range of neurological and psychiatric diseases affecting cortico-basal ganglia circuitry.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-04DOI: 10.1101/2024.06.11.598379
Kenneth A Dietze, Kiet Nguyen, Aashli Pathni, Frank Fazekas, Wenxiang Sun, Ethan Rosati, Jillian M Baker, Maday Galeana Figueroa, Etse Gebru, Daniel Yamoah, Rediet Mulatu, Alexander Wang, Aaron P Rapoport, David Lum, Xiaoxuan Fan, Sabarinath V Radhakrishnan, Djordje Atanackovic, Arpita Upadhyaya, Tim Luetkens
Chimeric antigen receptor (CAR) T cell therapy has shown remarkable efficacy in cancer treatment. Still, most patients receiving CAR T cells relapse within 5 years of treatment. CAR-mediated trogocytosis (CMT) is a potential tumor escape mechanism in which cell surface proteins transfer from tumor cells to CAR T cells. CMT results in the emergence of antigen-negative tumor cells, which can evade future CAR detection, and antigen-positive CAR T cells, which has been suggested to cause CAR T cell fratricide and exhaustion. Whether CMT indeed causes CAR T cell dysfunction and the molecular mechanisms conferring CMT remain unknown. Using a selective degrader of trogocytosed antigen in CAR T cells, we show that the presence of trogocytosed antigen on the CAR T cell surface directly causes CAR T cell fratricide and exhaustion. By performing a small molecule screening using a custom high throughput CMT-screening assay, we found that the cysteine protease cathepsin B is essential for CMT and that inhibition of cathepsin B is sufficient to prevent CAR T cell fratricide and exhaustion, leading to improved long-term CAR T cell persistence and anti-tumor activity. Our data demonstrate that it is feasible to separate CMT from cytotoxic activity, that CAR T cell persistence, a key factor associated with clinical CAR T cell efficacy, is directly linked to cathepsin B activity in CAR T cells, and that it is possible to improve CAR T cell function through selective inhibition of CMT.
嵌合抗原受体(CAR)T 细胞疗法在癌症治疗中显示出显著疗效。然而,大多数接受 CAR T 细胞治疗的患者在治疗后 5 年内仍会复发。CAR-mediated trogocytosis(CMT)是一种潜在的肿瘤逃逸机制,细胞表面蛋白从肿瘤细胞转移到 CAR T 细胞。CMT导致抗原阴性肿瘤细胞和抗原阳性CAR T细胞的出现,前者可以逃避未来的CAR检测,后者则被认为会导致CAR T细胞自相残杀和功能障碍。我们利用一种选择性降解CAR T细胞中逆转录酶抗原的系统,证明了CAR T细胞中逆转录酶抗原的存在会直接导致CAR T细胞自相残杀和功能衰竭。通过使用定制的高通量 CMT 筛选试验进行小分子筛选,我们发现半胱氨酸蛋白酶 cathepsin B (CTSB) 是 CMT 的关键驱动因素。我们的研究表明,过表达胱抑素 A (CSTA)(一种 CTSB 的内源性人类抑制剂)可降低逆转录吞噬作用,从而延长抗肿瘤活性并增加 CAR T 细胞的扩增/持久性。一句话总结:CAR介导的逆行细胞吞噬直接导致CAR T细胞衰竭和自相残杀,但可以通过过表达人类胱抑素来抑制半胱氨酸蛋白酶cathepsin B,从而防止这种现象。
{"title":"Preventing trogocytosis by cathepsin B inhibition augments CAR T cell function.","authors":"Kenneth A Dietze, Kiet Nguyen, Aashli Pathni, Frank Fazekas, Wenxiang Sun, Ethan Rosati, Jillian M Baker, Maday Galeana Figueroa, Etse Gebru, Daniel Yamoah, Rediet Mulatu, Alexander Wang, Aaron P Rapoport, David Lum, Xiaoxuan Fan, Sabarinath V Radhakrishnan, Djordje Atanackovic, Arpita Upadhyaya, Tim Luetkens","doi":"10.1101/2024.06.11.598379","DOIUrl":"10.1101/2024.06.11.598379","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell therapy has shown remarkable efficacy in cancer treatment. Still, most patients receiving CAR T cells relapse within 5 years of treatment. CAR-mediated trogocytosis (CMT) is a potential tumor escape mechanism in which cell surface proteins transfer from tumor cells to CAR T cells. CMT results in the emergence of antigen-negative tumor cells, which can evade future CAR detection, and antigen-positive CAR T cells, which has been suggested to cause CAR T cell fratricide and exhaustion. Whether CMT indeed causes CAR T cell dysfunction and the molecular mechanisms conferring CMT remain unknown. Using a selective degrader of trogocytosed antigen in CAR T cells, we show that the presence of trogocytosed antigen on the CAR T cell surface directly causes CAR T cell fratricide and exhaustion. By performing a small molecule screening using a custom high throughput CMT-screening assay, we found that the cysteine protease cathepsin B is essential for CMT and that inhibition of cathepsin B is sufficient to prevent CAR T cell fratricide and exhaustion, leading to improved long-term CAR T cell persistence and anti-tumor activity. Our data demonstrate that it is feasible to separate CMT from cytotoxic activity, that CAR T cell persistence, a key factor associated with clinical CAR T cell efficacy, is directly linked to cathepsin B activity in CAR T cells, and that it is possible to improve CAR T cell function through selective inhibition of CMT.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-04DOI: 10.1101/2023.11.12.566786
Munira Kapadia, Alexa M Betjemann, Matthew A Cottam, Mona Mashayekhi, Heidi J Silver, Alyssa H Hasty, Heather L Caslin
We previously demonstrated that weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Interestingly, we did not detect an increase in total mast cell numbers in weight cycled mice by Toluidine blue or flow cytometry, however, further subcluster analysis of our dataset showed that our initial mast cell cluster consisted of two unique populations. One population had very high expression of classical mast cell markers and another had elevated lipid handling and antigen presentation genes with a concomitant reduction in classical mast cell genes. This new "lipid-associated" mast cell cluster accounted for most of the mast cells in the weight cycled group. We induced a similar phenotype in vitro using repeated exposure to adipose tissue conditioned media to mimic weight gain and weight regain. Upon repeated exposure to adipose tissue conditioned media, bone marrow-derived mast cells had increased lipid droplets and reduced expression of cKit and FcεR1 compared to control cells. Moreover, we analyzed mast cells in a pilot study of subcutaneous adipose tissue from four obese, prediabetic women. We found two mast cell populations that appear similar to the murine populations detected by sequencing. The population with reduced cKit and FcεR1 was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid- associated macrophages, which have been shown to play a role in diverse diseases from obesity and atherosclerosis to Alzheimer's disease. Future studies will focus on isolation of these cells from mice and humans to better determine their lineage, differentiation, and functional roles.
{"title":"Single cell RNA-sequencing suggests a novel lipid-associated mast cell population following weight cycling.","authors":"Munira Kapadia, Alexa M Betjemann, Matthew A Cottam, Mona Mashayekhi, Heidi J Silver, Alyssa H Hasty, Heather L Caslin","doi":"10.1101/2023.11.12.566786","DOIUrl":"10.1101/2023.11.12.566786","url":null,"abstract":"<p><p>We previously demonstrated that weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Interestingly, we did not detect an increase in total mast cell numbers in weight cycled mice by Toluidine blue or flow cytometry, however, further subcluster analysis of our dataset showed that our initial mast cell cluster consisted of two unique populations. One population had very high expression of classical mast cell markers and another had elevated lipid handling and antigen presentation genes with a concomitant reduction in classical mast cell genes. This new \"lipid-associated\" mast cell cluster accounted for most of the mast cells in the weight cycled group. We induced a similar phenotype <i>in vitro</i> using repeated exposure to adipose tissue conditioned media to mimic weight gain and weight regain. Upon repeated exposure to adipose tissue conditioned media, bone marrow-derived mast cells had increased lipid droplets and reduced expression of cKit and FcεR1 compared to control cells. Moreover, we analyzed mast cells in a pilot study of subcutaneous adipose tissue from four obese, prediabetic women. We found two mast cell populations that appear similar to the murine populations detected by sequencing. The population with reduced cKit and FcεR1 was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid- associated macrophages, which have been shown to play a role in diverse diseases from obesity and atherosclerosis to Alzheimer's disease. Future studies will focus on isolation of these cells from mice and humans to better determine their lineage, differentiation, and functional roles.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-03DOI: 10.1101/2023.07.20.549932
Samantha L Deal, Danqing Bei, Shelley B Gibson, Harim Delgado-Seo, Yoko Fujita, Kyla Wilwayco, Elaine S Seto, Amita Sehgal, Shinya Yamamoto
The dopaminergic system has been extensively studied for its role in behavior and neurological diseases. Despite this, we still know little about how dopamine levels are regulated in vivo. To identify regulators of dopamine, we utilized Drosophila melanogaster cuticle pigmentation as a readout, where dopamine is used as a precursor to melanin. We started by measuring dopamine from known pigmentation mutants (e.g. tan, ebony, black) and then performed an RNAi-based screen to identify new regulators. We found 153 hits, which were enriched for developmental signaling pathways and mitochondria-associated proteins. From 35 prioritized candidates, 11 had an effect on head dopamine levels. Effects on brain dopamine were mild even when the rate-limiting synthesis enzyme Tyrosine hydroxylase (TH) was knocked down, suggesting changes in dopamine levels are tightly regulated in the nervous system. We pursued two of our hits that reduced brain dopamine levels, clueless and mask. Further examination suggests that mask regulates transcription of TH and affects dopamine-dependent sleep patterns. In summary, by studying genes that affect cuticle pigmentation, we were able to identify genes that affect dopamine metabolism as well as a novel regulator of behavior.
{"title":"RNAi-based screen for pigmentation in <i>Drosophila melanogaster</i> reveals regulators of brain dopamine and sleep.","authors":"Samantha L Deal, Danqing Bei, Shelley B Gibson, Harim Delgado-Seo, Yoko Fujita, Kyla Wilwayco, Elaine S Seto, Amita Sehgal, Shinya Yamamoto","doi":"10.1101/2023.07.20.549932","DOIUrl":"10.1101/2023.07.20.549932","url":null,"abstract":"<p><p>The dopaminergic system has been extensively studied for its role in behavior and neurological diseases. Despite this, we still know little about how dopamine levels are regulated <i>in vivo</i>. To identify regulators of dopamine, we utilized <i>Drosophila melanogaster</i> cuticle pigmentation as a readout, where dopamine is used as a precursor to melanin. We started by measuring dopamine from known pigmentation mutants (e.g. <i>tan</i>, <i>ebony</i>, <i>black</i>) and then performed an RNAi-based screen to identify new regulators. We found 153 hits, which were enriched for developmental signaling pathways and mitochondria-associated proteins. From 35 prioritized candidates, 11 had an effect on head dopamine levels. Effects on brain dopamine were mild even when the rate-limiting synthesis enzyme <i>Tyrosine hydroxylase (TH)</i> was knocked down, suggesting changes in dopamine levels are tightly regulated in the nervous system. We pursued two of our hits that reduced brain dopamine levels, <i>clueless</i> and <i>mask</i>. Further examination suggests that <i>mask</i> regulates transcription of <i>TH</i> and affects dopamine-dependent sleep patterns. In summary, by studying genes that affect cuticle pigmentation, we were able to identify genes that affect dopamine metabolism as well as a novel regulator of behavior.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89188842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-03DOI: 10.1101/2023.02.28.530282
Donghui Kuang, Naresh K Hanchate, Chia-Ying Lee, Ashley Heck, Xiaolan Ye, Michidsaran Erdenebileg, Linda B Buck
The sense of smell has potent effects on appetite, but the underlying neural pathways remain undefined. Here we investigated how olfactory signals reach two subsets of appetite-linked neurons in the hypothalamic arcuate nucleus: AgRP (agouti-related peptide) neurons, which stimulate appetite, and POMC (pro-opiomelanocortin) neurons, which suppress it. Using polysynaptic viral tracing, we show that AgRP and POMC neurons receive indirect input from partially overlapping but distinct areas of the olfactory cortex, indicating that they process different sets of olfactory information. We also identify different complements of neurons directly upstream of AgRP and POMC neurons that can relay olfactory cortical signals to the appetite neurons. Single cell transcriptomics shows heterogeneous expression of neuromodulator receptors among AgRP neurons, suggesting variations in the signals they receive. Integrated viral tracing and RNA localization further reveals selected brain areas where upstream neurons express cognate receptor ligands. Together, these findings outline multiple pathways by which distinct olfactory and modulatory signals are differentially routed to neurons that promote versus inhibit appetite.
{"title":"Olfactory inputs to appetite neurons in the hypothalamus.","authors":"Donghui Kuang, Naresh K Hanchate, Chia-Ying Lee, Ashley Heck, Xiaolan Ye, Michidsaran Erdenebileg, Linda B Buck","doi":"10.1101/2023.02.28.530282","DOIUrl":"10.1101/2023.02.28.530282","url":null,"abstract":"<p><p>The sense of smell has potent effects on appetite, but the underlying neural pathways remain undefined. Here we investigated how olfactory signals reach two subsets of appetite-linked neurons in the hypothalamic arcuate nucleus: AgRP (agouti-related peptide) neurons, which stimulate appetite, and POMC (pro-opiomelanocortin) neurons, which suppress it. Using polysynaptic viral tracing, we show that AgRP and POMC neurons receive indirect input from partially overlapping but distinct areas of the olfactory cortex, indicating that they process different sets of olfactory information. We also identify different complements of neurons directly upstream of AgRP and POMC neurons that can relay olfactory cortical signals to the appetite neurons. Single cell transcriptomics shows heterogeneous expression of neuromodulator receptors among AgRP neurons, suggesting variations in the signals they receive. Integrated viral tracing and RNA localization further reveals selected brain areas where upstream neurons express cognate receptor ligands. Together, these findings outline multiple pathways by which distinct olfactory and modulatory signals are differentially routed to neurons that promote versus inhibit appetite.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9092525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1101/2022.10.31.514544
Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev
Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.
{"title":"Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.","authors":"Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev","doi":"10.1101/2022.10.31.514544","DOIUrl":"10.1101/2022.10.31.514544","url":null,"abstract":"<p><p>Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83073606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1101/2023.10.16.562508
Wesley Chiang, Herman Li, Linh Le, Jennifer David-Bercholz, Ana Caceres, Kamryn S Stecyk, Mariah Marrero, Amanda Pereira, Claire Lim, Danial Ahmad, James L McGrath, Ania K Majewska, Niccolò Terrando, Harris A Gelbard
Background: The role of neutrophils in mediating neurovascular vulnerability has been increasingly implicated in various acute inflammatory models of neuroimmune crosstalk between the periphery and the brain. Whether neurovascular vulnerability is similarly modulated in the context of frequent, but not acute, inflammatory activation in the periphery is the aim of our study. Such a model of frequent inflammatory irritation is pertinent to understanding the neurologic risk of constant exposure to aerosolized environmental hazards leading to progressive pulmonary disease.
Methods: To model repeated pulmonary inflammation, we applied a three-dose regimen of intranasal (i.n.) lipopolysaccharide (LPS) in C57BL/6J mice and studied the impact on the inflammatory environment of the brain, with a specific focus on neutrophil dynamics at the neurovascular unit (NVU). Tissue and circulatory inflammatory profiles were screened via bronchoalveolar lavage (BAL) protein content and cellularity, transcript analysis of brain tissue, and flow cytometry of peripheral blood. Intravital two-photon microscopy (2PM) of the brain vasculature identified neutrophil dynamics at the NVU. Immunofluorescence validated neutrophil dynamics and identified neuroinflammatory hallmarks and peripheral immune factor interactions at the NVU. In vivo findings were corroborated and replicated in murine and human microphysiological systems (MPS) modeling the blood-brain barrier as a proxy demonstration of the translational relevance of our findings.
Results: 2PM of tdTomato-Ly6G+ neutrophils demonstrated increased levels of circulating neutrophils and corresponding engagement with the brain vasculature after the three-dose repeated i.n. exposure regimen. Neutrophilia at the NVU was corroborated with increased transcript levels of Ly6G and other pro-inflammatory markers. This coordination between endothelial physiology and neutrophil phenotypes was recapitulated in murine and human MPS models. System-wide neutrophilia in the lung and circulation was found to be cotemporaneous to neutrophilia at the NVU based on the cellularity of BAL and peripheral blood samples collected at the same endpoints. Immunohistochemical analysis of brain tissue implicates temporal coordination between vascular surface adhesion molecules with changes in neutrophil dynamics from adhesion, crawling, stalling, and transmigration. Extravasation of neutrophils was complemented by sustained paravascular deposition of fibrinogen and microgliosis up to 72 hours after the final i.n. dosing. Microglia-associated effector functions for synaptic pruning and regulation of neutrophil activity demonstrated distinct temporal profiles.
Conclusions: Our results identify systemic levels of neutrophilia accompanied by ingress and extravascular accumulation in brain parenchyma that correlated with sustained microglial activation. This neut
{"title":"Dynamics of Neutrophilia at the Neurovascular Unit Arising from Repeated Pulmonary Inflammation.","authors":"Wesley Chiang, Herman Li, Linh Le, Jennifer David-Bercholz, Ana Caceres, Kamryn S Stecyk, Mariah Marrero, Amanda Pereira, Claire Lim, Danial Ahmad, James L McGrath, Ania K Majewska, Niccolò Terrando, Harris A Gelbard","doi":"10.1101/2023.10.16.562508","DOIUrl":"10.1101/2023.10.16.562508","url":null,"abstract":"<p><strong>Background: </strong>The role of neutrophils in mediating neurovascular vulnerability has been increasingly implicated in various acute inflammatory models of neuroimmune crosstalk between the periphery and the brain. Whether neurovascular vulnerability is similarly modulated in the context of frequent, but not acute, inflammatory activation in the periphery is the aim of our study. Such a model of frequent inflammatory irritation is pertinent to understanding the neurologic risk of constant exposure to aerosolized environmental hazards leading to progressive pulmonary disease.</p><p><strong>Methods: </strong>To model repeated pulmonary inflammation, we applied a three-dose regimen of intranasal (i.n.) lipopolysaccharide (LPS) in C57BL/6J mice and studied the impact on the inflammatory environment of the brain, with a specific focus on neutrophil dynamics at the neurovascular unit (NVU). Tissue and circulatory inflammatory profiles were screened via bronchoalveolar lavage (BAL) protein content and cellularity, transcript analysis of brain tissue, and flow cytometry of peripheral blood. Intravital two-photon microscopy (2PM) of the brain vasculature identified neutrophil dynamics at the NVU. Immunofluorescence validated neutrophil dynamics and identified neuroinflammatory hallmarks and peripheral immune factor interactions at the NVU. In vivo findings were corroborated and replicated in murine and human microphysiological systems (MPS) modeling the blood-brain barrier as a proxy demonstration of the translational relevance of our findings.</p><p><strong>Results: </strong>2PM of tdTomato-Ly6G+ neutrophils demonstrated increased levels of circulating neutrophils and corresponding engagement with the brain vasculature after the three-dose repeated i.n. exposure regimen. Neutrophilia at the NVU was corroborated with increased transcript levels of <i>Ly6G</i> and other pro-inflammatory markers. This coordination between endothelial physiology and neutrophil phenotypes was recapitulated in murine and human MPS models. System-wide neutrophilia in the lung and circulation was found to be cotemporaneous to neutrophilia at the NVU based on the cellularity of BAL and peripheral blood samples collected at the same endpoints. Immunohistochemical analysis of brain tissue implicates temporal coordination between vascular surface adhesion molecules with changes in neutrophil dynamics from adhesion, crawling, stalling, and transmigration. Extravasation of neutrophils was complemented by sustained paravascular deposition of fibrinogen and microgliosis up to 72 hours after the final i.n. dosing. Microglia-associated effector functions for synaptic pruning and regulation of neutrophil activity demonstrated distinct temporal profiles.</p><p><strong>Conclusions: </strong>Our results identify systemic levels of neutrophilia accompanied by ingress and extravascular accumulation in brain parenchyma that correlated with sustained microglial activation. This neut","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1101/2022.02.07.479462
Evonne McArthur, David C Rinker, Yang Cheng, Qixuan Wang, Juan Wang, Erin N Gilbertson, Geoff Fudenberg, Maureen Pittman, Kathleen Keough, Feng Yue, Katherine S Pollard, John A Capra
Changes in gene regulation were a major driver of the divergence of archaic hominins (AHs)-Neanderthals and Denisovans-and modern humans (MHs). The three-dimensional (3D) folding of the genome is critical for regulating gene expression; however, its role in recent human evolution has not been explored because the degradation of ancient samples does not permit experimental determination of AH 3D genome folding. To fill this gap, we apply novel deep learning methods for inferring 3D genome organization from DNA sequence to Neanderthal, Denisovan, and diverse MH genomes. Using the resulting 3D contact maps across the genome, we identify 167 distinct regions with diverged 3D genome organization between AHs and MHs. We show that these 3D-diverged loci are enriched for genes related to the function and morphology of the eye, supra-orbital ridges, hair, lungs, immune response, and cognition. Despite these specific diverged loci, the 3D genome of AHs and MHs is more similar than expected based on sequence divergence, suggesting that the pressure to maintain 3D genome organization constrained hominin sequence evolution. We also find that 3D genome organization constrained the landscape of AH ancestry in MHs today: regions more tolerant of 3D variation are enriched for introgression in modern Eurasians. Finally, we identify loci where modern Eurasians have inherited novel 3D genome folding patterns from AH ancestors and validate folding differences in a high-frequency locus using Hi-C, revealing a putative molecular mechanism for phenotypes associated with archaic introgression. In summary, our application of deep learning to predict archaic 3D genome organization illustrates the potential of inferring molecular phenotypes from ancient DNA to reveal previously unobservable biological differences.
{"title":"Reconstructing the 3D genome organization of Neanderthals reveals that chromatin folding shaped phenotypic and sequence divergence.","authors":"Evonne McArthur, David C Rinker, Yang Cheng, Qixuan Wang, Juan Wang, Erin N Gilbertson, Geoff Fudenberg, Maureen Pittman, Kathleen Keough, Feng Yue, Katherine S Pollard, John A Capra","doi":"10.1101/2022.02.07.479462","DOIUrl":"10.1101/2022.02.07.479462","url":null,"abstract":"<p><p>Changes in gene regulation were a major driver of the divergence of archaic hominins (AHs)-Neanderthals and Denisovans-and modern humans (MHs). The three-dimensional (3D) folding of the genome is critical for regulating gene expression; however, its role in recent human evolution has not been explored because the degradation of ancient samples does not permit experimental determination of AH 3D genome folding. To fill this gap, we apply novel deep learning methods for inferring 3D genome organization from DNA sequence to Neanderthal, Denisovan, and diverse MH genomes. Using the resulting 3D contact maps across the genome, we identify 167 distinct regions with diverged 3D genome organization between AHs and MHs. We show that these 3D-diverged loci are enriched for genes related to the function and morphology of the eye, supra-orbital ridges, hair, lungs, immune response, and cognition. Despite these specific diverged loci, the 3D genome of AHs and MHs is more similar than expected based on sequence divergence, suggesting that the pressure to maintain 3D genome organization constrained hominin sequence evolution. We also find that 3D genome organization constrained the landscape of AH ancestry in MHs today: regions more tolerant of 3D variation are enriched for introgression in modern Eurasians. Finally, we identify loci where modern Eurasians have inherited novel 3D genome folding patterns from AH ancestors and validate folding differences in a high-frequency locus using Hi-C, revealing a putative molecular mechanism for phenotypes associated with archaic introgression. In summary, our application of deep learning to predict archaic 3D genome organization illustrates the potential of inferring molecular phenotypes from ancient DNA to reveal previously unobservable biological differences.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90754300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01DOI: 10.1101/2022.11.02.514917
Erick Armingol, Reid O Larsen, Lia Gale, Martin Cequeira, Hratch Baghdassarian, Nathan E Lewis
Cell-cell communication dynamically changes across time while involving diverse cell populations and ligand types such as proteins and metabolites. While single-cell transcriptomics enables its inference, existing tools typically analyze ligand types separately and overlook their coordinated activity. Here, we present Tensor-cell2cell v2, a computational tool that can jointly analyze protein- and metabolite-mediated communication over time using coupled tensor component analysis, while preserving each modality of inferred communication scores independently, as well as their data structures and distributions. Applied to brain organoid development, Tensor-cell2cell v2 uncovers dynamic, coordinated communication programs involving key proteins and metabolites across relevant cell types across specific time points.
{"title":"Tensor-cell2cell v2 unravels coordinated dynamics of protein- and metabolite-mediated cell-cell communication.","authors":"Erick Armingol, Reid O Larsen, Lia Gale, Martin Cequeira, Hratch Baghdassarian, Nathan E Lewis","doi":"10.1101/2022.11.02.514917","DOIUrl":"10.1101/2022.11.02.514917","url":null,"abstract":"<p><p>Cell-cell communication dynamically changes across time while involving diverse cell populations and ligand types such as proteins and metabolites. While single-cell transcriptomics enables its inference, existing tools typically analyze ligand types separately and overlook their coordinated activity. Here, we present Tensor-cell2cell v2, a computational tool that can jointly analyze protein- and metabolite-mediated communication over time using coupled tensor component analysis, while preserving each modality of inferred communication scores independently, as well as their data structures and distributions. Applied to brain organoid development, Tensor-cell2cell v2 uncovers dynamic, coordinated communication programs involving key proteins and metabolites across relevant cell types across specific time points.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87616422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Occam's razor is the principle that, all else being equal, simpler explanations should be preferred over more complex ones. This principle is thought to guide human decision-making, but the nature of this guidance is not known. Here we used preregistered behavioral experiments to show that people tend to prefer the simpler of two alternative explanations for uncertain data. These preferences match predictions of formal theories of model selection that penalize excessive flexibility. These penalties emerge when considering not just the best explanation but the integral over all possible, relevant explanations. We further show that these simplicity preferences persist in humans, but not in certain artificial neural networks, even when they are maladaptive. Our results imply that principled notions of statistical model selection, including integrating over possible, latent causes to avoid overfitting to noisy observations, may play a central role in human decision-making.
{"title":"How Occam's razor guides human decision-making.","authors":"Eugenio Piasini, Shuze Liu, Pratik Chaudhari, Vijay Balasubramanian, Joshua I Gold","doi":"10.1101/2023.01.10.523479","DOIUrl":"10.1101/2023.01.10.523479","url":null,"abstract":"<p><p>Occam's razor is the principle that, all else being equal, simpler explanations should be preferred over more complex ones. This principle is thought to guide human decision-making, but the nature of this guidance is not known. Here we used preregistered behavioral experiments to show that people tend to prefer the simpler of two alternative explanations for uncertain data. These preferences match predictions of formal theories of model selection that penalize excessive flexibility. These penalties emerge when considering not just the best explanation but the integral over all possible, relevant explanations. We further show that these simplicity preferences persist in humans, but not in certain artificial neural networks, even when they are maladaptive. Our results imply that principled notions of statistical model selection, including integrating over possible, latent causes to avoid overfitting to noisy observations, may play a central role in human decision-making.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10790279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}