Pub Date : 2024-08-23DOI: 10.1134/S1029959924040040
I. D. Kurlevskaya, E. Yu. Panchenko, A. B. Tokhmetova, E. I. Yanushonite, A. S. Eftifeeva, N. Yu. Surikov, E. E. Timofeeva, Yu. I. Chumlyakov
This study reveals the impact of the formation mechanism of a two-phase (β + γ) structure during heat treatment on thermoelastic L21(B2)-10M/14M-L10 martensitic transformations and elastocaloric parameters of polycrystalline Ni54Fe19Ga27 alloy. It is experimentally shown that annealing of the as-cast Ni54Fe19Ga27 alloy in the temperature range 1173–1463 K for 0.5 h followed by water quenching leads to the precipitation of the γ phase at grain boundaries and inside grains. As the annealing temperature increases from 1173 to 1463 K, the thickness of the γ-phase layer at the grain boundaries doubles, particles inside the grains coarsen, and their volume distribution becomes nonuniform. Simultaneously, the martensitic transformation temperatures increase by 31–69 K. The nonuniform distribution of the γ-phase particles and the morphological features of martensite (refinement of its twinned structure) lead to a 5–6-fold widening of the martensitic transformation intervals in crystals annealed at 1448 K compared to the as-cast alloy. After cyclic superelastic tests with 20 to 100 loading/unloading cycles, two-phase (β + γ) polycrystals demonstrate the stable adiabatic cooling temperature ∆Tad (2.7–3.0 K) and do not crack along grain boundaries, unlike those in the as-cast state. Significant fatigue strength and a high coefficient of performance (up to 18.3) make (β + γ) Ni54Fe19Ga27 polycrystals promising for practical use in solid-state cooling.
{"title":"Influence of Heat Treatments on Martensitic Transformations and Elastocaloric Effect in Two-Phase (β + γ) NiFeGa Alloys","authors":"I. D. Kurlevskaya, E. Yu. Panchenko, A. B. Tokhmetova, E. I. Yanushonite, A. S. Eftifeeva, N. Yu. Surikov, E. E. Timofeeva, Yu. I. Chumlyakov","doi":"10.1134/S1029959924040040","DOIUrl":"10.1134/S1029959924040040","url":null,"abstract":"<p>This study reveals the impact of the formation mechanism of a two-phase (β + γ) structure during heat treatment on thermoelastic L2<sub>1</sub>(B2)-10M/14M-L1<sub>0</sub> martensitic transformations and elastocaloric parameters of polycrystalline Ni<sub>54</sub>Fe<sub>19</sub>Ga<sub>27</sub> alloy. It is experimentally shown that annealing of the as-cast Ni<sub>54</sub>Fe<sub>19</sub>Ga<sub>27</sub> alloy in the temperature range 1173–1463 K for 0.5 h followed by water quenching leads to the precipitation of the γ phase at grain boundaries and inside grains. As the annealing temperature increases from 1173 to 1463 K, the thickness of the γ-phase layer at the grain boundaries doubles, particles inside the grains coarsen, and their volume distribution becomes nonuniform. Simultaneously, the martensitic transformation temperatures increase by 31–69 K. The nonuniform distribution of the γ-phase particles and the morphological features of martensite (refinement of its twinned structure) lead to a 5–6-fold widening of the martensitic transformation intervals in crystals annealed at 1448 K compared to the as-cast alloy. After cyclic superelastic tests with 20 to 100 loading/unloading cycles, two-phase (β + γ) polycrystals demonstrate the stable adiabatic cooling temperature ∆<i>T</i><sub>ad</sub> (2.7–3.0 K) and do not crack along grain boundaries, unlike those in the as-cast state. Significant fatigue strength and a high coefficient of performance (up to 18.3) make (β + γ) Ni<sub>54</sub>Fe<sub>19</sub>Ga<sub>27</sub> polycrystals promising for practical use in solid-state cooling.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"398 - 408"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040015
A. I. Voropaev, V. I. Kolesnikov, O. V. Kudryakov, V. N. Varavka, I. V. Kolesnikov, M. S. Lifar, S. A. Guda, A. A. Guda, A. V. Sidashov
This work discusses the predictable control of plasma-assisted physical vapor deposition (PVD) of coatings. The multiple process parameters and the instability of the nonequilibrium ion plasma system create substantial obstacles to the wide industrial application of promising multicomponent functional coatings. Here we propose a solution to this problem, which includes: creation of a database of diamond-like carbon (DLC) coatings to identify a limited set of adjustable process control parameters, determination of how these parameters affect the coating properties, analysis of the revealed effects using statistical methods and neural network algorithms, and use of the results for the predictable tuning of specified coating properties. The object of research is original DLC coatings whose structure is stabilized with nitrogen instead of conventionally used hydrogen. The experimental database of DLC coatings is created based on our previous studies and includes structural, morphological and architectural characteristics of coatings, various types of substrates, sublayers, physical, mechanical and tribological properties, and various combinations of coating deposition parameters. A specific problem is solved to determine the influence of deposition parameters such as chamber pressure P, stabilizer content (% nitrogen), ion flux rate (coil current λ) and deposition time t on hardness H and elastic modulus E of coatings. Based on the results obtained, the deposition parameters are optimized so as to obtain predictable strength values of the formed carbon coating. The optimization procedure is developed using both classical statistical methods and modern algorithms of ridge regression, randomized trees (ExtraTrees), and a fully connected neural network (multilayer perceptron MLP).
摘要 本文讨论了涂层的等离子体辅助物理气相沉积(PVD)的可预测性控制。多工艺参数和非平衡离子等离子体系统的不稳定性给前景广阔的多组分功能涂层的广泛工业应用造成了巨大障碍。在此,我们提出了解决这一问题的方案,其中包括:建立类金刚石碳(DLC)涂层数据库,以确定一组有限的可调工艺控制参数;确定这些参数如何影响涂层特性;使用统计方法和神经网络算法分析所揭示的影响;以及利用结果对特定涂层特性进行可预测的调整。研究对象是原始的 DLC 涂层,其结构用氮气而不是传统的氢气来稳定。DLC 涂层的实验数据库是根据我们以前的研究建立的,其中包括涂层的结构、形态和构造特征,各种类型的基底、底层,物理、机械和摩擦学特性,以及涂层沉积参数的各种组合。本研究解决了一个具体问题,即确定沉积参数(如腔室压力 P、稳定剂含量(氮%)、离子通量率(线圈电流 λ)和沉积时间 t)对涂层硬度 H 和弹性模量 E 的影响。根据获得的结果,对沉积参数进行了优化,以获得可预测的已形成碳涂层的强度值。优化程序的开发既使用了经典统计方法,也使用了脊回归、随机树(ExtraTrees)和全连接神经网络(多层感知器 MLP)等现代算法。
{"title":"Nitrogen-Stabilized DLC Coatings: Optimization of Properties and Deposition Parameters Using Randomized Tree and Neural Network Algorithms","authors":"A. I. Voropaev, V. I. Kolesnikov, O. V. Kudryakov, V. N. Varavka, I. V. Kolesnikov, M. S. Lifar, S. A. Guda, A. A. Guda, A. V. Sidashov","doi":"10.1134/S1029959924040015","DOIUrl":"10.1134/S1029959924040015","url":null,"abstract":"<p>This work discusses the predictable control of plasma-assisted physical vapor deposition (PVD) of coatings. The multiple process parameters and the instability of the nonequilibrium ion plasma system create substantial obstacles to the wide industrial application of promising multicomponent functional coatings. Here we propose a solution to this problem, which includes: creation of a database of diamond-like carbon (DLC) coatings to identify a limited set of adjustable process control parameters, determination of how these parameters affect the coating properties, analysis of the revealed effects using statistical methods and neural network algorithms, and use of the results for the predictable tuning of specified coating properties. The object of research is original DLC coatings whose structure is stabilized with nitrogen instead of conventionally used hydrogen. The experimental database of DLC coatings is created based on our previous studies and includes structural, morphological and architectural characteristics of coatings, various types of substrates, sublayers, physical, mechanical and tribological properties, and various combinations of coating deposition parameters. A specific problem is solved to determine the influence of deposition parameters such as chamber pressure <i>P</i>, stabilizer content (% nitrogen), ion flux rate (coil current λ) and deposition time <i>t</i> on hardness <i>H</i> and elastic modulus <i>E</i> of coatings. Based on the results obtained, the deposition parameters are optimized so as to obtain predictable strength values of the formed carbon coating. The optimization procedure is developed using both classical statistical methods and modern algorithms of ridge regression, randomized trees (ExtraTrees), and a fully connected neural network (multilayer perceptron MLP).</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"355 - 369"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040039
S. A. Atroshenko, R. Z. Valiev, N. F. Morozov, R. R. Valiev, Ya. N. Savina, M. N. Antonova, A. D. Evstifeev
An experimental study is presented on the wear and failure of initial coarse-grained and modified ultrafine-grained Ti-6Al-4V alloy with a TiN protective coating, subjected to high-speed dynamic erosion by solid corundum particles with an average size of 109 μm in an air flow at a speed of 150 m/s and an erosion time of 30, 60, 180, 300 and 600 s. The experimental results are used to determine the erosive wear rate and the shear area percentage, as well as to measure the worn layer depth and erosion-induced changes in microhardness and structure of the alloy near the coated and uncoated surface. It is shown that all alloy samples are prone to wear and failure under the given high-speed erosion conditions, but their behavior is closely related to the erosion time and the structure of the substrate. The protective coating deposited onto the surface of ultrafine-grained Ti-6Al-4V titanium alloy significantly reduces the erosive wear rate compared to a similar coating on as-received coarse-grained alloy.
摘要 本文对带有 TiN 保护涂层的初始粗晶粒和改性超细晶粒 Ti-6Al-4V 合金的磨损和失效情况进行了实验研究。在速度为 150 m/s、侵蚀时间为 30、60、180、300 和 600 s 的气流中,平均粒度为 109 μm 的固体刚玉颗粒对合金进行高速动态侵蚀。实验结果用于确定侵蚀磨损率和剪切面积百分比,以及测量磨损层深度和侵蚀引起的涂层和未涂层表面附近合金微硬度和结构的变化。结果表明,在给定的高速侵蚀条件下,所有合金样品都容易发生磨损和失效,但其行为与侵蚀时间和基体结构密切相关。在超细晶粒 Ti-6Al-4V 钛合金表面沉积的保护涂层与在粗晶粒合金表面沉积的类似涂层相比,可显著降低侵蚀磨损率。
{"title":"Wear and Failure Analysis of Ti-6Al-4V Titanium Alloy with a Protective Coating during High-Speed Erosion","authors":"S. A. Atroshenko, R. Z. Valiev, N. F. Morozov, R. R. Valiev, Ya. N. Savina, M. N. Antonova, A. D. Evstifeev","doi":"10.1134/S1029959924040039","DOIUrl":"10.1134/S1029959924040039","url":null,"abstract":"<p>An experimental study is presented on the wear and failure of initial coarse-grained and modified ultrafine-grained Ti-6Al-4V alloy with a TiN protective coating, subjected to high-speed dynamic erosion by solid corundum particles with an average size of 109 μm in an air flow at a speed of 150 m/s and an erosion time of 30, 60, 180, 300 and 600 s. The experimental results are used to determine the erosive wear rate and the shear area percentage, as well as to measure the worn layer depth and erosion-induced changes in microhardness and structure of the alloy near the coated and uncoated surface. It is shown that all alloy samples are prone to wear and failure under the given high-speed erosion conditions, but their behavior is closely related to the erosion time and the structure of the substrate. The protective coating deposited onto the surface of ultrafine-grained Ti-6Al-4V titanium alloy significantly reduces the erosive wear rate compared to a similar coating on as-received coarse-grained alloy.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"387 - 397"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S102995992404009X
F. Ramezankhani, R. Noorossana, M. R. M. Aliha
Friction stir welding is a relatively new way to join solid materials without melting using a nonconsumable tool, which has many applications in different industries including automotive, shipbuilding, and aerospace. Destructive testing is an integral part of engineering science, which costs a lot. Reducing the number of destructive tests via numerical calculations to determine the quality of welded parts is valuable. On the other hand, advances in computer technology and embedded sensing systems in different domains have made it possible to collect a variety of data in huge volume at an unbelievable velocity, which provides an opportunity and at the same time a challenge to engineers and practitioners to utilize this rich source of information efficiently. Functional data as a rich form of structured data allows for high dimensionality modeling and analysis of the data. In this paper, we develop a fully functional linear regression model to quantify and predict the quality of the process outputs by reducing the number of destructive tests and presenting a change-point detection model to avoid using the model when a change has occurred in one of the components of the process. Important issues such as autocorrelation and correlation are taken into account in the presented model. The functional variables of the model are solved by polynomial basis function expansions. The results of the experimental tests indicate that the proposed method performs well in detecting out-of-control conditions as well as estimating the change-point location. The obtained value of the multiple correlation coefficient 0.98 and the corresponding F-value equal to 652.95 support these results.
摘要 搅拌摩擦焊是一种使用非消耗性工具在不熔化的情况下连接固体材料的相对较新的方法,在汽车、造船和航空航天等不同行业有许多应用。破坏性测试是工程科学不可或缺的一部分,其成本很高。通过数值计算来确定焊接件的质量,从而减少破坏性试验的次数,这是非常有价值的。另一方面,计算机技术和嵌入式传感系统在不同领域的发展,使得以难以置信的速度收集各种海量数据成为可能,这为工程师和从业人员有效利用这些丰富的信息来源提供了机遇,同时也带来了挑战。功能数据作为结构化数据的一种丰富形式,可以对数据进行高维建模和分析。在本文中,我们开发了一个全功能线性回归模型,通过减少破坏性测试的数量来量化和预测流程输出的质量,并提出了一个变化点检测模型,以避免在流程的某个组件发生变化时使用该模型。所提出的模型考虑到了自相关性和相关性等重要问题。模型的函数变量通过多项式基函数展开求解。实验测试结果表明,所提出的方法在检测失控条件和估计变化点位置方面表现良好。多重相关系数 0.98 和相应的 F 值 652.95 均支持这些结果。
{"title":"A Function-on-Function Regression Model for Monitoring the Manufacturing Process Performance with Application in Friction Stir Welding","authors":"F. Ramezankhani, R. Noorossana, M. R. M. Aliha","doi":"10.1134/S102995992404009X","DOIUrl":"10.1134/S102995992404009X","url":null,"abstract":"<p>Friction stir welding is a relatively new way to join solid materials without melting using a nonconsumable tool, which has many applications in different industries including automotive, shipbuilding, and aerospace. Destructive testing is an integral part of engineering science, which costs a lot. Reducing the number of destructive tests via numerical calculations to determine the quality of welded parts is valuable. On the other hand, advances in computer technology and embedded sensing systems in different domains have made it possible to collect a variety of data in huge volume at an unbelievable velocity, which provides an opportunity and at the same time a challenge to engineers and practitioners to utilize this rich source of information efficiently. Functional data as a rich form of structured data allows for high dimensionality modeling and analysis of the data. In this paper, we develop a fully functional linear regression model to quantify and predict the quality of the process outputs by reducing the number of destructive tests and presenting a change-point detection model to avoid using the model when a change has occurred in one of the components of the process. Important issues such as autocorrelation and correlation are taken into account in the presented model. The functional variables of the model are solved by polynomial basis function expansions. The results of the experimental tests indicate that the proposed method performs well in detecting out-of-control conditions as well as estimating the change-point location. The obtained value of the multiple correlation coefficient 0.98 and the corresponding F-value equal to 652.95 support these results.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"447 - 460"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040118
H. Belarbi, B. Boucham, F. Bourada, A. Kaci, M. Bourada, A. Tounsi
This study presents the flexural analysis of Ti-6A1-4V/ZrO2 functionally graded (FG) sandwich plates under combined thermal and mechanical loading via exponential-cubic-sinusoidal integral shear deformation theory. The current formulation used in the modeling provides a parabolic distribution of transverse shear stresses without requiring additional factors in the formulation. Various sandwich plate models with different layer thicknesses and material types are considered. The FG layers vary continuously and smoothly according to exponential and power-law functions. The governing differential equations of the system are derived and solved analytically using the virtual work principle and Navier’s approach. Benchmark comparisons are performed to validate and show the accuracy of the proposed model. Various parametric examples are presented to illustrate the effect of the geometry, dimensions, FG sandwich type and material gradient on the static flexural response of the studied structure.
{"title":"Investigation on Thermomechanical Bending of Functionally Graded Sandwich Plates Using a Novel Combined 2D Integral Plate Model","authors":"H. Belarbi, B. Boucham, F. Bourada, A. Kaci, M. Bourada, A. Tounsi","doi":"10.1134/S1029959924040118","DOIUrl":"10.1134/S1029959924040118","url":null,"abstract":"<p>This study presents the flexural analysis of Ti-6A1-4V/ZrO<sub>2</sub> functionally graded (FG) sandwich plates under combined thermal and mechanical loading via exponential-cubic-sinusoidal integral shear deformation theory. The current formulation used in the modeling provides a parabolic distribution of transverse shear stresses without requiring additional factors in the formulation. Various sandwich plate models with different layer thicknesses and material types are considered. The FG layers vary continuously and smoothly according to exponential and power-law functions. The governing differential equations of the system are derived and solved analytically using the virtual work principle and Navier’s approach. Benchmark comparisons are performed to validate and show the accuracy of the proposed model. Various parametric examples are presented to illustrate the effect of the geometry, dimensions, FG sandwich type and material gradient on the static flexural response of the studied structure.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"472 - 484"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040064
A. M. Budkov, S. B. Kishkina
This paper is a part of the study on the rupture propagation and seismic wave emission during the movement along the fault, whose fracture surface in different regions is made of geomaterials with different frictional properties. The slip surface of the fault is frictionally heterogeneous. It contains weakening zones (asperities), strengthening zones (barriers), and “background” zones that are almost neutral with respect to velocity and displacement. The scenario of a seismogenic rupture is determined precisely by the presence, number, and size of such zones with different dynamics of frictional characteristics. The study deals with the mechanics of supershear earthquakes, in which the rupture propagates with an unusually high velocity exceeding the shear wave velocity of the medium. Numerical simulation results confirm the existence of two different mechanisms governing the transition of an earthquake to the supershear regime. A model of the so-called “weak” fault is considered, for which the rupture velocity continuously increases from the sub-Rayleigh velocity CR to the shear wave velocity Cs and quickly exceeds it without any jump. This scenario is typical for faults with the measure of strength S under 0.8. The solved problem is not only of fundamental importance for understanding the earthquake mechanics, but also can find application in engineering seismology and the study of earthquake-induced rupture processes, because unlike an ordinary earthquake, supershear or fast ruptures cause strong shaking at a much greater distance from the source of the event (from the fault). This is confirmed by direct data on near-field ground motion obtained in recent years by research groups from different countries.
{"title":"One of the Scenarios for Supershear Earthquakes","authors":"A. M. Budkov, S. B. Kishkina","doi":"10.1134/S1029959924040064","DOIUrl":"10.1134/S1029959924040064","url":null,"abstract":"<p>This paper is a part of the study on the rupture propagation and seismic wave emission during the movement along the fault, whose fracture surface in different regions is made of geomaterials with different frictional properties. The slip surface of the fault is frictionally heterogeneous. It contains weakening zones (asperities), strengthening zones (barriers), and “background” zones that are almost neutral with respect to velocity and displacement. The scenario of a seismogenic rupture is determined precisely by the presence, number, and size of such zones with different dynamics of frictional characteristics. The study deals with the mechanics of supershear earthquakes, in which the rupture propagates with an unusually high velocity exceeding the shear wave velocity of the medium. Numerical simulation results confirm the existence of two different mechanisms governing the transition of an earthquake to the supershear regime. A model of the so-called “weak” fault is considered, for which the rupture velocity continuously increases from the sub-Rayleigh velocity <i>C</i><sub>R</sub> to the shear wave velocity <i>C</i><sub>s</sub> and quickly exceeds it without any jump. This scenario is typical for faults with the measure of strength <i>S</i> under 0.8. The solved problem is not only of fundamental importance for understanding the earthquake mechanics, but also can find application in engineering seismology and the study of earthquake-induced rupture processes, because unlike an ordinary earthquake, supershear or fast ruptures cause strong shaking at a much greater distance from the source of the event (from the fault). This is confirmed by direct data on near-field ground motion obtained in recent years by research groups from different countries.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"417 - 425"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040076
V. E. Shavshukov
Statistical distributions of the elastic strain and stress tensor components in the grains of polycrystalline materials are necessary to calculate the probabilities of various local critical events, such as damage and others, which are of random origin due to the stochastic grain structure. Many experimental and computational studies suggest that these distributions can be approximated by a normal distribution. The normal distribution parameters are determined from histogram-like plots obtained experimentally or by computer simulation. Most published histogram distributions are highly skewed, in contrast to the normal distribution. Here we present a new direct calculation method for the probability densities of the elastic strain tensor components. The method uses an integral equation for strains in heterogeneous solids, which reduces the solution of the boundary value problem of polycrystal deformation to the sum of solutions of some problems for neighboring grains. The focus is on the influence of random grain interactions on the strain distribution. Calculations are carried out for polycrystals with different elastic symmetries and degrees of grain anisotropy. All probability densities are finite, asymmetric, and noticeably different from Gaussian ones. It is shown that very few particularly located neighboring grains (of dozens) have a much greater effect on the distribution pattern and limiting values of the strain tensor components than all the others.
{"title":"Grain Interaction and Elastic Strain Distribution in Polycrystalline Materials","authors":"V. E. Shavshukov","doi":"10.1134/S1029959924040076","DOIUrl":"10.1134/S1029959924040076","url":null,"abstract":"<p>Statistical distributions of the elastic strain and stress tensor components in the grains of polycrystalline materials are necessary to calculate the probabilities of various local critical events, such as damage and others, which are of random origin due to the stochastic grain structure. Many experimental and computational studies suggest that these distributions can be approximated by a normal distribution. The normal distribution parameters are determined from histogram-like plots obtained experimentally or by computer simulation. Most published histogram distributions are highly skewed, in contrast to the normal distribution. Here we present a new direct calculation method for the probability densities of the elastic strain tensor components. The method uses an integral equation for strains in heterogeneous solids, which reduces the solution of the boundary value problem of polycrystal deformation to the sum of solutions of some problems for neighboring grains. The focus is on the influence of random grain interactions on the strain distribution. Calculations are carried out for polycrystals with different elastic symmetries and degrees of grain anisotropy. All probability densities are finite, asymmetric, and noticeably different from Gaussian ones. It is shown that very few particularly located neighboring grains (of dozens) have a much greater effect on the distribution pattern and limiting values of the strain tensor components than all the others.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"426 - 435"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040106
R. Selvamani, T. Prabhakaran, F. Ebrahimi
The present study explores dispersion characteristics of thermal, viscoelastic and mechanical waves in graphene sheets subjected to uniform thermal loading and supported by the visco-Pasternak foundation. Kinematic relations for graphene sheets are deduced within two-variable refined higher-order plate theory. Damping effects of the viscoelastic medium are modeled using the Kelvin–Voigt model. The research extensively investigates the size-dependent behavior of graphene sheets by incorporating nonlocal strain gradient theory. Nonlocal governing equations are formulated under Hamilton’s principle and solved analytically to determine wave frequency values. To validate the results, a comparative analysis is conducted, and the outcomes are tabulated to confirm the effectiveness of the approach. Finally, graphical representations are employed to depict the influence of each parameter on the wave propagation responses of graphene sheets.
{"title":"Damping Characteristics of Nonlocal Strain Gradient Waves in Thermoviscoelastic Graphene Sheets Subjected to Nonlinear Substrate Effects","authors":"R. Selvamani, T. Prabhakaran, F. Ebrahimi","doi":"10.1134/S1029959924040106","DOIUrl":"10.1134/S1029959924040106","url":null,"abstract":"<p>The present study explores dispersion characteristics of thermal, viscoelastic and mechanical waves in graphene sheets subjected to uniform thermal loading and supported by the visco-Pasternak foundation. Kinematic relations for graphene sheets are deduced within two-variable refined higher-order plate theory. Damping effects of the viscoelastic medium are modeled using the Kelvin–Voigt model. The research extensively investigates the size-dependent behavior of graphene sheets by incorporating nonlocal strain gradient theory. Nonlocal governing equations are formulated under Hamilton’s principle and solved analytically to determine wave frequency values. To validate the results, a comparative analysis is conducted, and the outcomes are tabulated to confirm the effectiveness of the approach. Finally, graphical representations are employed to depict the influence of each parameter on the wave propagation responses of graphene sheets.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"461 - 471"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S102995992404012X
K. Antar, Kh. Amara, A. Besseghier
This paper explores the vibrational properties of double-walled carbon nanotubes embedded in a polymer matrix within different gradient elasticity theories. The study considers how the mechanical behavior of double-walled carbon nanotubes and the polymer matrix changes with temperature. The research highlights the significance of scale effects on wave propagation in double-walled carbon nanotubes and shows that certain characteristics of transverse vibrations in double-walled carbon nanotubes are affected by temperature variations. In addition, the paper derives consistent governing equations for modeling free transverse vibrations of double-walled carbon nanotubes using the nonlocal Euler–Bernoulli beam model, considering the effects of temperature and Van der Waals forces between the inner and outer nanotubes.
{"title":"Investigation of Thermal Impacts and Different Gradient Elasticity Theories on Wave Propagation through the Polymer Matrix Incorporated Carbon Nanotube Walls","authors":"K. Antar, Kh. Amara, A. Besseghier","doi":"10.1134/S102995992404012X","DOIUrl":"10.1134/S102995992404012X","url":null,"abstract":"<p>This paper explores the vibrational properties of double-walled carbon nanotubes embedded in a polymer matrix within different gradient elasticity theories. The study considers how the mechanical behavior of double-walled carbon nanotubes and the polymer matrix changes with temperature. The research highlights the significance of scale effects on wave propagation in double-walled carbon nanotubes and shows that certain characteristics of transverse vibrations in double-walled carbon nanotubes are affected by temperature variations. In addition, the paper derives consistent governing equations for modeling free transverse vibrations of double-walled carbon nanotubes using the nonlocal Euler–Bernoulli beam model, considering the effects of temperature and Van der Waals forces between the inner and outer nanotubes.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"485 - 492"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1134/S1029959924040088
A. Ostovari Moghaddam, R. Fereidonnejad, D. V. Mikhailov, M. Naseri, E. A. Trofimov
Deformation mechanisms of the Al3(TiTaZrNbHf) high entropy intermetallic compound under tensile loading were studied using molecular dynamic simulations. To this end, the site occupancy of the five constituent atoms that form the high entropy sublattice of Al3(TiTaZrNbHf) was first determined by simulating the near-equilibrium melting/crystallization process. It is shown that nuclei of intrinsic stacking faults are formed under early plastic deformation due to dislocation nucleation and glide, which further contribute to the formation and growth of twin boundaries. Twinning and 1/6<112> Shockley partial dislocations are key components in the plastic deformation of Al3(TiTaZrNbHf) at room and elevated temperatures, which is in good agreement with the experimental observations for D022-structured materials. The tensile strength of Al3(TiTaZrNbHf) is 4.6 GPa at 300 K and slightly decreases to 4.34 GPa at 1000 K, highlighting the unique properties of high entropy intermetallic compounds in retaining their mechanical properties at elevated temperatures. The derived results provide grounds for understanding the atomic-scale origin of deformation mechanisms in high entropy intermetallic compounds. They also show potentials for tailoring the chemical composition of intermetallic compounds to overcome the problem of low ductility, paving the way to their industrial applications.
摘要利用分子动力学模拟研究了 Al3(TiTaZrNbHf)高熵金属间化合物在拉伸载荷作用下的变形机制。为此,首先通过模拟近平衡熔化/结晶过程确定了构成 Al3(TiTaZrNbHf)高熵亚晶格的五个组成原子的位点占有率。结果表明,在早期塑性变形过程中,由于位错成核和滑行,形成了本征堆积断层核,进一步促进了孪晶边界的形成和生长。孪晶和 1/6<112> 肖克利部分位错是室温和高温下 Al3(TiTaZrNbHf)塑性变形的关键成分,这与 D022 结构材料的实验观察结果十分吻合。Al3(TiTaZrNbHf) 的拉伸强度在 300 K 时为 4.6 GPa,在 1000 K 时略微下降至 4.34 GPa,突出了高熵金属间化合物在高温下保持其机械性能的独特特性。推导结果为理解高熵金属间化合物变形机制的原子尺度起源提供了依据。这些结果还显示了调整金属间化合物化学成分以克服低延展性问题的潜力,为金属间化合物的工业应用铺平了道路。
{"title":"Mechanical Properties of the Al3(TiTaZrNbHf) High Entropy Intermetallic Compound: A Molecular Dynamic Study","authors":"A. Ostovari Moghaddam, R. Fereidonnejad, D. V. Mikhailov, M. Naseri, E. A. Trofimov","doi":"10.1134/S1029959924040088","DOIUrl":"10.1134/S1029959924040088","url":null,"abstract":"<p>Deformation mechanisms of the Al<sub>3</sub>(TiTaZrNbHf) high entropy intermetallic compound under tensile loading were studied using molecular dynamic simulations. To this end, the site occupancy of the five constituent atoms that form the high entropy sublattice of Al<sub>3</sub>(TiTaZrNbHf) was first determined by simulating the near-equilibrium melting/crystallization process. It is shown that nuclei of intrinsic stacking faults are formed under early plastic deformation due to dislocation nucleation and glide, which further contribute to the formation and growth of twin boundaries. Twinning and 1/6<112> Shockley partial dislocations are key components in the plastic deformation of Al<sub>3</sub>(TiTaZrNbHf) at room and elevated temperatures, which is in good agreement with the experimental observations for D0<sub>22</sub>-structured materials. The tensile strength of Al<sub>3</sub>(TiTaZrNbHf) is 4.6 GPa at 300 K and slightly decreases to 4.34 GPa at 1000 K, highlighting the unique properties of high entropy intermetallic compounds in retaining their mechanical properties at elevated temperatures. The derived results provide grounds for understanding the atomic-scale origin of deformation mechanisms in high entropy intermetallic compounds. They also show potentials for tailoring the chemical composition of intermetallic compounds to overcome the problem of low ductility, paving the way to their industrial applications.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"436 - 446"},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}