Pub Date : 2024-10-21DOI: 10.1101/2023.05.12.540575
Gergely F Turi, Sasa Teng, Xinyue Chen, Emily Cy Lim, Carla Dias, Ruining Hu, Ruizhi Wang, Fenghua Zhen, Yueqing Peng
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.
{"title":"Serotonin modulates infraslow oscillation in the dentate gyrus during Non-REM sleep.","authors":"Gergely F Turi, Sasa Teng, Xinyue Chen, Emily Cy Lim, Carla Dias, Ruining Hu, Ruizhi Wang, Fenghua Zhen, Yueqing Peng","doi":"10.1101/2023.05.12.540575","DOIUrl":"10.1101/2023.05.12.540575","url":null,"abstract":"<p><p>Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87784161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1101/2023.07.24.550427
Farhoud Faraji, Sydney I Ramirez, Lauren Clubb, Kuniaki Sato, Valeria Burghi, Thomas S Hoang, Adam Officer, Paola Y Anguiano Quiroz, William Mg Galloway, Zbigniew Mikulski, Kate Medetgul-Ernar, Pauline Marangoni, Kyle B Jones, Alfredo A Molinolo, Kenneth Kim, Kanako Sakaguchi, Joseph A Califano, Quinton Smith, Alon Goren, Ophir D Klein, Pablo Tamayo, J Silvio Gutkind
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells (TIC) at single cell resolution. TIC displayed a distinct stem-like state, defined by aberrant proliferative, hypoxic, squamous differentiation, and partial epithelial to mesenchymal (pEMT) invasive gene programs. YAP-mediated TIC programs included the activation of oncogenic transcriptional networks and mTOR signaling, and the recruitment of myeloid cells to the invasive front contributing to tumor infiltration. TIC transcriptional programs are conserved in human head and neck cancer and associated with poor patient survival. These findings illuminate processes underlying cancer initiation at single cell resolution, and identify candidate targets for early cancer detection and prevention.
{"title":"YAP-Driven Oral Epithelial Stem Cell Malignant Reprogramming at Single Cell Resolution.","authors":"Farhoud Faraji, Sydney I Ramirez, Lauren Clubb, Kuniaki Sato, Valeria Burghi, Thomas S Hoang, Adam Officer, Paola Y Anguiano Quiroz, William Mg Galloway, Zbigniew Mikulski, Kate Medetgul-Ernar, Pauline Marangoni, Kyle B Jones, Alfredo A Molinolo, Kenneth Kim, Kanako Sakaguchi, Joseph A Califano, Quinton Smith, Alon Goren, Ophir D Klein, Pablo Tamayo, J Silvio Gutkind","doi":"10.1101/2023.07.24.550427","DOIUrl":"10.1101/2023.07.24.550427","url":null,"abstract":"<p><p>Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells (TIC) at single cell resolution. TIC displayed a distinct stem-like state, defined by aberrant proliferative, hypoxic, squamous differentiation, and partial epithelial to mesenchymal (pEMT) invasive gene programs. YAP-mediated TIC programs included the activation of oncogenic transcriptional networks and mTOR signaling, and the recruitment of myeloid cells to the invasive front contributing to tumor infiltration. TIC transcriptional programs are conserved in human head and neck cancer and associated with poor patient survival. These findings illuminate processes underlying cancer initiation at single cell resolution, and identify candidate targets for early cancer detection and prevention.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1101/2023.10.03.560761
Celia Alecki, Javeria Rizwan, Phuong Le, Suleima Jacob-Tomas, Mario Fernandez-Comaduran, Morgane Verbrugghe, Jia Stella M Xu, Sandra Minotti, James Lynch, Jeetayu Biswas, Tad Wu, Heather Durham, Gene W Yeo, Maria Vera
Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.
{"title":"Localized synthesis of molecular chaperones sustains neuronal proteostasis.","authors":"Celia Alecki, Javeria Rizwan, Phuong Le, Suleima Jacob-Tomas, Mario Fernandez-Comaduran, Morgane Verbrugghe, Jia Stella M Xu, Sandra Minotti, James Lynch, Jeetayu Biswas, Tad Wu, Heather Durham, Gene W Yeo, Maria Vera","doi":"10.1101/2023.10.03.560761","DOIUrl":"10.1101/2023.10.03.560761","url":null,"abstract":"<p><p>Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592939/pdf/nihpp-2023.10.03.560761v1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1101/2024.04.28.591516
John C Williams, Philip N Tubiolo, Zu Jie Zheng, Eilon B Silver-Frankel, Dathy T Pham, Natalka K Haubold, Sameera K Abeykoon, Anissa Abi-Dargham, Guillermo Horga, Jared X Van Snellenberg
Functional magnetic resonance imaging (fMRI) of the auditory and visual sensory systems of the human brain is an active area of investigation in the study of human health and disease. The medial geniculate nucleus (MGN) and lateral geniculate nucleus (LGN) are key thalamic nuclei involved in the processing and relay of auditory and visual information, respectively, and are the subject of blood-oxygen-level-dependent (BOLD) fMRI studies of neural activation and functional connectivity in human participants. However, localization of BOLD fMRI signal originating from neural activity in MGN and LGN remains a technical challenge, due in part to the poor definition of boundaries of these thalamic nuclei in standard T1-weighted and T2-weighted magnetic resonance imaging sequences. Here, we report the development and evaluation of an auditory and visual sensory thalamic localizer (TL) fMRI task that produces participant-specific functionally-defined regions of interest (fROIs) of both MGN and LGN, using 3 Tesla multiband fMRI and a clustered-sparse temporal acquisition sequence, in less than 16 minutes of scan time. We demonstrate the use of MGN and LGN fROIs obtained from the TL fMRI task in standard resting-state functional connectivity (RSFC) fMRI analyses in the same participants. In RSFC analyses, we validated the specificity of MGN and LGN fROIs for signals obtained from primary auditory and visual cortex, respectively, and benchmark their performance against alternative atlas- and segmentation-based localization methods. The TL fMRI task and analysis code (written in Presentation and MATLAB, respectively) have been made freely available to the wider research community.
{"title":"Functional Localization of the Human Auditory and Visual Thalamus Using a Thalamic Localizer Functional Magnetic Resonance Imaging Task.","authors":"John C Williams, Philip N Tubiolo, Zu Jie Zheng, Eilon B Silver-Frankel, Dathy T Pham, Natalka K Haubold, Sameera K Abeykoon, Anissa Abi-Dargham, Guillermo Horga, Jared X Van Snellenberg","doi":"10.1101/2024.04.28.591516","DOIUrl":"10.1101/2024.04.28.591516","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) of the auditory and visual sensory systems of the human brain is an active area of investigation in the study of human health and disease. The medial geniculate nucleus (MGN) and lateral geniculate nucleus (LGN) are key thalamic nuclei involved in the processing and relay of auditory and visual information, respectively, and are the subject of blood-oxygen-level-dependent (BOLD) fMRI studies of neural activation and functional connectivity in human participants. However, localization of BOLD fMRI signal originating from neural activity in MGN and LGN remains a technical challenge, due in part to the poor definition of boundaries of these thalamic nuclei in standard T1-weighted and T2-weighted magnetic resonance imaging sequences. Here, we report the development and evaluation of an auditory and visual sensory thalamic localizer (TL) fMRI task that produces participant-specific functionally-defined regions of interest (fROIs) of both MGN and LGN, using 3 Tesla multiband fMRI and a clustered-sparse temporal acquisition sequence, in less than 16 minutes of scan time. We demonstrate the use of MGN and LGN fROIs obtained from the TL fMRI task in standard resting-state functional connectivity (RSFC) fMRI analyses in the same participants. In RSFC analyses, we validated the specificity of MGN and LGN fROIs for signals obtained from primary auditory and visual cortex, respectively, and benchmark their performance against alternative atlas- and segmentation-based localization methods. The TL fMRI task and analysis code (written in Presentation and MATLAB, respectively) have been made freely available to the wider research community.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1101/2023.11.18.567582
Sabyasachi Shivkumar, Gregory C DeAngelis, Ralf M Haefner
Since motion can only be defined relative to a reference frame, which reference frame guides perception? A century of psychophysical studies has produced conflicting evidence: retinotopic, egocentric, world-centric, or even object-centric. We introduce a hierarchical Bayesian model mapping retinal velocities to perceived velocities. Our model mirrors the structure in the world, in which visual elements move within causally connected reference frames. Friction renders velocities in these reference frames mostly stationary, formalized by an additional delta component (at zero) in the prior. Inverting this model automatically segments visual inputs into groups, groups into supergroups, etc. and "perceives" motion in the appropriate reference frame. Critical model predictions are supported by two new experiments, and fitting our model to the data allows us to infer the subjective set of reference frames used by individual observers. Our model provides a quantitative normative justification for key Gestalt principles providing inspiration for building better models of visual processing in general.
{"title":"Hierarchical motion perception as causal inference.","authors":"Sabyasachi Shivkumar, Gregory C DeAngelis, Ralf M Haefner","doi":"10.1101/2023.11.18.567582","DOIUrl":"10.1101/2023.11.18.567582","url":null,"abstract":"<p><p>Since motion can only be defined relative to a reference frame, which reference frame guides perception? A century of psychophysical studies has produced conflicting evidence: retinotopic, egocentric, world-centric, or even object-centric. We introduce a hierarchical Bayesian model mapping retinal velocities to perceived velocities. Our model mirrors the structure in the world, in which visual elements move within causally connected reference frames. Friction renders velocities in these reference frames mostly stationary, formalized by an additional delta component (at zero) in the prior. Inverting this model automatically segments visual inputs into groups, groups into supergroups, etc. and \"perceives\" motion in the appropriate reference frame. Critical model predictions are supported by two new experiments, and fitting our model to the data allows us to infer the subjective set of reference frames used by individual observers. Our model provides a quantitative normative justification for key Gestalt principles providing inspiration for building better models of visual processing in general.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1101/2023.03.22.533696
Timothy J Hendrickson, Paul Reiners, Lucille A Moore, Jacob T Lundquist, Begim Fayzullobekova, Anders J Perrone, Erik G Lee, Julia Moser, Trevor K M Day, Dimitrios Alexopoulos, Martin Styner, Omid Kardan, Taylor A Chamberlain, Anurima Mummaneni, Henrique A Caldas, Brad Bower, Sally Stoyell, Tabitha Martin, Sooyeon Sung, Ermias Fair, Kenevan Carter, Jonathan Uriarte-Lopez, Amanda R Rueter, Essa Yacoub, Monica D Rosenberg, Christopher D Smyser, Jed T Elison, Alice Graham, Damien A Fair, Eric Feczko
Objectives: Brain segmentation of infant magnetic resonance (MR) images is vitally important in studying developmental mental health and disease. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here, we introduce a deep neural network BIBSNet (Baby and Infant Brain Segmentation Neural Network), an open-source, community-driven model that relies on data augmentation and a large sample size of manually annotated images to facilitate the production of robust and generalizable brain segmentations.
Experimental design: Included in model training and testing were MR brain images on 84 participants with an age range of 0-8 months (median postmenstrual ages of 13.57 months). Using manually annotated real and synthetic segmentation images, the model was trained using a 10-fold cross-validation procedure. Testing occurred on MRI data processed with the DCAN labs infant-ABCD-BIDS processing pipeline using segmentations produced from gold standard manual annotation, joint-label fusion (JLF), and BIBSNet to assess model performance.
Principal observations: Using group analyses, results suggest that cortical metrics produced using BIBSNet segmentations outperforms JLF segmentations. Additionally, when analyzing individual differences, BIBSNet segmentations perform even better.
Conclusions: BIBSNet segmentation shows marked improvement over JLF segmentations across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF and can be easily included in other processing pipelines.
{"title":"BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans.","authors":"Timothy J Hendrickson, Paul Reiners, Lucille A Moore, Jacob T Lundquist, Begim Fayzullobekova, Anders J Perrone, Erik G Lee, Julia Moser, Trevor K M Day, Dimitrios Alexopoulos, Martin Styner, Omid Kardan, Taylor A Chamberlain, Anurima Mummaneni, Henrique A Caldas, Brad Bower, Sally Stoyell, Tabitha Martin, Sooyeon Sung, Ermias Fair, Kenevan Carter, Jonathan Uriarte-Lopez, Amanda R Rueter, Essa Yacoub, Monica D Rosenberg, Christopher D Smyser, Jed T Elison, Alice Graham, Damien A Fair, Eric Feczko","doi":"10.1101/2023.03.22.533696","DOIUrl":"10.1101/2023.03.22.533696","url":null,"abstract":"<p><strong>Objectives: </strong>Brain segmentation of infant magnetic resonance (MR) images is vitally important in studying developmental mental health and disease. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here, we introduce a deep neural network BIBSNet (<b>B</b>aby and <b>I</b>nfant <b>B</b>rain <b>S</b>egmentation Neural <b>Net</b>work), an open-source, community-driven model that relies on data augmentation and a large sample size of manually annotated images to facilitate the production of robust and generalizable brain segmentations.</p><p><strong>Experimental design: </strong>Included in model training and testing were MR brain images on 84 participants with an age range of 0-8 months (median postmenstrual ages of 13.57 months). Using manually annotated real and synthetic segmentation images, the model was trained using a 10-fold cross-validation procedure. Testing occurred on MRI data processed with the DCAN labs infant-ABCD-BIDS processing pipeline using segmentations produced from gold standard manual annotation, joint-label fusion (JLF), and BIBSNet to assess model performance.</p><p><strong>Principal observations: </strong>Using group analyses, results suggest that cortical metrics produced using BIBSNet segmentations outperforms JLF segmentations. Additionally, when analyzing individual differences, BIBSNet segmentations perform even better.</p><p><strong>Conclusions: </strong>BIBSNet segmentation shows marked improvement over JLF segmentations across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF and can be easily included in other processing pipelines.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9465054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1101/2023.09.19.558457
Maayan Baron, Mohita Tagore, Patrick Wall, Fan Zheng, Dalia Barkley, Itai Yanai, Jing Yang, Maija Kiuru, Richard M White, Trey Ideker
Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma where desmosomes are mutated in >70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations in desmosome genes associates with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics and protein immunofluorescence suggests that these expression decreases occur in keratinocytes in the microenvironment rather than in primary melanoma cells. In further support of a microenvironmental origin, we find that desmosome gene knockdown in keratinocytes yields markedly increased proliferation of adjacent melanoma cells in keratinocyte/melanoma co-cultures. Similar increases in melanoma proliferation are observed in media preconditioned by desmosome-deficient keratinocytes. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanoma cells for neoplastic transformation.
{"title":"Desmosome mutations impact the tumor microenvironment to promote melanoma proliferation.","authors":"Maayan Baron, Mohita Tagore, Patrick Wall, Fan Zheng, Dalia Barkley, Itai Yanai, Jing Yang, Maija Kiuru, Richard M White, Trey Ideker","doi":"10.1101/2023.09.19.558457","DOIUrl":"10.1101/2023.09.19.558457","url":null,"abstract":"<p><p>Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma where desmosomes are mutated in >70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations in desmosome genes associates with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics and protein immunofluorescence suggests that these expression decreases occur in keratinocytes in the microenvironment rather than in primary melanoma cells. In further support of a microenvironmental origin, we find that desmosome gene knockdown in keratinocytes yields markedly increased proliferation of adjacent melanoma cells in keratinocyte/melanoma co-cultures. Similar increases in melanoma proliferation are observed in media preconditioned by desmosome-deficient keratinocytes. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanoma cells for neoplastic transformation.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c3/ff/nihpp-2023.09.19.558457v1.PMC10541613.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41153104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1101/2023.10.03.560674
Sanjit Singh Batra, Alan Cabrera, Jeffrey P Spence, Jacob Goell, Selvalakshmi S Anand, Isaac B Hilton, Yun S Song
Epigenetic regulation orchestrates mammalian transcription, but functional links between them remain elusive. To tackle this problem, we use epigenomic and transcriptomic data from 13 ENCODE cell types to train machine learning models to predict gene expression from histone post-translational modifications (PTMs), achieving transcriptome-wide correlations of ~ 0.70 - 0.79 for most cell types. Our models recapitulate known associations between histone PTMs and expression patterns, including predicting that acetylation of histone subunit H3 lysine residue 27 (H3K27ac) near the transcription start site (TSS) significantly increases expression levels. To validate this prediction experimentally and investigate how natural vs. engineered deposition of H3K27ac might differentially affect expression, we apply the synthetic dCas9-p300 histone acetyltransferase system to 8 genes in the HEK293T cell line and to 5 genes in the K562 cell line. Further, to facilitate model building, we perform MNase-seq to map genome-wide nucleosome occupancy levels in HEK293T. We observe that our models perform well in accurately ranking relative fold-changes among genes in response to the dCas9-p300 system; however, their ability to rank fold-changes within individual genes is noticeably diminished compared to predicting expression across cell types from their native epigenetic signatures. Our findings highlight the need for more comprehensive genome-scale epigenome editing datasets, better understanding of the actual modifications made by epigenome editing tools, and improved causal models that transfer better from endogenous cellular measurements to perturbation experiments. Together these improvements would facilitate the ability to understand and predictably control the dynamic human epigenome with consequences for human health.
{"title":"Predicting the effect of CRISPR-Cas9-based epigenome editing.","authors":"Sanjit Singh Batra, Alan Cabrera, Jeffrey P Spence, Jacob Goell, Selvalakshmi S Anand, Isaac B Hilton, Yun S Song","doi":"10.1101/2023.10.03.560674","DOIUrl":"10.1101/2023.10.03.560674","url":null,"abstract":"<p><p>Epigenetic regulation orchestrates mammalian transcription, but functional links between them remain elusive. To tackle this problem, we use epigenomic and transcriptomic data from 13 ENCODE cell types to train machine learning models to predict gene expression from histone post-translational modifications (PTMs), achieving transcriptome-wide correlations of ~ 0.70 - 0.79 for most cell types. Our models recapitulate known associations between histone PTMs and expression patterns, including predicting that acetylation of histone subunit H3 lysine residue 27 (H3K27ac) near the transcription start site (TSS) significantly increases expression levels. To validate this prediction experimentally and investigate how natural vs. engineered deposition of H3K27ac might differentially affect expression, we apply the synthetic dCas9-p300 histone acetyltransferase system to 8 genes in the HEK293T cell line and to 5 genes in the K562 cell line. Further, to facilitate model building, we perform MNase-seq to map genome-wide nucleosome occupancy levels in HEK293T. We observe that our models perform well in accurately ranking relative fold-changes among genes in response to the dCas9-p300 system; however, their ability to rank fold-changes within individual genes is noticeably diminished compared to predicting expression across cell types from their native epigenetic signatures. Our findings highlight the need for more comprehensive genome-scale epigenome editing datasets, better understanding of the actual modifications made by epigenome editing tools, and improved causal models that transfer better from endogenous cellular measurements to perturbation experiments. Together these improvements would facilitate the ability to understand and predictably control the dynamic human epigenome with consequences for human health.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592942/pdf/nihpp-2023.10.03.560674v1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1101/2023.06.29.547014
Alexandre Segers, Jeroen Gilis, Mattias Van Heetvelde, Davide Risso, Elfride De Baere, Lieven Clement
RNA-seq data analysis relies on many different tools, each tailored to specific applications and coming with unique assumptions and restrictions. Indeed, tools for differential transcript usage, or diagnosing patients with rare diseases through splicing and expression outliers, either lack in performance, discard information, or do not scale to massive data compendia. Here, we show that replacing the normalisation offsets unlocks bulk RNA-seq workflows for scalable differential usage, aberrant splicing and expression analyses. Our method, saseR, is much faster than state-of-the-art methods, dramatically outperforms these to detect aberrant splicing, and provides a single workflow for various short- and long-read RNA-seq applications.
{"title":"saseR: Juggling offsets unlocks RNA-seq tools for fast and Scalable differential usage, Aberrant Splicing and Expression Retrieval.","authors":"Alexandre Segers, Jeroen Gilis, Mattias Van Heetvelde, Davide Risso, Elfride De Baere, Lieven Clement","doi":"10.1101/2023.06.29.547014","DOIUrl":"10.1101/2023.06.29.547014","url":null,"abstract":"<p><p>RNA-seq data analysis relies on many different tools, each tailored to specific applications and coming with unique assumptions and restrictions. Indeed, tools for differential transcript usage, or diagnosing patients with rare diseases through splicing and expression outliers, either lack in performance, discard information, or do not scale to massive data compendia. Here, we show that replacing the normalisation offsets unlocks bulk RNA-seq workflows for scalable differential usage, aberrant splicing and expression analyses. Our method, saseR, is much faster than state-of-the-art methods, dramatically outperforms these to detect aberrant splicing, and provides a single workflow for various short- and long-read RNA-seq applications.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76189396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1101/2023.10.06.561290
Gregory P Donaldson, Gabriella L Reis, Marwa Saad, Christopher Wichmann, Izabela Mamede, Guo Chen, Nicole L DelGaudio, Dayu Zhang, Begüm Aydin, Caroline E Harrer, Tiago B R Castro, Sergei Grivennikov, Bernardo S Reis, Beth M Stadtmueller, Gabriel D Victora, Daniel Mucida
Immunoglobulin A (IgA) is the most abundant antibody isotype produced across mammals and plays a specialized role in mucosal homeostasis 1 . Constantly secreted into the lumen of the intestine, IgA binds commensal microbiota to regulate their colonization and function 2,3 with unclear implications for health. IgA deficiency is common in humans but is difficult to study due to its complex aetiology and comorbidities 4-8 . Using genetically and environmentally controlled mice, here we show that IgA-deficient animals have increased susceptibility to endogenous colorectal tumours. Cellular and molecular analyses revealed that, in the absence of IgA, colonic epithelial cells induce antibacterial factors and accelerate cell cycling in response to the microbiota. Oral treatment with IgA was sufficient to both reduce steady-state proliferation and protect mice from tumours, but this function was due to antibody structure rather than binding specificity. In both organoid and monolayer culture systems, IgA directly suppressed epithelial growth. Co-immunoprecipitation mass spectrometry and a targeted CRISPR screen identified DMBT1 as an IgA-binding epithelial surface protein required for IgA-mediated suppression of proliferation. Together, IgA and DMBT1 regulate Notch signalling and tune the normal cycling of absorptive colonocyte progenitors. In mice, deleting the transmembrane and cytoplasmic signalling portions of DMBT1 or blocking Notch signalling was sufficient to reverse both the increased proliferation and tumour susceptibility of IgA knockouts. These experiments establish a homeostatic function for IgA in tempering physiological epithelial responses to microbiota to maintain mucosal health.
{"title":"Suppression of epithelial proliferation and tumourigenesis by immunoglobulin A.","authors":"Gregory P Donaldson, Gabriella L Reis, Marwa Saad, Christopher Wichmann, Izabela Mamede, Guo Chen, Nicole L DelGaudio, Dayu Zhang, Begüm Aydin, Caroline E Harrer, Tiago B R Castro, Sergei Grivennikov, Bernardo S Reis, Beth M Stadtmueller, Gabriel D Victora, Daniel Mucida","doi":"10.1101/2023.10.06.561290","DOIUrl":"10.1101/2023.10.06.561290","url":null,"abstract":"<p><p>Immunoglobulin A (IgA) is the most abundant antibody isotype produced across mammals and plays a specialized role in mucosal homeostasis <sup>1</sup> . Constantly secreted into the lumen of the intestine, IgA binds commensal microbiota to regulate their colonization and function <sup>2,3</sup> with unclear implications for health. IgA deficiency is common in humans but is difficult to study due to its complex aetiology and comorbidities <sup>4-8</sup> . Using genetically and environmentally controlled mice, here we show that IgA-deficient animals have increased susceptibility to endogenous colorectal tumours. Cellular and molecular analyses revealed that, in the absence of IgA, colonic epithelial cells induce antibacterial factors and accelerate cell cycling in response to the microbiota. Oral treatment with IgA was sufficient to both reduce steady-state proliferation and protect mice from tumours, but this function was due to antibody structure rather than binding specificity. In both organoid and monolayer culture systems, IgA directly suppressed epithelial growth. Co-immunoprecipitation mass spectrometry and a targeted CRISPR screen identified DMBT1 as an IgA-binding epithelial surface protein required for IgA-mediated suppression of proliferation. Together, IgA and DMBT1 regulate Notch signalling and tune the normal cycling of absorptive colonocyte progenitors. In mice, deleting the transmembrane and cytoplasmic signalling portions of DMBT1 or blocking Notch signalling was sufficient to reverse both the increased proliferation and tumour susceptibility of IgA knockouts. These experiments establish a homeostatic function for IgA in tempering physiological epithelial responses to microbiota to maintain mucosal health.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}