Pub Date : 2025-09-29DOI: 10.1101/2021.11.29.470404
Naidi Sun, Yu-Yo Sun, Rui Cao, Hong-Ru Chen, Yiming Wang, Elizabeth Fugate, Marchelle R Smucker, Yi-Min Kuo, P Ellen Grant, Diana M Lindquist, Chia-Yi Kuan, Song Hu
Hypoxia-ischemia (HI), which disrupts the oxygen supply-demand balance in the brain by impairing blood oxygen supply and the cerebral metabolic rate of oxygen (CMRO2), is a leading cause of neonatal brain injury. However, it is unclear how post-HI hypothermia helps to restore the balance, as cooling reduces CMRO2. Also, how transient HI leads to secondary energy failure (SEF) in neonatal brains remains elusive. Using photoacoustic microscopy, we examined the effects of HI on CMRO2 in awake 10-day-old mice, supplemented by bioenergetic analysis of purified cortical mitochondria. Our results show that while HI suppresses ipsilateral CMRO2, it sparks a prolonged CMRO2-surge post-HI, associated with increased mitochondrial oxygen consumption, superoxide emission, and reduced mitochondrial membrane potential necessary for ATP synthesis-indicating oxidative phosphorylation (OXPHOS) uncoupling. Post-HI hypothermia prevents the CMRO2-surge by constraining oxygen extraction fraction, reduces mitochondrial oxidative stress, and maintains ATP and N-acetylaspartate levels, resulting in attenuated infarction at 24 hours post-HI. Our findings suggest that OXPHOS-uncoupling induced by the post-HI CMRO2-surge underlies SEF and blocking the surge is a key mechanism of hypothermia protection. Also, our study highlights the potential of optical CMRO2-measurements for detecting neonatal HI brain injury and guiding the titration of therapeutic hypothermia at the bedside.
{"title":"Dual-modal metabolic analysis reveals hypothermia-reversible uncoupling of oxidative phosphorylation in neonatal brain hypoxia-ischemia.","authors":"Naidi Sun, Yu-Yo Sun, Rui Cao, Hong-Ru Chen, Yiming Wang, Elizabeth Fugate, Marchelle R Smucker, Yi-Min Kuo, P Ellen Grant, Diana M Lindquist, Chia-Yi Kuan, Song Hu","doi":"10.1101/2021.11.29.470404","DOIUrl":"10.1101/2021.11.29.470404","url":null,"abstract":"<p><p>Hypoxia-ischemia (HI), which disrupts the oxygen supply-demand balance in the brain by impairing blood oxygen supply and the cerebral metabolic rate of oxygen (CMRO<sub>2</sub>), is a leading cause of neonatal brain injury. However, it is unclear how post-HI hypothermia helps to restore the balance, as cooling reduces CMRO<sub>2</sub>. Also, how transient HI leads to secondary energy failure (SEF) in neonatal brains remains elusive. Using photoacoustic microscopy, we examined the effects of HI on CMRO<sub>2</sub> in awake 10-day-old mice, supplemented by bioenergetic analysis of purified cortical mitochondria. Our results show that while HI suppresses ipsilateral CMRO<sub>2</sub>, it sparks a prolonged CMRO<sub>2</sub>-surge post-HI, associated with increased mitochondrial oxygen consumption, superoxide emission, and reduced mitochondrial membrane potential necessary for ATP synthesis-indicating oxidative phosphorylation (OXPHOS) uncoupling. Post-HI hypothermia prevents the CMRO<sub>2</sub>-surge by constraining oxygen extraction fraction, reduces mitochondrial oxidative stress, and maintains ATP and N-acetylaspartate levels, resulting in attenuated infarction at 24 hours post-HI. Our findings suggest that OXPHOS-uncoupling induced by the post-HI CMRO<sub>2</sub>-surge underlies SEF and blocking the surge is a key mechanism of hypothermia protection. Also, our study highlights the potential of optical CMRO<sub>2</sub>-measurements for detecting neonatal HI brain injury and guiding the titration of therapeutic hypothermia at the bedside.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12621700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81035465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-27DOI: 10.1101/2023.02.09.527738
Arthur P Arnold, Xuqi Chen, Michael N Grzybowski, Janelle M Ryan, Dale R Sengelaub, Tara Mohanroy, V Andree Furlan, Helen R Schmidtke, Jeremy W Prokop, Monika Tutaj, William Grisham, Shanie Landen, Lynn Malloy, Akiko Takizawa, Julia L Ciosek, Kai Li, Theodore S Kalbfleisch, Hayk Barseghyan, Carrie B Wiese, Laurent Vergnes, Karen Reue, Jonathan Wanagat, Helen Skaletsky, David C Page, Vincent R Harley, Melinda R Dwinell, Aron M Geurts
<p><strong>Background: </strong>Previous research on Four Core Genotypes and XY* mice has been instrumental in establishing important effects of sex-chromosome complement that cause sex differences in physiology and disease. We have generated rat models using similar modifications of the testis-determining gene <i>Sry</i> , to produce XX and XY rats with the same type of gonad, as well as XO, XXY and XYY rats with varying gonads. The models permit discovery of novel sex-chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype, and test for effects of different numbers of X or Y chromosomes.</p><p><strong>Methods: </strong>XY rats were created with an autosomal transgene of <i>Sry</i> , producing XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females. Interbreeding of these lines produced rats with interesting combinations of sex chromosomes and gonads: XO, XX, XY, XXY rats with ovaries; and XO, XX, XY, XXY, and XYY rats with testes. These groups can be compared to detect sex differences caused by sex-chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Other comparisons detect the effects of X or Y chromosome number (in gonadal females: XO vs. XX, XX vs. XXY, XO vs. XY, XY vs. XXY; in gonadal males: XY vs. XXY, XY vs. XYY; XX vs. XXY, XO vs. XY).</p><p><strong>Results: </strong>We measured numerous phenotypes to characterize these models, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Phenotypes previously known to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development.</p><p><strong>Conclusion: </strong>The results establish powerful new models to discriminate sex-chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.</p><p><strong>Plain english summary: </strong>The Four Core Genotypes and XY* mouse models have been broadly useful for determining if sex differences in any mouse phenotype are caused by gonadal hormones, or by sex-chromosome complement (XX vs. XY), and if sex-chromosome effects are caused by X- or Y-linked mechanisms. Using gene knockout and transgenic methods, we have produced laboratory rat models that offer similar capabilities. The new rat models allow investigators to test with relative ease, for the first time, if a sex difference in a rat trait is caused by effects of XX vs. XY sex chromosomes, not mediated by effects of gonadal hormones, and to narrow the search for X or Y
背景:我们建立了一个类似于四种核心基因型小鼠模型的大鼠模型,可以对具有相同类型性腺的 XX 和 XY 大鼠进行比较。该模型可检测导致任何大鼠表型性别差异的新型性染色体效应(XX 与 XY):方法:用睾丸决定因子基因 Sry 的常染色体转基因培育 XY 大鼠,这些大鼠是具有睾丸的 XX 和 XY 后代的父亲。在另一组大鼠中,利用 CRISPR-Cas9 技术移除启动睾丸分化的 Y 染色体因子,培育出可育的 XY 性腺雌鼠,这些雌鼠的XX 和 XY 后代都有卵巢。通过比较这些组别,可以发现由性染色体互补(XX 与 XY)和/或性腺激素(有睾丸的大鼠与有卵巢的大鼠)引起的性别差异:结果:我们测量了许多表型来描述该模型的特征,包括性腺组织学、繁殖性能、肛门距离、生殖激素水平、体重和器官重量以及中枢神经系统的性双态性。成年 XX 和 XY 性腺雄性动物的血清睾酮水平相当。以前发现的性腺激素作用下的许多表型在具有相同类型性腺的XX和XY大鼠中相似,这表明具有相同类型性腺的XX和XY大鼠在不同发育阶段的性腺激素水平相当:结论:研究结果建立了一个强大的新模型,可用于鉴别导致大鼠生理和疾病性别差异的性染色体和性腺激素效应。
{"title":"<i>Sry</i> -modified laboratory rat lines to study sex-chromosome effects underlying sex differences in physiology and disease: Four Core Genotypes and more.","authors":"Arthur P Arnold, Xuqi Chen, Michael N Grzybowski, Janelle M Ryan, Dale R Sengelaub, Tara Mohanroy, V Andree Furlan, Helen R Schmidtke, Jeremy W Prokop, Monika Tutaj, William Grisham, Shanie Landen, Lynn Malloy, Akiko Takizawa, Julia L Ciosek, Kai Li, Theodore S Kalbfleisch, Hayk Barseghyan, Carrie B Wiese, Laurent Vergnes, Karen Reue, Jonathan Wanagat, Helen Skaletsky, David C Page, Vincent R Harley, Melinda R Dwinell, Aron M Geurts","doi":"10.1101/2023.02.09.527738","DOIUrl":"10.1101/2023.02.09.527738","url":null,"abstract":"<p><strong>Background: </strong>Previous research on Four Core Genotypes and XY* mice has been instrumental in establishing important effects of sex-chromosome complement that cause sex differences in physiology and disease. We have generated rat models using similar modifications of the testis-determining gene <i>Sry</i> , to produce XX and XY rats with the same type of gonad, as well as XO, XXY and XYY rats with varying gonads. The models permit discovery of novel sex-chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype, and test for effects of different numbers of X or Y chromosomes.</p><p><strong>Methods: </strong>XY rats were created with an autosomal transgene of <i>Sry</i> , producing XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females. Interbreeding of these lines produced rats with interesting combinations of sex chromosomes and gonads: XO, XX, XY, XXY rats with ovaries; and XO, XX, XY, XXY, and XYY rats with testes. These groups can be compared to detect sex differences caused by sex-chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Other comparisons detect the effects of X or Y chromosome number (in gonadal females: XO vs. XX, XX vs. XXY, XO vs. XY, XY vs. XXY; in gonadal males: XY vs. XXY, XY vs. XYY; XX vs. XXY, XO vs. XY).</p><p><strong>Results: </strong>We measured numerous phenotypes to characterize these models, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Phenotypes previously known to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development.</p><p><strong>Conclusion: </strong>The results establish powerful new models to discriminate sex-chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.</p><p><strong>Plain english summary: </strong>The Four Core Genotypes and XY* mouse models have been broadly useful for determining if sex differences in any mouse phenotype are caused by gonadal hormones, or by sex-chromosome complement (XX vs. XY), and if sex-chromosome effects are caused by X- or Y-linked mechanisms. Using gene knockout and transgenic methods, we have produced laboratory rat models that offer similar capabilities. The new rat models allow investigators to test with relative ease, for the first time, if a sex difference in a rat trait is caused by effects of XX vs. XY sex chromosomes, not mediated by effects of gonadal hormones, and to narrow the search for X or Y","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10740174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-25DOI: 10.1101/2023.10.11.561889
Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod
Loss of m Ca 2+ efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca 2+ ( m Ca 2+ ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of m Ca 2+ uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal m Ca 2+ uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of Mcu in an in vitro model of AD significantly reduced matrix Ca 2+ content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by in vivo data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal Mcu . These results suggest that inhibition of neuronal m Ca 2+ uptake represents a powerful therapeutic target to impede AD progression.
阿尔茨海默病(AD)的特征是淀粉样蛋白β在细胞外沉积、细胞内神经原纤维缠结、突触功能障碍和神经元细胞死亡。这些表型与神经元细胞内钙(i Ca2+)水平升高有关。最近,我们的研究小组报道,线粒体钙(mCa2+)超载,由于mCa2+外排能力的丧失,有助于AD的发展和进展。我们还注意到散发性AD脑样本中线粒体钙单转运通道(mtCU)的蛋白质组重塑,这表明AD中m Ca2+摄取发生了改变。由于mtCU是Ca2+摄入线粒体基质的主要机制,因此抑制mtCU有可能减少或防止AD中m Ca 2+过载,我们报道,在3xTg AD小鼠模型中,mtCU依赖性m Ca2+摄取的神经元特异性损失降低了Aβ和tau病理、突触功能障碍和认知能力下降。在AD细胞模型中敲除Mcu可显著降低基质Ca2+含量、氧化应激和细胞死亡。这些结果表明,抑制神经元m Ca2+摄取是阻碍AD进展的一个新的治疗靶点。
{"title":"Genetic ablation of neuronal mitochondrial calcium uptake impedes Alzheimer's disease progression.","authors":"Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod","doi":"10.1101/2023.10.11.561889","DOIUrl":"10.1101/2023.10.11.561889","url":null,"abstract":"<p><p>Loss of <sub>m</sub> Ca <sup>2+</sup> efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca <sup>2+</sup> ( <sub>m</sub> Ca <sup>2+</sup> ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of <sub>m</sub> Ca <sup>2+</sup> uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of <i>Mcu</i> in an <i>in vitro</i> model of AD significantly reduced matrix Ca <sup>2+</sup> content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by <i>in vivo</i> data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal <i>Mcu</i> . These results suggest that inhibition of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake represents a powerful therapeutic target to impede AD progression.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-22DOI: 10.1101/2022.06.26.497270
Ghaidan A Shamsan, Chao J Liu, Brooke C Braman, Ruyi Li, Susan K Rathe, Aaron L Sarver, Nima Ghaderi, Mariah M McMahon, Rebecca L Klank, Barbara R Tschida, S Joey McFarren, Pamela C Rosato, David Masopust, Jann N Sarkaria, H Brent Clark, Steven S Rosenfeld, David A Largaespada, David J Odde
Glioblastoma remains a deadly cancer driven in part by invasion of tumor cells into the brain. Transcriptomic analyses have identified distinct molecular subtypes, but mechanistic differences that account for clinical differences are not clear. Here, we show that, as predicted by the motor-clutch model of cell migration, mesenchymal glioma cells are more spread, generate larger traction forces, and migrate faster in brain tissue compared to proneural cells. Despite their rapid migration and comparable proliferation rates in vitro, mice with mesenchymal tumors survive longer than those with proneural tumors. This improved survival correlated with an immune response in the mesenchymal tumors, including T cell-mediated. Consistently, inducing mesenchymal tumors in immunodeficient mice resulted in shorter survival supporting a protective immune role in mesenchymal tumors. Thus, mesenchymal tumors have aggressive migration, but are immunologically 'hot' which suppresses net proliferation. These two features counteract each other and may explain the lack of a strong survival difference between subtypes clinically, while also opening up new opportunities for subtype-specific therapies.
{"title":"Differential migration mechanics and immune responses of glioblastoma subtypes.","authors":"Ghaidan A Shamsan, Chao J Liu, Brooke C Braman, Ruyi Li, Susan K Rathe, Aaron L Sarver, Nima Ghaderi, Mariah M McMahon, Rebecca L Klank, Barbara R Tschida, S Joey McFarren, Pamela C Rosato, David Masopust, Jann N Sarkaria, H Brent Clark, Steven S Rosenfeld, David A Largaespada, David J Odde","doi":"10.1101/2022.06.26.497270","DOIUrl":"10.1101/2022.06.26.497270","url":null,"abstract":"<p><p>Glioblastoma remains a deadly cancer driven in part by invasion of tumor cells into the brain. Transcriptomic analyses have identified distinct molecular subtypes, but mechanistic differences that account for clinical differences are not clear. Here, we show that, as predicted by the motor-clutch model of cell migration, mesenchymal glioma cells are more spread, generate larger traction forces, and migrate faster in brain tissue compared to proneural cells. Despite their rapid migration and comparable proliferation rates in vitro, mice with mesenchymal tumors survive longer than those with proneural tumors. This improved survival correlated with an immune response in the mesenchymal tumors, including T cell-mediated. Consistently, inducing mesenchymal tumors in immunodeficient mice resulted in shorter survival supporting a protective immune role in mesenchymal tumors. Thus, mesenchymal tumors have aggressive migration, but are immunologically 'hot' which suppresses net proliferation. These two features counteract each other and may explain the lack of a strong survival difference between subtypes clinically, while also opening up new opportunities for subtype-specific therapies.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87254180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-18DOI: 10.1101/2022.01.13.476229
Anshul Choudhary, Brian Q Geuther, Thomas J Sproule, Glen Beane, Vivek Kohar, Jarek Trapszo, Vivek Kumar
Automated detection of complex animal behavior remains a challenge in neuroscience. Developments in computer vision have greatly advanced automated behavior detection and allow high-throughput preclinical and mechanistic studies. An integrated hardware and software solution is necessary to facilitate the adoption of these advances in the field of behavioral neurogenetics, particularly for non-computational laboratories. We have published a series of papers using an open field arena to annotate complex behaviors such as grooming, posture, and gait as well as higher-level constructs such as biological age and pain. Here, we present our, integrated rodent phenotyping platform, JAX Animal Behavior System (JABS), to the community for data acquisition, machine learning-based behavior annotation and classification, classifier sharing, and genetic analysis. The JABS Data Acquisition Module (JABS-DA) enables uniform data collection with its combination of 3D hardware designs and software for real-time monitoring and video data collection. JABS-Active Learning Module (JABS-AL) allows behavior annotation, classifier training, and validation. We introduce a novel graph-based framework (ethograph) that enables efficient boutwise comparison of JABS-AL classifiers. JABS-Analysis and Integration Module (JABS-AI), a web application, facilitates users to deploy and share any classifier that has been trained on JABS, reducing the effort required for behavior annotation. It supports the inference and sharing of the trained JABS classifiers and downstream genetic analyses (heritability and genetic correlation) on three curated datasets spanning 168 mouse strains that we are publicly releasing alongside this study. This enables the use of genetics as a guide to proper behavior classifier selection. This open-source tool is an ecosystem that allows the neuroscience and genetics community for shared advanced behavior analysis and reduces the barrier to entry into this new field.
复杂动物行为的自动检测仍然是神经科学领域的一个挑战。计算机视觉的发展极大地促进了自动行为检测,并允许高通量的临床前和机制研究。一个集成的硬件和软件解决方案是必要的,以促进在行为神经遗传学领域的这些进展的采用,特别是对于非计算实验室。我们已经发表了一系列论文,使用开放的领域来注释复杂的行为,如梳理,姿势和步态,以及更高层次的结构,如生物年龄和疼痛。在这里,我们向社区展示了我们的综合啮齿动物表型平台,JAX动物行为系统(JABS),用于数据采集,基于机器学习的行为注释和分类,分类器共享和遗传分析。JABS数据采集模块(JABS- da)通过其3D硬件设计和实时监控和视频数据采集软件的结合,实现了统一的数据采集。主动学习模块(JABS-AL)允许行为注释、分类器训练和验证。我们引入了一种新的基于图的框架(ethograph),使JABS-AL分类器能够进行有效的双向比较。JABS- analysis and Integration Module (JABS- ai)是一个web应用程序,方便用户部署和共享任何在JABS上训练过的分类器,从而减少了行为注释所需的工作量。它支持推断和共享经过训练的JABS分类器和下游遗传分析(遗传性和遗传相关性),这些数据集跨越168个小鼠品系,我们将与本研究一起公开发布。这使得使用遗传学作为正确的行为分类器选择的指导。这个开源工具是一个生态系统,它允许神经科学和遗传学社区共享高级行为分析,并减少进入这个新领域的障碍。
{"title":"JAX Animal Behavior System (JABS): A genetics informed, end-to-end advanced behavioral phenotyping platform for the laboratory mouse.","authors":"Anshul Choudhary, Brian Q Geuther, Thomas J Sproule, Glen Beane, Vivek Kohar, Jarek Trapszo, Vivek Kumar","doi":"10.1101/2022.01.13.476229","DOIUrl":"10.1101/2022.01.13.476229","url":null,"abstract":"<p><p>Automated detection of complex animal behavior remains a challenge in neuroscience. Developments in computer vision have greatly advanced automated behavior detection and allow high-throughput preclinical and mechanistic studies. An integrated hardware and software solution is necessary to facilitate the adoption of these advances in the field of behavioral neurogenetics, particularly for non-computational laboratories. We have published a series of papers using an open field arena to annotate complex behaviors such as grooming, posture, and gait as well as higher-level constructs such as biological age and pain. Here, we present our, integrated rodent phenotyping platform, JAX Animal Behavior System (JABS), to the community for data acquisition, machine learning-based behavior annotation and classification, classifier sharing, and genetic analysis. The JABS Data Acquisition Module (JABS-DA) enables uniform data collection with its combination of 3D hardware designs and software for real-time monitoring and video data collection. JABS-Active Learning Module (JABS-AL) allows behavior annotation, classifier training, and validation. We introduce a novel graph-based framework (<i>ethograph</i>) that enables efficient boutwise comparison of JABS-AL classifiers. JABS-Analysis and Integration Module (JABS-AI), a web application, facilitates users to deploy and share any classifier that has been trained on JABS, reducing the effort required for behavior annotation. It supports the inference and sharing of the trained JABS classifiers and downstream genetic analyses (heritability and genetic correlation) on three curated datasets spanning 168 mouse strains that we are publicly releasing alongside this study. This enables the use of genetics as a guide to proper behavior classifier selection. This open-source tool is an ecosystem that allows the neuroscience and genetics community for shared advanced behavior analysis and reduces the barrier to entry into this new field.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88277634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-16DOI: 10.1101/2020.07.16.207068
Victor A Leon, Tovah E Markowitz, Soogil Hong, Adhithi R Raghavan, Jonna Heldrich, Keun Kim, Andreas Hochwagen
Crossover recombination supports meiotic chromosome inheritance and fertility by establishing chiasmata between homologous chromosomes prior to the first meiotic division. In addition to the physical exchange of DNA mediated by meiotic recombination, chiasma formation also involves restructuring of the underlying chromosome axis, possibly to help with chiasma maturation or to resolve chromosomal interlocks. Here, we identify condensin as an important regulator of axis remodeling in S. cerevisiae. Condensin is recruited near sites of meiotic crossover designation by pro-crossover factors but is largely dispensable for DNA exchange. Instead, condensin helps to create discontinuities in the meiotic chromosome axis by promoting removal of cohesin. In addition, chromosomes of condensin mutants exhibit unusually common parallel chromatin clouds and experience a chromosomal buildup of the conserved axis remodeler Pch2. Consistent with an important role of axis restructuring at crossover sites, the canonical anaphase-bridge phenotype of condensin mutants is partly rescued by redirecting meiotic DNA repair to sister chromatids instead of homologous chromosomes, suggesting that crossover-associated axis reorganization is important for faithful meiotic chromosome segregation.
{"title":"Crossover designation recruits condensin to reorganize the meiotic chromosome axis.","authors":"Victor A Leon, Tovah E Markowitz, Soogil Hong, Adhithi R Raghavan, Jonna Heldrich, Keun Kim, Andreas Hochwagen","doi":"10.1101/2020.07.16.207068","DOIUrl":"10.1101/2020.07.16.207068","url":null,"abstract":"<p><p>Crossover recombination supports meiotic chromosome inheritance and fertility by establishing chiasmata between homologous chromosomes prior to the first meiotic division. In addition to the physical exchange of DNA mediated by meiotic recombination, chiasma formation also involves restructuring of the underlying chromosome axis, possibly to help with chiasma maturation or to resolve chromosomal interlocks. Here, we identify condensin as an important regulator of axis remodeling in <i>S. cerevisiae</i>. Condensin is recruited near sites of meiotic crossover designation by pro-crossover factors but is largely dispensable for DNA exchange. Instead, condensin helps to create discontinuities in the meiotic chromosome axis by promoting removal of cohesin. In addition, chromosomes of condensin mutants exhibit unusually common parallel chromatin clouds and experience a chromosomal buildup of the conserved axis remodeler Pch2. Consistent with an important role of axis restructuring at crossover sites, the canonical anaphase-bridge phenotype of condensin mutants is partly rescued by redirecting meiotic DNA repair to sister chromatids instead of homologous chromosomes, suggesting that crossover-associated axis reorganization is important for faithful meiotic chromosome segregation.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74923589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-15DOI: 10.1101/2021.07.04.451082
Kyra Kerkhofs, Nicholas R Guydosh
Ribosome profiling is a valuable methodology for measuring changes in a cell's translational program. The approach can report how efficiently mRNA coding sequences are translated and pinpoint positions along mRNAs where ribosomes slow down or arrest. It can also reveal when translation takes place outside coding regions, often with important regulatory consequences. While many useful software tools have emerged to facilitate analysis of these data, packages can become complex and challenging to adapt to specialized needs. We therefore introduce ribofootPrinter, a suite of Python tools designed to offer an accessible and modifiable set of code for analysis of data from ribosome profiling and related types of small RNA sequencing experiments. Alignments are made to a simplified transcriptome to keep the code intuitive and multiple normalization options help facilitate interpretation of meta analysis, particularly outside coding regions. We demonstrate how mapping of short reads to the transcriptome increases the frequency of matches to multiple sites and we provide multimapper identifier files to highlight these regions. Overall, this tool has the capability to carry out sophisticated analysis while maintaining enough simplicity to make it readily understandable and adaptable.
{"title":"ribofootPrinter: A precision python toolbox for analysis of ribosome profiling data.","authors":"Kyra Kerkhofs, Nicholas R Guydosh","doi":"10.1101/2021.07.04.451082","DOIUrl":"10.1101/2021.07.04.451082","url":null,"abstract":"<p><p>Ribosome profiling is a valuable methodology for measuring changes in a cell's translational program. The approach can report how efficiently mRNA coding sequences are translated and pinpoint positions along mRNAs where ribosomes slow down or arrest. It can also reveal when translation takes place outside coding regions, often with important regulatory consequences. While many useful software tools have emerged to facilitate analysis of these data, packages can become complex and challenging to adapt to specialized needs. We therefore introduce ribofootPrinter, a suite of Python tools designed to offer an accessible and modifiable set of code for analysis of data from ribosome profiling and related types of small RNA sequencing experiments. Alignments are made to a simplified transcriptome to keep the code intuitive and multiple normalization options help facilitate interpretation of meta analysis, particularly outside coding regions. We demonstrate how mapping of short reads to the transcriptome increases the frequency of matches to multiple sites and we provide multimapper identifier files to highlight these regions. Overall, this tool has the capability to carry out sophisticated analysis while maintaining enough simplicity to make it readily understandable and adaptable.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87901769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-14DOI: 10.1101/2023.10.08.561391
Adelaide Tovar, Yasuhiro Kyono, Kirsten Nishino, Maya Bose, Arushi Varshney, Stephen C J Parker, Jacob O Kitzman
Most genome-wide association signals for complex disease reside in the noncoding genome, where defining function is nontrivial. MPRAs (massively parallel reporter assays) offer a scalable means to identify functional regulatory elements, but are typically conducted without regard to cell type, pairing cloned fragments with a generic housekeeping promoter. To explore the context-sensitivity of MPRAs, we screened enhancer activity across a panel of nearly 12,000 198-bp fragments spanning over 300 type 2 diabetes- and metabolic trait-associated regions in the 832/13 rat insulinoma beta cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up- or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin ( INS ) gene. We identified clear effects of MPRA construct design on enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. Promoter choice also influenced MPRA activity (n = 698/11,656), mostly biased towards the cell-specific INS promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with INS promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory regions. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the INS promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.
{"title":"Using a modular massively parallel reporter assay to discover context-dependent regulatory activity in type 2 diabetes-linked noncoding regions.","authors":"Adelaide Tovar, Yasuhiro Kyono, Kirsten Nishino, Maya Bose, Arushi Varshney, Stephen C J Parker, Jacob O Kitzman","doi":"10.1101/2023.10.08.561391","DOIUrl":"10.1101/2023.10.08.561391","url":null,"abstract":"<p><p>Most genome-wide association signals for complex disease reside in the noncoding genome, where defining function is nontrivial. MPRAs (massively parallel reporter assays) offer a scalable means to identify functional regulatory elements, but are typically conducted without regard to cell type, pairing cloned fragments with a generic housekeeping promoter. To explore the context-sensitivity of MPRAs, we screened enhancer activity across a panel of nearly 12,000 198-bp fragments spanning over 300 type 2 diabetes- and metabolic trait-associated regions in the 832/13 rat insulinoma beta cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up- or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin ( <i>INS</i> ) gene. We identified clear effects of MPRA construct design on enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. Promoter choice also influenced MPRA activity (n = 698/11,656), mostly biased towards the cell-specific <i>INS</i> promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with <i>INS</i> promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory regions. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the <i>INS</i> promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-13DOI: 10.1101/2023.09.21.558891
Yongkun Wei, Minghui Liu, Er-Yen Yen, Jun Yao, Zhenzhen Xun, Phuoc T Nguyen, Xiaofei Wang, Zecheng Yang, Abdelrahman Yousef, Dean Pan, Yanqing Jin, Ching-Fei Li, Madelaine S Theardy, Jangho Park, Yiming Cai, Mitsunobu Takeda, Matthew Vasquez, Elizabeth M Park, David H Peng, Yong Zhou, Hong Zhao, Timothy P Heffernan, Andrea Viale, Huamin Wang, Stephanie S Watowich, Han Liang, Dan Zhao, Ronald A DePinho, Wantong Yao, Haoqiang Ying
KRAS G12C inhibitors (G12Ci) have produced encouraging, albeit modest and transient, clinical benefit in pancreatic ductal adenocarcinoma (PDAC). Identifying and targeting resistance mechanisms to G12Ci treatment is therefore crucial. To better understand the function of KRAS G12C and possible G12Ci bypass mechanisms, we developed an autochthonous KRAS G12C - driven PDAC model. Compared to the classical KRAS G12D PDAC model, the G12C model exhibits slower tumor growth, yet similar histopathological and molecular features. Aligned with clinical experience, G12Ci treatment of KRAS G12C tumors produced modest impact despite stimulating a 'hot' tumor immune microenvironment. Immunoprofiling revealed that CD24, a 'don't eat me' signal, is significantly upregulated on cancer cells upon G12Ci treatment. Blocking CD24 enhanced macrophage phagocytosis of cancer cells and significantly sensitized tumors to G12Ci treatment. Similar findings were observed in KRAS G12D -driven PDAC. Together, this study reveals common and distinct oncogenic KRAS allele-specific biology and identifies a clinically actionable adaptive mechanism that may improve the efficacy of oncogenic KRAS inhibitor therapy in PDAC.
Significance: Generation of an autochthonous KRAS G12C -driven pancreatic cancer model enabled elucidation of specific effects of KRAS G12C during tumor development, revealing CD24 as an actionable adaptive mechanism in cancer cells induced upon KRAS G12C inhibition.
{"title":"KRAS Inhibition Activates an Actionable CD24 \"Don't Eat Me\" Signal in Pancreatic Cancer.","authors":"Yongkun Wei, Minghui Liu, Er-Yen Yen, Jun Yao, Zhenzhen Xun, Phuoc T Nguyen, Xiaofei Wang, Zecheng Yang, Abdelrahman Yousef, Dean Pan, Yanqing Jin, Ching-Fei Li, Madelaine S Theardy, Jangho Park, Yiming Cai, Mitsunobu Takeda, Matthew Vasquez, Elizabeth M Park, David H Peng, Yong Zhou, Hong Zhao, Timothy P Heffernan, Andrea Viale, Huamin Wang, Stephanie S Watowich, Han Liang, Dan Zhao, Ronald A DePinho, Wantong Yao, Haoqiang Ying","doi":"10.1101/2023.09.21.558891","DOIUrl":"10.1101/2023.09.21.558891","url":null,"abstract":"<p><p>KRAS <sup>G12C</sup> inhibitors (G12Ci) have produced encouraging, albeit modest and transient, clinical benefit in pancreatic ductal adenocarcinoma (PDAC). Identifying and targeting resistance mechanisms to G12Ci treatment is therefore crucial. To better understand the function of KRAS <sup>G12C</sup> and possible G12Ci bypass mechanisms, we developed an autochthonous KRAS <sup>G12C</sup> - driven PDAC model. Compared to the classical KRAS <sup>G12D</sup> PDAC model, the G12C model exhibits slower tumor growth, yet similar histopathological and molecular features. Aligned with clinical experience, G12Ci treatment of KRAS <sup>G12C</sup> tumors produced modest impact despite stimulating a 'hot' tumor immune microenvironment. Immunoprofiling revealed that CD24, a 'don't eat me' signal, is significantly upregulated on cancer cells upon G12Ci treatment. Blocking CD24 enhanced macrophage phagocytosis of cancer cells and significantly sensitized tumors to G12Ci treatment. Similar findings were observed in KRAS <sup>G12D</sup> -driven PDAC. Together, this study reveals common and distinct oncogenic <i>KRAS</i> allele-specific biology and identifies a clinically actionable adaptive mechanism that may improve the efficacy of oncogenic KRAS inhibitor therapy in PDAC.</p><p><strong>Significance: </strong>Generation of an autochthonous KRAS <sup>G12C</sup> -driven pancreatic cancer model enabled elucidation of specific effects of KRAS <sup>G12C</sup> during tumor development, revealing CD24 as an actionable adaptive mechanism in cancer cells induced upon KRAS <sup>G12C</sup> inhibition.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-12DOI: 10.1101/2022.09.14.507974
Katie H Long, Emily E Fitzgerald, Ev I Berger-Wolf, Amani Fawaz, Stacy T Lindau, Sliman J Bensmaia, Charles M Greenspon
Touch plays a key role in our perception of our body and shapes our interactions with the world, from the objects we manipulate to the people we touch. While the tactile sensibility of the hand has been extensively characterized, much less is known about touch on other parts of the body. Despite the important role of the breast in lactation as well as in affective and sexual touch, relatively little is known about its sensory properties. To fill this gap, we investigated the spatial acuity of the breast and compared it to that of the hand and back, body regions that span the range of tactile spatial acuity. First, we found that the tactile acuity of the breast was even lower than that of the back, heretofore the paragon of poor acuity. Second, acuity was lower for larger breasts, consistent with the hypothesis that innervation capacity does not scale with body size. Third, touches to different regions of the nipple were largely indistinguishable, suggesting that the nipple is a sensory unit. Fourth, localization errors were systematically biased toward the nipple.
{"title":"The coarse mental map of the breast is anchored on the nipple.","authors":"Katie H Long, Emily E Fitzgerald, Ev I Berger-Wolf, Amani Fawaz, Stacy T Lindau, Sliman J Bensmaia, Charles M Greenspon","doi":"10.1101/2022.09.14.507974","DOIUrl":"10.1101/2022.09.14.507974","url":null,"abstract":"<p><p>Touch plays a key role in our perception of our body and shapes our interactions with the world, from the objects we manipulate to the people we touch. While the tactile sensibility of the hand has been extensively characterized, much less is known about touch on other parts of the body. Despite the important role of the breast in lactation as well as in affective and sexual touch, relatively little is known about its sensory properties. To fill this gap, we investigated the spatial acuity of the breast and compared it to that of the hand and back, body regions that span the range of tactile spatial acuity. First, we found that the tactile acuity of the breast was even lower than that of the back, heretofore the paragon of poor acuity. Second, acuity was lower for larger breasts, consistent with the hypothesis that innervation capacity does not scale with body size. Third, touches to different regions of the nipple were largely indistinguishable, suggesting that the nipple is a sensory unit. Fourth, localization errors were systematically biased toward the nipple.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"103 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89309274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}