Road smoothness not only directly affects the safety and comfort of vehicle travel but also relates to the efficiency and cost-effectiveness of road maintenance. Traditional road smoothness detection methods usually require professional equipment and personnel, leading to high costs and cumbersome operations. Therefore, finding a low-cost, simple, and accurate method for detecting road smoothness is of great significance. This study uses vehicle-mounted acceleration sensors to detect road smoothness, establishing a correlation between driving vibration acceleration data and the international roughness index (IRI). For this research, a driving vibration acceleration data acquisition device was developed, and the driving acceleration data from the test sections were denoised and their feature values extracted. The pseudo-vibration velocity range was used as the characteristic index representing the road surface smoothness IRI value. Testing with different vehicle types showed that the method is applicable to both sedans and SUV models, yielding a relative error of 8.9% for the sedan smoothness test model and 6.7% for the SUV smoothness test model. This study contributes to conducting large-scale road smoothness detection at a low cost, improving the efficiency of road maintenance and operations.
道路平整度不仅直接影响车辆行驶的安全性和舒适性,还关系到道路维护的效率和成本效益。传统的道路平整度检测方法通常需要专业设备和人员,成本高、操作繁琐。因此,寻找一种低成本、简单、准确的道路平整度检测方法意义重大。本研究利用车载加速度传感器检测道路平整度,建立了驾驶振动加速度数据与国际粗糙度指数(IRI)之间的相关性。本研究开发了行车振动加速度数据采集设备,并对测试路段的行车加速度数据进行了去噪处理和特征值提取。伪振动速度范围被用作代表路面平整度 IRI 值的特征指标。不同车型的测试表明,该方法适用于轿车和 SUV 车型,轿车平顺性测试模型的相对误差为 8.9%,SUV 平顺性测试模型的相对误差为 6.7%。这项研究有助于以较低的成本进行大规模的道路平整度检测,提高道路维护和运营的效率。
{"title":"Low-Cost Portable Road Smoothness Testing Method Based on Pseudo-Vibration Velocity Range","authors":"Hongwei Jiang, Xinlong Tong, Yanhong Zhang, Zhoujing Ye, Junqing Li, Yu Wang, Yinghao Miao","doi":"10.1155/2024/6314144","DOIUrl":"https://doi.org/10.1155/2024/6314144","url":null,"abstract":"Road smoothness not only directly affects the safety and comfort of vehicle travel but also relates to the efficiency and cost-effectiveness of road maintenance. Traditional road smoothness detection methods usually require professional equipment and personnel, leading to high costs and cumbersome operations. Therefore, finding a low-cost, simple, and accurate method for detecting road smoothness is of great significance. This study uses vehicle-mounted acceleration sensors to detect road smoothness, establishing a correlation between driving vibration acceleration data and the international roughness index (IRI). For this research, a driving vibration acceleration data acquisition device was developed, and the driving acceleration data from the test sections were denoised and their feature values extracted. The pseudo-vibration velocity range was used as the characteristic index representing the road surface smoothness IRI value. Testing with different vehicle types showed that the method is applicable to both sedans and SUV models, yielding a relative error of 8.9% for the sedan smoothness test model and 6.7% for the SUV smoothness test model. This study contributes to conducting large-scale road smoothness detection at a low cost, improving the efficiency of road maintenance and operations.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"43 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, building structures in corrosive environments requires some considerations. Being lightweight, high tensile strength, and corrosion resistance are the features that make fiber-reinforced plastic (FRP) bars an alternative component for longitudinal steel reinforcement of concrete. On the other hand, the linear elastic behavior of FRP bars, alongside the brittle behavior of concrete, makes brittle members without considerable ductility. In this paper, the effect of compression region confinement with CFRP sheets on the FRP-reinforced concrete beams was experimentally investigated. Eight GFRP reinforced beams with 2 m length, including one reference beam and seven confined beams, were constructed and tested under a four-point bending test. Based on the type of confinement, specimens are categorized into four groups. Flexural behavior improvements, including load carry capacity, energy dissipation capacity, and ductility, were observed in at least one specimen of each confined group. According to the results, the specimen that was spirally confined with a 30 mm ribbon width and angle of 10° had the best total energy absorption up to about 110% improvement in comparison to the unconfined specimen. On the other hand, vertically confined specimens with 50 mm ribbon width showed the highest improvement in ductility indices and load carrying capacity up to 60% and 11% in comparison to unconfined specimens, respectively. Due to concrete compression zone fractures in flexural failure mode, the over-reinforce method is considered the design philosophy. Results indicate that regardless of the confinement type (discrete vertical, discrete spiral, or continuous spiral confinement), there is an optimal amount for width, blank space between ribbons, and depth of confinement to achieve the best flexural behavior.
{"title":"Experimental Investigation of Ductility in GFRP RC Beams by Confining the Compression Zone","authors":"Erfan Tahrirchi, Farshid J. Alaee, Meysam Jalali","doi":"10.1155/2024/4268615","DOIUrl":"https://doi.org/10.1155/2024/4268615","url":null,"abstract":"Nowadays, building structures in corrosive environments requires some considerations. Being lightweight, high tensile strength, and corrosion resistance are the features that make fiber-reinforced plastic (FRP) bars an alternative component for longitudinal steel reinforcement of concrete. On the other hand, the linear elastic behavior of FRP bars, alongside the brittle behavior of concrete, makes brittle members without considerable ductility. In this paper, the effect of compression region confinement with CFRP sheets on the FRP-reinforced concrete beams was experimentally investigated. Eight GFRP reinforced beams with 2 m length, including one reference beam and seven confined beams, were constructed and tested under a four-point bending test. Based on the type of confinement, specimens are categorized into four groups. Flexural behavior improvements, including load carry capacity, energy dissipation capacity, and ductility, were observed in at least one specimen of each confined group. According to the results, the specimen that was spirally confined with a 30 mm ribbon width and angle of 10° had the best total energy absorption up to about 110% improvement in comparison to the unconfined specimen. On the other hand, vertically confined specimens with 50 mm ribbon width showed the highest improvement in ductility indices and load carrying capacity up to 60% and 11% in comparison to unconfined specimens, respectively. Due to concrete compression zone fractures in flexural failure mode, the over-reinforce method is considered the design philosophy. Results indicate that regardless of the confinement type (discrete vertical, discrete spiral, or continuous spiral confinement), there is an optimal amount for width, blank space between ribbons, and depth of confinement to achieve the best flexural behavior.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"28 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Usman, Mahmood Hussain, Arslan Mushtaq, Syed H. Farooq, Atif Mehmood, Asad Hanif
Energy demand is continuously increasing around the globe, and the building sector contributes 40% of the total energy consumption, as per the studies. Fossil fuels are the primary cause of harmful gas emissions, thus causing environmental pollution. There is a dire need to introduce innovative techniques to fulfill energy demands while reducing environmental pollution. Phase change materials (PCMs) are the latent thermal storage materials that store thermal energy during phase change from solid to liquid state and vice versa. Thus, using PCMs in structural engineering offers one of the best options for rapidly developing energy-saving materials. To do so, ascaled model, concrete walls room, encapsulating locally available PCMs, was constructed in this study. Three locally available PCMs (glycerin, vegetable ghee, and ferric chloride hexahydrate) have been tested in a controlled environment. The model response is then evaluated for the energy-storing capacity of each PCM while considering the human comfort zone. From the test results, it is concluded that PCMs have a significant effect on improving the thermal energy efficiency of the model without any notable adverse effects. Over the completion of the test, after 12 hr, all the incorporated PCM showed positive results, and a maximum temperature loss of 2.25 K was observed. Among different PCMs, the optimal performance was observed for vegetable ghee, which showed a drop in temperature for all the points at the inner side of the wall, i.e., T3, T4, and T5.
{"title":"Thermal Performance Assessment of Concrete Walls Using Different Phase Change Materials","authors":"Muhammad Usman, Mahmood Hussain, Arslan Mushtaq, Syed H. Farooq, Atif Mehmood, Asad Hanif","doi":"10.1155/2024/2994221","DOIUrl":"https://doi.org/10.1155/2024/2994221","url":null,"abstract":"Energy demand is continuously increasing around the globe, and the building sector contributes 40% of the total energy consumption, as per the studies. Fossil fuels are the primary cause of harmful gas emissions, thus causing environmental pollution. There is a dire need to introduce innovative techniques to fulfill energy demands while reducing environmental pollution. Phase change materials (PCMs) are the latent thermal storage materials that store thermal energy during phase change from solid to liquid state and vice versa. Thus, using PCMs in structural engineering offers one of the best options for rapidly developing energy-saving materials. To do so, ascaled model, concrete walls room, encapsulating locally available PCMs, was constructed in this study. Three locally available PCMs (glycerin, vegetable ghee, and ferric chloride hexahydrate) have been tested in a controlled environment. The model response is then evaluated for the energy-storing capacity of each PCM while considering the human comfort zone. From the test results, it is concluded that PCMs have a significant effect on improving the thermal energy efficiency of the model without any notable adverse effects. Over the completion of the test, after 12 hr, all the incorporated PCM showed positive results, and a maximum temperature loss of 2.25 K was observed. Among different PCMs, the optimal performance was observed for vegetable ghee, which showed a drop in temperature for all the points at the inner side of the wall, i.e., <i>T</i>3, <i>T</i>4, and <i>T</i>5.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"13 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study establishes a numerical model for beam-type steel–concrete composite specimens considering the corrosion of anchor bolts, with which studies the long-term deformation performance of the components under sustained load. The experimental results were compared with the calculated values obtained by combining the effective modulus method according to the CEB-FIP 1990 code and the ACI 209R code. Then a comparison with the calculation method of shrinkage and creep in standards (Standard Creep Method (SCM)) is made, and it shows that by supplementing the degradation of interface stiffness due to corrosion (using the defined modulus method (DMM)), the simulation results match better with the experimental results, confirming that this approach is suitable for analyzing the long-term load conditions of anchor bolt corrosion. Furthermore, based on the defined modulus method, the long-term behavior of composite beams under different loads and varying corrosion rates is studied.
{"title":"A Numerical Study on the Influence of Bolt Corrosion on the Long-Term Behavior of Steel–Concrete Composite Beams","authors":"Yalei Niu, Chen Qu, Qingxing Feng","doi":"10.1155/2024/2980358","DOIUrl":"https://doi.org/10.1155/2024/2980358","url":null,"abstract":"This study establishes a numerical model for beam-type steel–concrete composite specimens considering the corrosion of anchor bolts, with which studies the long-term deformation performance of the components under sustained load. The experimental results were compared with the calculated values obtained by combining the effective modulus method according to the CEB-FIP 1990 code and the ACI 209R code. Then a comparison with the calculation method of shrinkage and creep in standards (Standard Creep Method (SCM)) is made, and it shows that by supplementing the degradation of interface stiffness due to corrosion (using the defined modulus method (DMM)), the simulation results match better with the experimental results, confirming that this approach is suitable for analyzing the long-term load conditions of anchor bolt corrosion. Furthermore, based on the defined modulus method, the long-term behavior of composite beams under different loads and varying corrosion rates is studied.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"100 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahyar Arabani, Mohadeseh Ebrahimi, Mohammad Mahdi Shalchian, Maryam Majd Rahimabadi
Biomasses are environmentally friendly additives that lower pollution in pavement engineering because of their biodegradability. On the other hand, to build a safe, long-lasting pavement, rutting prevention is crucial. This study provides a comprehensive review of the efficacy of biomass as recyclable materials in reducing rutting and enhancing characteristics of asphalt mixtures. According to findings, the hydrocarbon polymer properties of lignin and biomass ash improve asphalt binder consistency, hardness, and function at high temperatures. The results showed that biochar, due to its solid shape, enhances the stiffness and viscosity of the mixtures. The high-temperature performance of asphalt binder is improved by bioshell waste, which increases rutting parameters. Thus, biomass like ash, lignin, and biochar can increase asphalt binder rheology and rutting resistance due to chemical forces such as Van der Waals and hydrogen ions. The macroscopic and microscopic investigation also shows higher interaction and better adhesion in bioasphalt. However, asphalt binders containing bio-oil exhibited no unique behaviors due to their lubricant impact. Based on the estimation of the life cycle assessment (LCA), it was determined that biomass utilization has the potential to decrease the cost and CO2 emissions of pavement engineering by as much as 10% and more than three times, respectively. An examination of recyclability revealed that biomass utilization can decrease the requirement for additional stabilizers by as much as 20%.
{"title":"Influence of Biomass-Modified Asphalt Binder on Rutting Resistance","authors":"Mahyar Arabani, Mohadeseh Ebrahimi, Mohammad Mahdi Shalchian, Maryam Majd Rahimabadi","doi":"10.1155/2024/8249248","DOIUrl":"https://doi.org/10.1155/2024/8249248","url":null,"abstract":"Biomasses are environmentally friendly additives that lower pollution in pavement engineering because of their biodegradability. On the other hand, to build a safe, long-lasting pavement, rutting prevention is crucial. This study provides a comprehensive review of the efficacy of biomass as recyclable materials in reducing rutting and enhancing characteristics of asphalt mixtures. According to findings, the hydrocarbon polymer properties of lignin and biomass ash improve asphalt binder consistency, hardness, and function at high temperatures. The results showed that biochar, due to its solid shape, enhances the stiffness and viscosity of the mixtures. The high-temperature performance of asphalt binder is improved by bioshell waste, which increases rutting parameters. Thus, biomass like ash, lignin, and biochar can increase asphalt binder rheology and rutting resistance due to chemical forces such as Van der Waals and hydrogen ions. The macroscopic and microscopic investigation also shows higher interaction and better adhesion in bioasphalt. However, asphalt binders containing bio-oil exhibited no unique behaviors due to their lubricant impact. Based on the estimation of the life cycle assessment (LCA), it was determined that biomass utilization has the potential to decrease the cost and CO<sub>2</sub> emissions of pavement engineering by as much as 10% and more than three times, respectively. An examination of recyclability revealed that biomass utilization can decrease the requirement for additional stabilizers by as much as 20%.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"184 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.
{"title":"Assessment of Reinforcement Effect of FRP-Strengthened Shield Segment Joint Based on the CZM Model","authors":"Jianjun Kuang, Yuanqing Chen, Xiaofei Li, Wei Guo, Jia Li, Yiqun Huang","doi":"10.1155/2024/8888139","DOIUrl":"https://doi.org/10.1155/2024/8888139","url":null,"abstract":"As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"28 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduced a new nonexplosive roadway excavation method, combining the reserved free space technology and the static expansion mechanical fracturing technology, where the former is implemented by the gasbag, while the piston splitter is for the latter. The numerical model of roadway excavation was set up via PFC3D to investigate the mechanical fracturing performance, including the single-hole fracturing and the hole network fracturing. The results show that the reasonable hole margin is about 1.0–1.5 m, and the optimal column spacing of the hole network pattern is 1.0 m, after comprehensively analyzing the fracturing performance and the splitting force evolution. Moreover, the mechanical fracturing excavation method was applied to construct a parking chamber in the Kalatongke Mine, to preliminarily verify the feasibility of the static expansion mechanical fracturing technology. The in situ investigation results indicate that the excavation footage is about 0.8 m with the piston splitter when adopting a hole margin of 1.0–1.5 m. To sum up, the preliminary field application and the numerical simulation result both support the feasibility of mechanical fracturing, and the reasonable fracturing hole margin is about 1.0 m.
{"title":"Numerical and Preliminary In Situ Investigation on Roadway Excavation Using Static Expansion Mechanical Fracturing","authors":"Yin Chen, Zijun Li, Jian Zhao, Dan Huang","doi":"10.1155/2024/2156337","DOIUrl":"https://doi.org/10.1155/2024/2156337","url":null,"abstract":"This paper introduced a new nonexplosive roadway excavation method, combining the reserved free space technology and the static expansion mechanical fracturing technology, where the former is implemented by the gasbag, while the piston splitter is for the latter. The numerical model of roadway excavation was set up via PFC3D to investigate the mechanical fracturing performance, including the single-hole fracturing and the hole network fracturing. The results show that the reasonable hole margin is about 1.0–1.5 m, and the optimal column spacing of the hole network pattern is 1.0 m, after comprehensively analyzing the fracturing performance and the splitting force evolution. Moreover, the mechanical fracturing excavation method was applied to construct a parking chamber in the Kalatongke Mine, to preliminarily verify the feasibility of the static expansion mechanical fracturing technology. The in situ investigation results indicate that the excavation footage is about 0.8 m with the piston splitter when adopting a hole margin of 1.0–1.5 m. To sum up, the preliminary field application and the numerical simulation result both support the feasibility of mechanical fracturing, and the reasonable fracturing hole margin is about 1.0 m.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"61 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao Rong, Guohui Feng, Yang Sun, Yujie Li, Guanyu Chen, Haibin Ding, Changjie Xu
In order to accurately and efficiently assess the impact of tunnel excavation on overlying existing pipeline, an analytical method is proposed to solve this problem. First, the vertical free displacement of the surrounding soil due to tunnel excavation can be derived by the Loganathan formula. Next, the overlying existing pipeline can be treated as a Timoshenko beam resting on the Vlasov foundation model, and the influence of the surrounding soil on the both sides of the existing pipeline is taken into consideration. Finally, an analytical solution for the longitudinal deformation of the existing pipeline can be obtained by using the integral method. Case analysis results demonstrate that the calculated results of this method closely in line with measured data. Compared to the degenerate analytical solution given by this method, the result from this method is more consistent with the measured data. Further parameter studies show that the volume loss rate, diameter of new tunnel, skew angle, and vertical distance between tunnel and pipeline are significant factors affecting the existing pipeline response due to tunneling underlying.
{"title":"Theoretical Solutions for Forecasting the Response of the Existing Pipeline Induce by Tunneling underneath","authors":"Yao Rong, Guohui Feng, Yang Sun, Yujie Li, Guanyu Chen, Haibin Ding, Changjie Xu","doi":"10.1155/2024/6914049","DOIUrl":"https://doi.org/10.1155/2024/6914049","url":null,"abstract":"In order to accurately and efficiently assess the impact of tunnel excavation on overlying existing pipeline, an analytical method is proposed to solve this problem. First, the vertical free displacement of the surrounding soil due to tunnel excavation can be derived by the Loganathan formula. Next, the overlying existing pipeline can be treated as a Timoshenko beam resting on the Vlasov foundation model, and the influence of the surrounding soil on the both sides of the existing pipeline is taken into consideration. Finally, an analytical solution for the longitudinal deformation of the existing pipeline can be obtained by using the integral method. Case analysis results demonstrate that the calculated results of this method closely in line with measured data. Compared to the degenerate analytical solution given by this method, the result from this method is more consistent with the measured data. Further parameter studies show that the volume loss rate, diameter of new tunnel, skew angle, and vertical distance between tunnel and pipeline are significant factors affecting the existing pipeline response due to tunneling underlying.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"130 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seismic site response is inevitably influenced by natural variability of soil properties and anticipated earthquake intensity. This study presents the influence of variability in shear wave velocity (Vs) and amplitude of input rock motion on seismic site response analysis. Monte Carlo simulations were employed to randomize the Vs profile for different scenarios. A series of 1-D equivalent linear (EQL) seismic site response analyses were conducted by combining the randomized Vs profile with different levels of rock motion intensities. The results of the analyses are presented in terms of surface spectral acceleration, amplification factors (AFs), and peak ground acceleration (PGA). The mean and standard deviation of these parameters are thoroughly discussed for a wide range of randomized Vs profile, number of Vs randomizations, and intensities of input rock motions. The results demonstrate that both the median PGA and its standard deviations across different number of Vs profile realization exhibit a slight variation. As few as twenty Vs profile realizations are sufficient to compute reliable response parameters. Both rock motion intensity and standard deviation of Vs variability cause significant variation in computed surface parameters. However, the variability in the number of records used to conduct site response has no significant impact on ground response if the records closely match the target spectrum. Incorporating the multiple sources of variabilities can reduce uncertainty when conducting ground response simulations.
地震场地响应不可避免地受到土壤性质的自然变化和预期地震烈度的影响。本研究介绍了剪切波速度(Vs)和输入岩石运动振幅的变化对地震场地响应分析的影响。采用蒙特卡罗模拟来随机化不同情况下的 Vs 剖面。通过将随机化的 Vs 剖面与不同程度的岩石运动强度相结合,进行了一系列一维等效线性(EQL)地震场地响应分析。分析结果以地表频谱加速度、放大系数(AF)和峰值地面加速度(PGA)的形式呈现。针对各种随机 Vs 剖面、Vs 随机化次数和输入岩动强度,对这些参数的平均值和标准偏差进行了深入讨论。结果表明,在不同数量的 Vs 剖面实现中,PGA 中值及其标准偏差都有轻微变化。少至 20 个 Vs 剖面实现就足以计算出可靠的响应参数。岩石运动强度和 Vs 变化的标准偏差都会导致计算出的地表参数发生显著变化。不过,如果记录与目标频谱密切吻合,用于进行场地响应的记录数量的变化对地面响应没有重大影响。在进行地面响应模拟时,将多种变异源纳入其中可减少不确定性。
{"title":"Impact of Randomized Soil Properties and Rock Motion Intensities on Ground Motion","authors":"Ayele Chala, Richard Ray","doi":"10.1155/2024/9578058","DOIUrl":"https://doi.org/10.1155/2024/9578058","url":null,"abstract":"Seismic site response is inevitably influenced by natural variability of soil properties and anticipated earthquake intensity. This study presents the influence of variability in shear wave velocity (<i>V</i><sub><i>s</i></sub>) and amplitude of input rock motion on seismic site response analysis. Monte Carlo simulations were employed to randomize the <i>V</i><sub><i>s</i></sub> profile for different scenarios. A series of 1-D equivalent linear (EQL) seismic site response analyses were conducted by combining the randomized <i>V</i><sub><i>s</i></sub> profile with different levels of rock motion intensities. The results of the analyses are presented in terms of surface spectral acceleration, amplification factors (AFs), and peak ground acceleration (PGA). The mean and standard deviation of these parameters are thoroughly discussed for a wide range of randomized <i>V</i><sub><i>s</i></sub> profile, number of <i>V</i><sub><i>s</i></sub> randomizations, and intensities of input rock motions. The results demonstrate that both the median PGA and its standard deviations across different number of <i>V</i><sub><i>s</i></sub> profile realization exhibit a slight variation. As few as twenty <i>V</i><sub><i>s</i></sub> profile realizations are sufficient to compute reliable response parameters. Both rock motion intensity and standard deviation of <i>V</i><sub><i>s</i></sub> variability cause significant variation in computed surface parameters. However, the variability in the number of records used to conduct site response has no significant impact on ground response if the records closely match the target spectrum. Incorporating the multiple sources of variabilities can reduce uncertainty when conducting ground response simulations.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"21 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional networks (TCN), named the CNN + TCN model, for predicting train delays in railway systems. First, we construct 3D data containing the spatiotemporal characteristics of real-world train data. Then, the CNN + TCN model employs a 3D CNN component, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results show that the CNN + TCN model has greater accuracy and convergence performance in train delay prediction.
{"title":"A Novel Hybrid Deep Learning Model for Complex Systems: A Case of Train Delay Prediction","authors":"Dawei Wang, Jingwei Guo, Chunyang Zhang","doi":"10.1155/2024/8163062","DOIUrl":"https://doi.org/10.1155/2024/8163062","url":null,"abstract":"Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional networks (TCN), named the CNN + TCN model, for predicting train delays in railway systems. First, we construct 3D data containing the spatiotemporal characteristics of real-world train data. Then, the CNN + TCN model employs a 3D CNN component, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results show that the CNN + TCN model has greater accuracy and convergence performance in train delay prediction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}