Chikahiro Imashiro, Yangyan Jin, Motoaki Hayama, Takahiro G Yamada, Akira Funahashi, Katsuhisa Sakaguchi, Shinjiro Umezu, Jun Komotori
Hyperthermia can be induced to exploit the thermal intolerance of cancer cells, which is worse than that of normal cells, as a potential noninvasive cancer treatment. To develop an effective hyperthermia treatment, thermal cytotoxicity of cells should be comprehensively investigated. However, to conduct such investigations, the culture temperature must be accurately regulated. We previously reported a culture system in which the culture temperature could be accurately regulated by employing metallic culture vessels. However, appropriate temperature conditions for hyperthermia depend on the cell species. Consequently, several experiments need to be conducted, which is a bottleneck of inducing hyperthermia. Hence, we developed a cell culture system with temperature gradation on a metallic culture surface. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used as cancer and normal cell models, respectively. Normal cells showed stronger thermal tolerance; this was because the novel system immediately exhibited a temperature gradation. Thus, the developed culture system can be used to investigate the optimum thermal conditions for effective hyperthermia treatment. Furthermore, as the reactions of cultured cells can be effectively assessed with the present results, further research involving the thermal stimulation of cells is possible.
{"title":"Titanium Culture Vessel Presenting Temperature Gradation for the Thermotolerance Estimation of Cells.","authors":"Chikahiro Imashiro, Yangyan Jin, Motoaki Hayama, Takahiro G Yamada, Akira Funahashi, Katsuhisa Sakaguchi, Shinjiro Umezu, Jun Komotori","doi":"10.34133/cbsystems.0049","DOIUrl":"https://doi.org/10.34133/cbsystems.0049","url":null,"abstract":"<p><p>Hyperthermia can be induced to exploit the thermal intolerance of cancer cells, which is worse than that of normal cells, as a potential noninvasive cancer treatment. To develop an effective hyperthermia treatment, thermal cytotoxicity of cells should be comprehensively investigated. However, to conduct such investigations, the culture temperature must be accurately regulated. We previously reported a culture system in which the culture temperature could be accurately regulated by employing metallic culture vessels. However, appropriate temperature conditions for hyperthermia depend on the cell species. Consequently, several experiments need to be conducted, which is a bottleneck of inducing hyperthermia. Hence, we developed a cell culture system with temperature gradation on a metallic culture surface. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used as cancer and normal cell models, respectively. Normal cells showed stronger thermal tolerance; this was because the novel system immediately exhibited a temperature gradation. Thus, the developed culture system can be used to investigate the optimum thermal conditions for effective hyperthermia treatment. Furthermore, as the reactions of cultured cells can be effectively assessed with the present results, further research involving the thermal stimulation of cells is possible.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0049"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10019434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling Li, Xiaojian Li, Bo Ouyang, Hangjie Mo, Hongliang Ren, Shanlin Yang
In the robot-assisted minimally invasive surgery, if a collision occurs, the robot system program could be damaged, and normal tissues could be injured. To avoid collisions during surgery, a 3-dimensional collision avoidance method is proposed in this paper. The proposed method is predicated on the design of 3 strategic vectors: the collision-with-instrument-avoidance (CI) vector, the collision-with-tissues-avoidance (CT) vector, and the constrained-control (CC) vector. The CI vector demarcates 3 specific directions to forestall collision among the surgical instruments. The CT vector, on the other hand, comprises 2 components tailored to prevent inadvertent contact between the robot-controlled instrument and nontarget tissues. Meanwhile, the CC vector is introduced to guide the endpoint of the robot-controlled instrument toward the desired position, ensuring precision in its movements, in alignment with the surgical goals. Simulation results verify the proposed collision avoidance method for robot-assisted minimally invasive surgery. The code and data are available at https://github.com/cynerelee/collision-avoidance.
{"title":"Three-Dimensional Collision Avoidance Method for Robot-Assisted Minimally Invasive Surgery.","authors":"Ling Li, Xiaojian Li, Bo Ouyang, Hangjie Mo, Hongliang Ren, Shanlin Yang","doi":"10.34133/cbsystems.0042","DOIUrl":"https://doi.org/10.34133/cbsystems.0042","url":null,"abstract":"<p><p>In the robot-assisted minimally invasive surgery, if a collision occurs, the robot system program could be damaged, and normal tissues could be injured. To avoid collisions during surgery, a 3-dimensional collision avoidance method is proposed in this paper. The proposed method is predicated on the design of 3 strategic vectors: the collision-with-instrument-avoidance (CI) vector, the collision-with-tissues-avoidance (CT) vector, and the constrained-control (CC) vector. The CI vector demarcates 3 specific directions to forestall collision among the surgical instruments. The CT vector, on the other hand, comprises 2 components tailored to prevent inadvertent contact between the robot-controlled instrument and nontarget tissues. Meanwhile, the CC vector is introduced to guide the endpoint of the robot-controlled instrument toward the desired position, ensuring precision in its movements, in alignment with the surgical goals. Simulation results verify the proposed collision avoidance method for robot-assisted minimally invasive surgery. The code and data are available at https://github.com/cynerelee/collision-avoidance.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0042"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10479965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10171621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolei Cao, Xiao Huang, Yan Zhao, Zeyuan Sun, Hui Li, Zhihong Jiang, Marco Ceccarelli
On-orbit assembly has become a crucial aspect of space operations, where the manipulator frequently and directly interacts with objects in a complex assembly process. The traditional manipulator control has limitations in adapting to diverse assembly tasks and is vulnerable to vibration, leading to assembly failure. To address this issue, we propose a human-like variable admittance control method based on the variable damping characteristics of the human arm. By collecting the velocity and contact force of human arm operations in assembly, we analyze the damping change of human arm and establish the active compliance model based on S-type damping variation rule in assembly. Furthermore, 3 passive contact models are proposed between the end of the human arm and the environment: one-sided bevel contact, both sides bevel contact, and pin-hole contact. On the basis of these active and passive models, a typical space assembly task for a robot is designed, and a human-like variable admittance controller is established and simulated. Finally, we build a ground verification platform and complete different assembly tasks, thereby successfully verifying the safety, robustness, and adaptability of the human-like variable admittance control method.
{"title":"A Method of Human-Like Compliant Assembly Based on Variable Admittance Control for Space Maintenance.","authors":"Xiaolei Cao, Xiao Huang, Yan Zhao, Zeyuan Sun, Hui Li, Zhihong Jiang, Marco Ceccarelli","doi":"10.34133/cbsystems.0046","DOIUrl":"https://doi.org/10.34133/cbsystems.0046","url":null,"abstract":"<p><p>On-orbit assembly has become a crucial aspect of space operations, where the manipulator frequently and directly interacts with objects in a complex assembly process. The traditional manipulator control has limitations in adapting to diverse assembly tasks and is vulnerable to vibration, leading to assembly failure. To address this issue, we propose a human-like variable admittance control method based on the variable damping characteristics of the human arm. By collecting the velocity and contact force of human arm operations in assembly, we analyze the damping change of human arm and establish the active compliance model based on S-type damping variation rule in assembly. Furthermore, 3 passive contact models are proposed between the end of the human arm and the environment: one-sided bevel contact, both sides bevel contact, and pin-hole contact. On the basis of these active and passive models, a typical space assembly task for a robot is designed, and a human-like variable admittance controller is established and simulated. Finally, we build a ground verification platform and complete different assembly tasks, thereby successfully verifying the safety, robustness, and adaptability of the human-like variable admittance control method.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0046"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenhao Bao, Xin Hu, Dan Zhang, Zhao Lv, Jingjing Chen
Moral elevation, the emotion that arises when individuals observe others' moral behaviors, plays an important role in determining moral behaviors in real life. While recent research has demonstrated the potential to decode basic emotions with brain signals, there has been limited exploration of affective computing for moral elevation, an emotion related to social cognition. To address this gap, we recorded electroencephalography (EEG) signals from 23 participants while they viewed videos that were expected to elicit moral elevation. More than 30,000 danmaku comments were extracted as a crowdsourcing tagging method to label moral elevation continuously at a 1-s temporal resolution. Then, by employing power spectra features and the least absolute shrinkage and selection operator regularized regression analyses, we achieved a promising prediction performance for moral elevation (prediction r = 0.44 ± 0.11). Our findings indicate that it is possible to decode moral elevation using EEG signals. Moreover, the small-sample neural data can predict the continuous moral elevation experience conveyed in danmaku comments from a large population.
{"title":"Predicting Moral Elevation Conveyed in Danmaku Comments Using EEGs.","authors":"Chenhao Bao, Xin Hu, Dan Zhang, Zhao Lv, Jingjing Chen","doi":"10.34133/cbsystems.0028","DOIUrl":"https://doi.org/10.34133/cbsystems.0028","url":null,"abstract":"<p><p>Moral elevation, the emotion that arises when individuals observe others' moral behaviors, plays an important role in determining moral behaviors in real life. While recent research has demonstrated the potential to decode basic emotions with brain signals, there has been limited exploration of affective computing for moral elevation, an emotion related to social cognition. To address this gap, we recorded electroencephalography (EEG) signals from 23 participants while they viewed videos that were expected to elicit moral elevation. More than 30,000 danmaku comments were extracted as a crowdsourcing tagging method to label moral elevation continuously at a 1-s temporal resolution. Then, by employing power spectra features and the least absolute shrinkage and selection operator regularized regression analyses, we achieved a promising prediction performance for moral elevation (prediction <i>r</i> = 0.44 ± 0.11). Our findings indicate that it is possible to decode moral elevation using EEG signals. Moreover, the small-sample neural data can predict the continuous moral elevation experience conveyed in danmaku comments from a large population.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0028"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10089661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wearable body sensor nodes require massive data transmission under limited energy. However, it suffers from drastically varying channel loss, which limits its energy efficiency in practical scenarios. This paper presents a power-driven body-channel transceiver (TRX), whose power consumption can be adaptively tuned against varying channel loss. An out-band programmable gain amplifier (PGA) is proposed to save power and generate a quasi-linear correlation between PGA gain and power. By using the quasi-linear gain-power relationship, we propose an auto gain/power control technique to realize on-demand power consumption. In addition, a differential balanced transmitter is designed to eliminate base-band harmonics in on-off keying modulation and increase the power delivered by the transmitter (TX). The TX and receiver (RX) of the prototype were integrated into 1 chip and fabricated in a 55-nm complementary metal oxide semiconductor process. During the measurement, 2 chips were configured as TX and RX, respectively. Both the TX and the RX were wearable, powered by lithium batteries, and attached to the subject's hands. The prototype achieved a 5.25-Mbps data rate with 16-pJ/bit energy efficiency at a 1.5-m straight-line ground path distance. Furthermore, the proposed TRX maintained stable communication within a 1.5-m distance, while dynamically reducing power consumption.
{"title":"A Highly Energy-Efficient Body-Coupled Transceiver Employing a Power-on-Demand Amplifier.","authors":"Tao He, Yabin Zheng, Xu Liang, Jiamin Li, Longyang Lin, Wenfeng Zhao, Yongfu Li, Jian Zhao","doi":"10.34133/cbsystems.0030","DOIUrl":"https://doi.org/10.34133/cbsystems.0030","url":null,"abstract":"<p><p>Wearable body sensor nodes require massive data transmission under limited energy. However, it suffers from drastically varying channel loss, which limits its energy efficiency in practical scenarios. This paper presents a power-driven body-channel transceiver (TRX), whose power consumption can be adaptively tuned against varying channel loss. An out-band programmable gain amplifier (PGA) is proposed to save power and generate a quasi-linear correlation between PGA gain and power. By using the quasi-linear gain-power relationship, we propose an auto gain/power control technique to realize on-demand power consumption. In addition, a differential balanced transmitter is designed to eliminate base-band harmonics in on-off keying modulation and increase the power delivered by the transmitter (TX). The TX and receiver (RX) of the prototype were integrated into 1 chip and fabricated in a 55-nm complementary metal oxide semiconductor process. During the measurement, 2 chips were configured as TX and RX, respectively. Both the TX and the RX were wearable, powered by lithium batteries, and attached to the subject's hands. The prototype achieved a 5.25-Mbps data rate with 16-pJ/bit energy efficiency at a 1.5-m straight-line ground path distance. Furthermore, the proposed TRX maintained stable communication within a 1.5-m distance, while dynamically reducing power consumption.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0030"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10344702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinmeng Li, Weixiao Ding, Shujun Wang, Luyu Yang, Qingqing Yu, Changji Xiao, Guangbo Chen, Lei Zhang, Shanyue Guan, Dongping Sun
The liver is the hub of human metabolism and involves many diseases. To better work on the mechanism and treatment of liver diseases, it is of particular interest to design 3-dimensional scaffolds suitable for culturing hepatocytes in vitro to simulate their metabolic and regenerative abilities. In this study, sulfated bacterial cellulose (SBC) was prepared as the building block of cell scaffolds, motivated by the anionic nature and 3-dimensional structure of hepatic extracellular matrix, and its reaction condition for sulfate esterification was optimized by changing the reaction time. The analysis and study of the microscopic morphology, structure, and cytocompatibility of SBCs showed that they possess good biocompatibility and meet the requirements for tissue engineering. Next, SBC was mixed with gelatin for composite scaffolds (SBC/Gel) for culturing hepatocytes by homogenization and freeze-drying methods, whose physical properties such as pore size, porosity, and compression properties were compared with gelatin (Gel) scaffolds as the control group, and the cytological activity and hemocompatibility of the composite scaffolds were investigated. The results showed that the SBC/Gel composite has better porosity and compression properties, as well as good cytocompatibility and hemocompatibility, and could be applied to 3-dimensional culture of hepatocytes for drug screening or liver tissue engineering.
{"title":"Three-Dimensional Sulfated Bacterial Cellulose/Gelatin Composite Scaffolds for Culturing Hepatocytes.","authors":"Xinmeng Li, Weixiao Ding, Shujun Wang, Luyu Yang, Qingqing Yu, Changji Xiao, Guangbo Chen, Lei Zhang, Shanyue Guan, Dongping Sun","doi":"10.34133/cbsystems.0021","DOIUrl":"https://doi.org/10.34133/cbsystems.0021","url":null,"abstract":"<p><p>The liver is the hub of human metabolism and involves many diseases. To better work on the mechanism and treatment of liver diseases, it is of particular interest to design 3-dimensional scaffolds suitable for culturing hepatocytes in vitro to simulate their metabolic and regenerative abilities. In this study, sulfated bacterial cellulose (SBC) was prepared as the building block of cell scaffolds, motivated by the anionic nature and 3-dimensional structure of hepatic extracellular matrix, and its reaction condition for sulfate esterification was optimized by changing the reaction time. The analysis and study of the microscopic morphology, structure, and cytocompatibility of SBCs showed that they possess good biocompatibility and meet the requirements for tissue engineering. Next, SBC was mixed with gelatin for composite scaffolds (SBC/Gel) for culturing hepatocytes by homogenization and freeze-drying methods, whose physical properties such as pore size, porosity, and compression properties were compared with gelatin (Gel) scaffolds as the control group, and the cytological activity and hemocompatibility of the composite scaffolds were investigated. The results showed that the SBC/Gel composite has better porosity and compression properties, as well as good cytocompatibility and hemocompatibility, and could be applied to 3-dimensional culture of hepatocytes for drug screening or liver tissue engineering.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0021"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sei-Ichi Sakamoto, Yonatan Hutabarat, Dai Owaki, Mitsuhiro Hayashibe
Motion prediction based on kinematic information such as body segment displacement and joint angle has been widely studied. Because motions originate from forces, it is beneficial to estimate dynamic information, such as the ground reaction force (GRF), in addition to kinematic information for advanced motion prediction. In this study, we proposed a method to estimate GRF and ground reaction moment (GRM) from electromyography (EMG) in combination with and without an inertial measurement unit (IMU) sensor using a machine learning technique. A long short-term memory network, which is suitable for processing long time-span data, was constructed with EMG and IMU as input data to estimate GRF during posture control and stepping motion. The results demonstrate that the proposed method can provide the GRF estimation with a root mean square error (RMSE) of 8.22 ± 0.97% (mean ± SE) for the posture control motion and 11.17 ± 2.16% (mean ± SE) for the stepping motion. We could confirm that EMG input is essential especially when we need to predict both GRF and GRM with limited numbers of sensors attached under knees. In addition, we developed a GRF visualization system integrated with ongoing motion in a Unity environment. This system enabled the visualization of the GRF vector in 3-dimensional space and provides predictive motion direction based on the estimated GRF, which can be useful for human motion prediction with portable sensors.
{"title":"Ground Reaction Force and Moment Estimation through EMG Sensing Using Long Short-Term Memory Network during Posture Coordination.","authors":"Sei-Ichi Sakamoto, Yonatan Hutabarat, Dai Owaki, Mitsuhiro Hayashibe","doi":"10.34133/cbsystems.0016","DOIUrl":"https://doi.org/10.34133/cbsystems.0016","url":null,"abstract":"<p><p>Motion prediction based on kinematic information such as body segment displacement and joint angle has been widely studied. Because motions originate from forces, it is beneficial to estimate dynamic information, such as the ground reaction force (GRF), in addition to kinematic information for advanced motion prediction. In this study, we proposed a method to estimate GRF and ground reaction moment (GRM) from electromyography (EMG) in combination with and without an inertial measurement unit (IMU) sensor using a machine learning technique. A long short-term memory network, which is suitable for processing long time-span data, was constructed with EMG and IMU as input data to estimate GRF during posture control and stepping motion. The results demonstrate that the proposed method can provide the GRF estimation with a root mean square error (RMSE) of 8.22 ± 0.97% (mean ± SE) for the posture control motion and 11.17 ± 2.16% (mean ± SE) for the stepping motion. We could confirm that EMG input is essential especially when we need to predict both GRF and GRM with limited numbers of sensors attached under knees. In addition, we developed a GRF visualization system integrated with ongoing motion in a Unity environment. This system enabled the visualization of the GRF vector in 3-dimensional space and provides predictive motion direction based on the estimated GRF, which can be useful for human motion prediction with portable sensors.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0016"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9289117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain-computer interface (BCI) is a typical direction of integration of human intelligence and robot intelligence. Shared control is an essential form of combining human and robot agents in a common task, but still faces a lack of freedom for the human agent. This paper proposes a Centroidal Voronoi Tessellation (CVT)-based road segmentation approach for brain-controlled robot navigation by means of asynchronous BCI. An electromyogram-based asynchronous mechanism is introduced into the BCI system for self-paced control. A novel CVT-based road segmentation method is provided to generate optional navigation goals in the road area for arbitrary goal selection. An event-related potential of the BCI is designed for target selection to communicate with the robot. The robot has an autonomous navigation function to reach the human selected goals. A comparison experiment in the single-step control pattern is executed to verify the effectiveness of the CVT-based asynchronous (CVT-A) BCI system. Eight subjects participated in the experiment, and they were instructed to control the robot to navigate toward a destination with obstacle avoidance tasks. The results show that the CVT-A BCI system can shorten the task duration, decrease the command times, and optimize navigation path, compared with the single-step pattern. Moreover, this shared control mechanism of the CVT-A BCI system contributes to the promotion of human and robot agent integration control in unstructured environments.
{"title":"CVT-Based Asynchronous BCI for Brain-Controlled Robot Navigation.","authors":"Mengfan Li, Ran Wei, Ziqi Zhang, Pengfei Zhang, Guizhi Xu, Wenzhe Liao","doi":"10.34133/cbsystems.0024","DOIUrl":"https://doi.org/10.34133/cbsystems.0024","url":null,"abstract":"<p><p>Brain-computer interface (BCI) is a typical direction of integration of human intelligence and robot intelligence. Shared control is an essential form of combining human and robot agents in a common task, but still faces a lack of freedom for the human agent. This paper proposes a Centroidal Voronoi Tessellation (CVT)-based road segmentation approach for brain-controlled robot navigation by means of asynchronous BCI. An electromyogram-based asynchronous mechanism is introduced into the BCI system for self-paced control. A novel CVT-based road segmentation method is provided to generate optional navigation goals in the road area for arbitrary goal selection. An event-related potential of the BCI is designed for target selection to communicate with the robot. The robot has an autonomous navigation function to reach the human selected goals. A comparison experiment in the single-step control pattern is executed to verify the effectiveness of the CVT-based asynchronous (CVT-A) BCI system. Eight subjects participated in the experiment, and they were instructed to control the robot to navigate toward a destination with obstacle avoidance tasks. The results show that the CVT-A BCI system can shorten the task duration, decrease the command times, and optimize navigation path, compared with the single-step pattern. Moreover, this shared control mechanism of the CVT-A BCI system contributes to the promotion of human and robot agent integration control in unstructured environments.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0024"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bionic bimanual robot teleoperation can transfer the grasping and manipulation skills of human dual hands to the bionic bimanual robots to realize natural and flexible manipulation. The motion capture of dual hands plays an important role in the teleoperation. The motion information of dual hands can be captured through the hand detection, localization, and pose estimation and mapped to the bionic bimanual robots to realize the teleoperation. However, although the motion capture technology has achieved great achievements in recent years, visual dual-hand motion capture is still a great challenge. So, this work proposed a dual-hand detection method and a 3-dimensional (3D) hand pose estimation method based on body and hand biological inspiration to achieve convenient and accurate monocular dual-hand motion capture and bionic bimanual robot teleoperation. First, a dual-hand detection method based on body structure constraints is proposed, which uses a parallel structure to combine hand and body relationship features. Second, a 3D hand pose estimation method with bone-constraint loss from single RGB images is proposed. Then, a bionic bimanual robot teleoperation method is designed by using the proposed hand detection and pose estimation methods. Experiment results on public hand datasets show that the performances of the proposed hand detection and 3D hand pose estimation outperform state-of-the-art methods. Experiment results on a bionic bimanual robot teleoperation platform shows the effectiveness of the proposed teleoperation method.
{"title":"Dual-Hand Motion Capture by Using Biological Inspiration for Bionic Bimanual Robot Teleoperation.","authors":"Qing Gao, Zhiwen Deng, Zhaojie Ju, Tianwei Zhang","doi":"10.34133/cbsystems.0052","DOIUrl":"https://doi.org/10.34133/cbsystems.0052","url":null,"abstract":"<p><p>Bionic bimanual robot teleoperation can transfer the grasping and manipulation skills of human dual hands to the bionic bimanual robots to realize natural and flexible manipulation. The motion capture of dual hands plays an important role in the teleoperation. The motion information of dual hands can be captured through the hand detection, localization, and pose estimation and mapped to the bionic bimanual robots to realize the teleoperation. However, although the motion capture technology has achieved great achievements in recent years, visual dual-hand motion capture is still a great challenge. So, this work proposed a dual-hand detection method and a 3-dimensional (3D) hand pose estimation method based on body and hand biological inspiration to achieve convenient and accurate monocular dual-hand motion capture and bionic bimanual robot teleoperation. First, a dual-hand detection method based on body structure constraints is proposed, which uses a parallel structure to combine hand and body relationship features. Second, a 3D hand pose estimation method with bone-constraint loss from single RGB images is proposed. Then, a bionic bimanual robot teleoperation method is designed by using the proposed hand detection and pose estimation methods. Experiment results on public hand datasets show that the performances of the proposed hand detection and 3D hand pose estimation outperform state-of-the-art methods. Experiment results on a bionic bimanual robot teleoperation platform shows the effectiveness of the proposed teleoperation method.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0052"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10263033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Visual tracking is a crucial skill for bionic robots to perceive the environment and control their movement. However, visual tracking is challenging when the target undergoes nonrigid deformation because of the perspective change from the camera mounted on the robot. In this paper, a real-time and scale-adaptive visual tracking method based on best buddies similarity (BBS) is presented, which is a state-of-the-art template matching method that can handle nonrigid deformation. The proposed method improves the original BBS in 4 aspects: (a) The caching scheme is optimized to reduce the computational overhead, (b) the effect of cluttered backgrounds on BBS is theoretically analyzed and a patch-based texture is introduced to enhance the robustness and accuracy, (c) the batch gradient descent algorithm is used to further speed up the method, and (d) a resample strategy is applied to enable the BBS to track the target in scale space. The proposed method on challenging real-world datasets is evaluated and its promising performance is demonstrated.
{"title":"Practical Tracking Method based on Best Buddies Similarity.","authors":"Haiyu He, Zhen Chen, Haikuo Liu, Xiangdong Liu, Youguang Guo, Jian Li","doi":"10.34133/cbsystems.0050","DOIUrl":"https://doi.org/10.34133/cbsystems.0050","url":null,"abstract":"<p><p>Visual tracking is a crucial skill for bionic robots to perceive the environment and control their movement. However, visual tracking is challenging when the target undergoes nonrigid deformation because of the perspective change from the camera mounted on the robot. In this paper, a real-time and scale-adaptive visual tracking method based on best buddies similarity (BBS) is presented, which is a state-of-the-art template matching method that can handle nonrigid deformation. The proposed method improves the original BBS in 4 aspects: (a) The caching scheme is optimized to reduce the computational overhead, (b) the effect of cluttered backgrounds on BBS is theoretically analyzed and a patch-based texture is introduced to enhance the robustness and accuracy, (c) the batch gradient descent algorithm is used to further speed up the method, and (d) a resample strategy is applied to enable the BBS to track the target in scale space. The proposed method on challenging real-world datasets is evaluated and its promising performance is demonstrated.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0050"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10118285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}