Magnetic beads manipulation in microfluidic chips is a promising research field for biological application, especially in the detection of biological targets. In this review, we intend to present a thorough and in-depth overview of recent magnetic beads manipulation in microfluidic chips and its biological application. First, we introduce the mechanism of magnetic manipulation in microfluidic chip, including force analysis, particle properties, and surface modification. Then, we compare some existing methods of magnetic manipulation in microfluidic chip and list their biological application. Besides, the suggestions and outlook for future developments in the magnetic manipulation system are also discussed and summarized.
{"title":"Magnetic Bead Manipulation in Microfluidic Chips for Biological Application.","authors":"Gaozhe Cai, Zixin Yang, Yu-Cheng Chen, Yaru Huang, Lijuan Liang, Shilun Feng, Jianlong Zhao","doi":"10.34133/cbsystems.0023","DOIUrl":"https://doi.org/10.34133/cbsystems.0023","url":null,"abstract":"<p><p>Magnetic beads manipulation in microfluidic chips is a promising research field for biological application, especially in the detection of biological targets. In this review, we intend to present a thorough and in-depth overview of recent magnetic beads manipulation in microfluidic chips and its biological application. First, we introduce the mechanism of magnetic manipulation in microfluidic chip, including force analysis, particle properties, and surface modification. Then, we compare some existing methods of magnetic manipulation in microfluidic chip and list their biological application. Besides, the suggestions and outlook for future developments in the magnetic manipulation system are also discussed and summarized.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0023"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9954547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Li, Haoyang Yu, Haibo Feng, Songyuan Zhang, Yili Fu
The robot used for disaster rescue or field exploration requires the ability of fast moving on flat road and adaptability on complex terrain. The hybrid wheel-legged robot (WLR-3P, prototype of the third-generation hydraulic wheel-legged robot) has the characteristics of fast and efficient mobility on flat surfaces and high environmental adaptability on rough terrains. In this paper, 3 design requirements are proposed to improve the mobility and environmental adaptability of the robot. To meet these 3 requirements, 2 design principles for each requirement are put forward. First, for light weight and low inertia with high stiffness, 3-dimensional printing technology and lightweight material are adopted. Second, the integrated hydraulically driven unit is used for high power density and fast response actuation. Third, the micro-hydraulic power unit achieves power autonomy, adopting the hoseless design to strengthen the reliability of the hydraulic system. What is more, the control system including hierarchical distributed electrical system and control strategy is presented. The mobility and adaptability of WLR-3P are demonstrated with a series of experiments. Finally, the robot can achieve a speed of 13.6 km/h and a jumping height of 0.2 m.
{"title":"Design and Control for WLR-3P: A Hydraulic Wheel-Legged Robot.","authors":"Xu Li, Haoyang Yu, Haibo Feng, Songyuan Zhang, Yili Fu","doi":"10.34133/cbsystems.0025","DOIUrl":"https://doi.org/10.34133/cbsystems.0025","url":null,"abstract":"<p><p>The robot used for disaster rescue or field exploration requires the ability of fast moving on flat road and adaptability on complex terrain. The hybrid wheel-legged robot (WLR-3P, prototype of the third-generation hydraulic wheel-legged robot) has the characteristics of fast and efficient mobility on flat surfaces and high environmental adaptability on rough terrains. In this paper, 3 design requirements are proposed to improve the mobility and environmental adaptability of the robot. To meet these 3 requirements, 2 design principles for each requirement are put forward. First, for light weight and low inertia with high stiffness, 3-dimensional printing technology and lightweight material are adopted. Second, the integrated hydraulically driven unit is used for high power density and fast response actuation. Third, the micro-hydraulic power unit achieves power autonomy, adopting the hoseless design to strengthen the reliability of the hydraulic system. What is more, the control system including hierarchical distributed electrical system and control strategy is presented. The mobility and adaptability of WLR-3P are demonstrated with a series of experiments. Finally, the robot can achieve a speed of 13.6 km/h and a jumping height of 0.2 m.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0025"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9992402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingcheng Wang, Zhouyi Wang, Yifan Song, Weijia Zong, Linghao Zhang, Keju Ji, Poramate Manoonpong, Zhendong Dai
Climbing behavior is a superior motion skill that animals have evolved to obtain a more beneficial position in complex natural environments. Compared to animals, current bionic climbing robots are less agile, stable, and energy-efficient. Further, they locomote at a low speed and have poor adaptation to the substrate. One of the key elements that can improve their locomotion efficiency is the active and flexible feet or toes observed in climbing animals. Inspired by the active attachment-detachment behavior of geckos, a hybrid pneumatic-electric-driven climbing robot with active attachment-detachment bionic flexible feet (toes) was developed. Although the introduction of bionic flexible toes can effectively improve the robot's adaptability to the environment, it also poses control challenges, specifically, the realization of attachment-detachment behavior by the mechanics of the feet, the realization of hybrid drive control with different response characteristics, and the interlimb collaboration and limb-foot coordination with a hysteresis effect. Through the analysis of geckos' limbs and foot kinematic behavior during climbing, rhythmic attachment-detachment strategies and coordination behavior between toes and limbs at different inclines were identified. To enable the robot to achieve similar foot attachment-detachment behavior for climbing ability enhancement, we propose a modular neural control framework comprising a central pattern generator module, a post-processing central pattern generation module, a hysteresis delay line module, and an actuator signal conditioning module. Among them, the hysteresis adaptation module helps the bionic flexible toes to achieve variable phase relationships with the motorized joint, thus enabling proper limb-to-foot coordination and interlimb collaboration. The experiments demonstrated that the robot with neural control achieved proper coordination, resulting in a foot with a 285% larger adhesion area than that of a conventional algorithm. In addition, in the plane/arc climbing scenario, the robot with coordination behavior increased by as much as 150%, compared to the incoordinated one owing to its higher adhesion reliability.
{"title":"A Neural Coordination Strategy for Attachment and Detachment of a Climbing Robot Inspired by Gecko Locomotion.","authors":"Bingcheng Wang, Zhouyi Wang, Yifan Song, Weijia Zong, Linghao Zhang, Keju Ji, Poramate Manoonpong, Zhendong Dai","doi":"10.34133/cbsystems.0008","DOIUrl":"https://doi.org/10.34133/cbsystems.0008","url":null,"abstract":"<p><p>Climbing behavior is a superior motion skill that animals have evolved to obtain a more beneficial position in complex natural environments. Compared to animals, current bionic climbing robots are less agile, stable, and energy-efficient. Further, they locomote at a low speed and have poor adaptation to the substrate. One of the key elements that can improve their locomotion efficiency is the active and flexible feet or toes observed in climbing animals. Inspired by the active attachment-detachment behavior of geckos, a hybrid pneumatic-electric-driven climbing robot with active attachment-detachment bionic flexible feet (toes) was developed. Although the introduction of bionic flexible toes can effectively improve the robot's adaptability to the environment, it also poses control challenges, specifically, the realization of attachment-detachment behavior by the mechanics of the feet, the realization of hybrid drive control with different response characteristics, and the interlimb collaboration and limb-foot coordination with a hysteresis effect. Through the analysis of geckos' limbs and foot kinematic behavior during climbing, rhythmic attachment-detachment strategies and coordination behavior between toes and limbs at different inclines were identified. To enable the robot to achieve similar foot attachment-detachment behavior for climbing ability enhancement, we propose a modular neural control framework comprising a central pattern generator module, a post-processing central pattern generation module, a hysteresis delay line module, and an actuator signal conditioning module. Among them, the hysteresis adaptation module helps the bionic flexible toes to achieve variable phase relationships with the motorized joint, thus enabling proper limb-to-foot coordination and interlimb collaboration. The experiments demonstrated that the robot with neural control achieved proper coordination, resulting in a foot with a 285% larger adhesion area than that of a conventional algorithm. In addition, in the plane/arc climbing scenario, the robot with coordination behavior increased by as much as 150%, compared to the incoordinated one owing to its higher adhesion reliability.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0008"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9658715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haotian Cha, Yuchen Dai, Helena H W B Hansen, Lingxi Ouyang, Xiangxun Chen, Xiaoyue Kang, Hongjie An, Hang Thu Ta, Nam-Trung Nguyen, Jun Zhang
Inertial microfluidics uses the intrinsic fluid inertia in confined channels to manipulate the particles and cells in a simple, high-throughput, and precise manner. Inertial focusing in a straight channel results in several equilibrium positions within the cross sections. Introducing channel curvature and adjusting the cross-sectional aspect ratio and shape can modify inertial focusing positions and can reduce the number of equilibrium positions. In this work, we introduce an innovative way to adjust the inertial focusing and reduce equilibrium positions by embedding asymmetrical obstacle microstructures. We demonstrated that asymmetrical concave obstacles could break the symmetry of original inertial focusing positions, resulting in unilateral focusing. In addition, we characterized the influence of obstacle size and 3 asymmetrical obstacle patterns on unilateral inertial focusing. Finally, we applied differential unilateral focusing on the separation of 10- and 15-μm particles and isolation of brain cancer cells (U87MG) from white blood cells (WBCs), respectively. The results indicated an excellent cancer cell recovery of 96.4% and WBC rejection ratio of 98.81%. After single processing, the purity of the cancer cells was dramatically enhanced from 1.01% to 90.13%, with an 89.24-fold enrichment. We believe that embedding asymmetric concave micro-obstacles is a new strategy to achieve unilateral inertial focusing and separation in curved channels.
{"title":"Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel.","authors":"Haotian Cha, Yuchen Dai, Helena H W B Hansen, Lingxi Ouyang, Xiangxun Chen, Xiaoyue Kang, Hongjie An, Hang Thu Ta, Nam-Trung Nguyen, Jun Zhang","doi":"10.34133/cbsystems.0036","DOIUrl":"https://doi.org/10.34133/cbsystems.0036","url":null,"abstract":"<p><p>Inertial microfluidics uses the intrinsic fluid inertia in confined channels to manipulate the particles and cells in a simple, high-throughput, and precise manner. Inertial focusing in a straight channel results in several equilibrium positions within the cross sections. Introducing channel curvature and adjusting the cross-sectional aspect ratio and shape can modify inertial focusing positions and can reduce the number of equilibrium positions. In this work, we introduce an innovative way to adjust the inertial focusing and reduce equilibrium positions by embedding asymmetrical obstacle microstructures. We demonstrated that asymmetrical concave obstacles could break the symmetry of original inertial focusing positions, resulting in unilateral focusing. In addition, we characterized the influence of obstacle size and 3 asymmetrical obstacle patterns on unilateral inertial focusing. Finally, we applied differential unilateral focusing on the separation of 10- and 15-μm particles and isolation of brain cancer cells (U87MG) from white blood cells (WBCs), respectively. The results indicated an excellent cancer cell recovery of 96.4% and WBC rejection ratio of 98.81%. After single processing, the purity of the cancer cells was dramatically enhanced from 1.01% to 90.13%, with an 89.24-fold enrichment. We believe that embedding asymmetric concave micro-obstacles is a new strategy to achieve unilateral inertial focusing and separation in curved channels.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0036"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Qian, Bin Hu, Yoshiharu Yamamoto, Björn W Schuller
The sound generated by body carries important information about our health status physically and psychologically. In the past decades, we have witnessed a plethora of successes achieved in the field of body sound analysis. Nevertheless, the fundamentals of this young field are still not well established. In particular, publicly accessible databases are rarely developed, which dramatically restrains a sustainable research. To this end, we are launching and continuously calling for participation from the global scientific community to contribute to the Voice of the Body (VoB) archive. We aim to build an open access platform to collect the well-established body sound databases in a well standardized way. Moreover, we hope to organize a series of challenges to promote the development of audio-driven methods for healthcare via the proposed VoB. We believe that VoB can help break the walls between different subjects toward an era of Medicine 4.0 enriched by audio intelligence.
{"title":"The Voice of the Body: Why AI Should Listen to It and an Archive.","authors":"Kun Qian, Bin Hu, Yoshiharu Yamamoto, Björn W Schuller","doi":"10.34133/cbsystems.0005","DOIUrl":"https://doi.org/10.34133/cbsystems.0005","url":null,"abstract":"<p><p>The sound generated by body carries important information about our health status physically and psychologically. In the past decades, we have witnessed a plethora of successes achieved in the field of body sound analysis. Nevertheless, the fundamentals of this young field are still not well established. In particular, publicly accessible databases are rarely developed, which dramatically restrains a sustainable research. To this end, we are launching and continuously calling for participation from the global scientific community to contribute to the Voice of the Body (VoB) archive. We aim to build an open access platform to collect the well-established body sound databases in a well standardized way. Moreover, we hope to organize a series of challenges to promote the development of audio-driven methods for healthcare via the proposed VoB. We believe that VoB can help break the walls between different subjects toward an era of Medicine 4.0 enriched by audio intelligence.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0005"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9294941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Untethered microrobots can be used for cargo delivery (e.g., drug molecules, stem cells, and genes) targeting designated areas. However, it is not enough to just reach the lesion site, as some drugs can only play the best therapeutic effect within the cells. To this end, folic acid (FA) was introduced into microrobots in this work as a key to mediate endocytosis of drugs into cells. The microrobots here were fabricated with biodegradable gelatin methacryloyl (GelMA) and modified with magnetic metal–organic framework (MOF). The porous structure of MOF and the hydrogel network of polymerized GelMA were used for the loading of enough FA and anticancer drug doxorubicin (DOX) respectively. Utilizing the magnetic property of magnetic MOF, these microrobots can gather around the lesion site with the navigation of magnetic fields. The combination effects of FA targeting and magnetic navigation substantially improve the anticancer efficiency of these microrobots. The result shows that the cancer cells inhibition rate of microrobots with FA can be up to 93%, while that of the ones without FA was only 78%. The introduction of FA is a useful method to improve the drug transportation ability of microrobots, providing a meaningful reference for further research.
{"title":"Magnetic Microrobots with Folate Targeting for Drug Delivery.","authors":"Min Ye, Yan Zhou, Hongyu Zhao, Xiaopu Wang","doi":"10.34133/cbsystems.0019","DOIUrl":"https://doi.org/10.34133/cbsystems.0019","url":null,"abstract":"Untethered microrobots can be used for cargo delivery (e.g., drug molecules, stem cells, and genes) targeting designated areas. However, it is not enough to just reach the lesion site, as some drugs can only play the best therapeutic effect within the cells. To this end, folic acid (FA) was introduced into microrobots in this work as a key to mediate endocytosis of drugs into cells. The microrobots here were fabricated with biodegradable gelatin methacryloyl (GelMA) and modified with magnetic metal–organic framework (MOF). The porous structure of MOF and the hydrogel network of polymerized GelMA were used for the loading of enough FA and anticancer drug doxorubicin (DOX) respectively. Utilizing the magnetic property of magnetic MOF, these microrobots can gather around the lesion site with the navigation of magnetic fields. The combination effects of FA targeting and magnetic navigation substantially improve the anticancer efficiency of these microrobots. The result shows that the cancer cells inhibition rate of microrobots with FA can be up to 93%, while that of the ones without FA was only 78%. The introduction of FA is a useful method to improve the drug transportation ability of microrobots, providing a meaningful reference for further research.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0019"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen Zhao, Jun Kang, Yuwen Li, Yan Wang, Xiaoying Tang, Zhenqi Jiang
Carbon-based nanomaterials, including carbon nanotubes, carbon nanospheres, and carbon nanofibers, are becoming a research hotspot due to their unique structure and good mechanical, thermal, electrical, optical, and chemical properties. With the development of material synthesis technology, they can be functionalized and used in various fields such as energy, environment, and biomedicine. In particular, stimuli-responsive carbon-based nanomaterials have stood out in recent years because of their smart behavior. Researchers have applied carbon-based nanomaterials to different disease treatments based on their stimulus-response properties. In this paper, based on stimuli-responsive carbon-based nanomaterials' morphology, we categorize them into carbon nanotubes, carbon nanospheres, and carbon nanofibers according to their morphology. Then, their applications in probes, bioimaging, tumor therapy, and other fields are discussed. Finally, we address the advantages and disadvantages of carbon-based stimuli-responsive nanomaterials and discuss their future perspective.
{"title":"Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application.","authors":"Chen Zhao, Jun Kang, Yuwen Li, Yan Wang, Xiaoying Tang, Zhenqi Jiang","doi":"10.34133/cbsystems.0022","DOIUrl":"https://doi.org/10.34133/cbsystems.0022","url":null,"abstract":"<p><p>Carbon-based nanomaterials, including carbon nanotubes, carbon nanospheres, and carbon nanofibers, are becoming a research hotspot due to their unique structure and good mechanical, thermal, electrical, optical, and chemical properties. With the development of material synthesis technology, they can be functionalized and used in various fields such as energy, environment, and biomedicine. In particular, stimuli-responsive carbon-based nanomaterials have stood out in recent years because of their <i>smart</i> behavior. Researchers have applied carbon-based nanomaterials to different disease treatments based on their stimulus-response properties. In this paper, based on stimuli-responsive carbon-based nanomaterials' morphology, we categorize them into carbon nanotubes, carbon nanospheres, and carbon nanofibers according to their morphology. Then, their applications in probes, bioimaging, tumor therapy, and other fields are discussed. Finally, we address the advantages and disadvantages of carbon-based stimuli-responsive nanomaterials and discuss their future perspective.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0022"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10301127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The innovation of wearable devices is advancing rapidly. Activity monitors can be used to improve the total hip replacement (THR) patients' recovery process and reduce costs. This systematic review assessed the body-worn accelerometers used in studies to enhance the rehabilitation process and monitor THR patients. Electronic databases such as Cochrane Database of Systematic Reviews library, CINAHL CompleteVR, Science Citation Index, and MedlineVR from January 2000 to January 2022 were searched. Due to inclusion criteria, fourteen eligible studies that utilised commercial wearable technology to monitor physical activity both before and after THR were identified. Their evidence quality was assessed with RoB 2.0 and ROBINS-I. This study demonstrates that wearable device technology might be feasible to predict, monitor, and detect physical activity following THR. They could be used as a motivational tool to increase patients' mobility and enhance the recovery process. Also, wearable activity monitors could provide a better insight into the individual's activity level in contrast to subjective self-reported questionnaires. However, they have some limitations, and further evidence is needed to establish this technology as the primary device in THR rehabilitation.
{"title":"A Systematic Review of the Use of Commercial Wearable Activity Trackers for Monitoring Recovery in Individuals Undergoing Total Hip Replacement Surgery.","authors":"Nasibeh Babaei, Negin Hannani, Nader Jafarnia Dabanloo, Shayan Bahadori","doi":"10.34133/2022/9794641","DOIUrl":"10.34133/2022/9794641","url":null,"abstract":"<p><p>The innovation of wearable devices is advancing rapidly. Activity monitors can be used to improve the total hip replacement (THR) patients' recovery process and reduce costs. This systematic review assessed the body-worn accelerometers used in studies to enhance the rehabilitation process and monitor THR patients. Electronic databases such as Cochrane Database of Systematic Reviews library, CINAHL CompleteVR, Science Citation Index, and MedlineVR from January 2000 to January 2022 were searched. Due to inclusion criteria, fourteen eligible studies that utilised commercial wearable technology to monitor physical activity both before and after THR were identified. Their evidence quality was assessed with RoB 2.0 and ROBINS-I. This study demonstrates that wearable device technology might be feasible to predict, monitor, and detect physical activity following THR. They could be used as a motivational tool to increase patients' mobility and enhance the recovery process. Also, wearable activity monitors could provide a better insight into the individual's activity level in contrast to subjective self-reported questionnaires. However, they have some limitations, and further evidence is needed to establish this technology as the primary device in THR rehabilitation.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"2022 ","pages":"9794641"},"PeriodicalIF":10.5,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10672222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang
Targeted muscle reinnervation (TMR) is a microsurgical repair technique to reconstruct the anatomical structure between the distal nerve and the muscle stump to provide more myoelectric information to the artificially intelligent prosthesis. Postoperative functional electrical stimulation treatment of the patient's denervated muscle or proximal nerve stump as well as nerve growth factor injection is effective in promoting nerve regeneration and muscle function recovery. In this experiment, we successfully established a TMR rat model and divided Sprague-Dawley (SD) adult male rats into TMR group, TMR + FES group, and TMR + NGF group according to TMR and whether they received FES treatment or NGF injection after surgery, and the recovery effect of rat neuromuscular function was assessed by analyzing EMG signals. Through the experiments, we confirmed that growth factor supplementation and low-frequency electrical stimulation can effectively promote the regeneration of the transplanted nerve as well as significantly enhance the motor function of the target muscle and have a positive effect on the regeneration of the transplanted nerve.
{"title":"Efficacy of Biological and Physical Enhancement on Targeted Muscle Reinnervation","authors":"Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang","doi":"10.34133/2022/9759265","DOIUrl":"https://doi.org/10.34133/2022/9759265","url":null,"abstract":"Targeted muscle reinnervation (TMR) is a microsurgical repair technique to reconstruct the anatomical structure between the distal nerve and the muscle stump to provide more myoelectric information to the artificially intelligent prosthesis. Postoperative functional electrical stimulation treatment of the patient's denervated muscle or proximal nerve stump as well as nerve growth factor injection is effective in promoting nerve regeneration and muscle function recovery. In this experiment, we successfully established a TMR rat model and divided Sprague-Dawley (SD) adult male rats into TMR group, TMR + FES group, and TMR + NGF group according to TMR and whether they received FES treatment or NGF injection after surgery, and the recovery effect of rat neuromuscular function was assessed by analyzing EMG signals. Through the experiments, we confirmed that growth factor supplementation and low-frequency electrical stimulation can effectively promote the regeneration of the transplanted nerve as well as significantly enhance the motor function of the target muscle and have a positive effect on the regeneration of the transplanted nerve.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46725755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renting Liu, Chunhui Ren, Miaomiao Fu, Z. Chu, Jiuchuan Guo
Platelet detection and counting play a greatly significant role in medical field, especially in routine blood tests which can be used to judge blood status and diagnose related diseases. Therefore, platelet detection is valuable for diagnosing related blood diseases such as liver-related diseases. Blood analyzers and visual microscope counting were widely used for platelet detection, but the experimental procedure took nearly 20 minutes and can only be performed by a professional doctor. In recent years, technological breakthroughs in artificial intelligence have made it possible to detect red blood cells through deep learning methods. However, due to the inaccessibility of platelet datasets and the small size of platelets, deep learning-based platelet detection studies are almost nonexistent. In this paper, we carried out experiments for platelet detection based on commonly used object detection models, such as Single Shot Multibox Detector (SSD), RetinaNet, Faster_rcnn, and You Only Look Once_v3 (YOLO_v3). Compared with the other three models, YOLO_v3 can detect platelets more effectively. And we proposed three ideas for improvement based on YOLO_v3. Our study demonstrated that YOLO_v3 can be adopted for platelet detection accurately and in real time. We also implemented YOLO_v3 with multiscale fusion, YOLO_v3 with anchor box clustering, and YOLO_v3 with match parameter on our self-created dataset and, respectively, achieved 1.8% higher average precision (AP), 2.38% higher AP, and 2.05% higher AP than YOLO_v3. The comprehensive experiments revealed that YOLO_v3 with the improved ideas performs better in platelet detection than YOLO_v3.
血小板的检测与计数在医学领域,特别是在血液常规检查中具有重要的作用,可用于判断血液状况和诊断相关疾病。因此,血小板检测对肝脏相关疾病等相关血液疾病的诊断具有重要价值。血液分析仪和视觉显微镜计数被广泛用于血小板检测,但实验过程耗时近20分钟,只能由专业医生完成。近年来,人工智能的技术突破使得通过深度学习方法检测红细胞成为可能。然而,由于血小板数据集的不可访问性和血小板体积小,基于深度学习的血小板检测研究几乎不存在。本文基于常用的目标检测模型(Single Shot Multibox Detector, SSD)、RetinaNet、Faster_rcnn、You Only Look Once_v3 (YOLO_v3)进行了血小板检测实验。与其他三种模型相比,YOLO_v3能更有效地检测血小板。并提出了基于YOLO_v3的三个改进思路。我们的研究表明,YOLO_v3可以准确、实时地用于血小板检测。在自建数据集上实现了基于多尺度融合的YOLO_v3、基于锚盒聚类的YOLO_v3和基于匹配参数的YOLO_v3,分别比YOLO_v3提高了1.8%、2.38%和2.05%的平均精度。综合实验表明,采用改进思路的YOLO_v3在血小板检测方面优于YOLO_v3。
{"title":"Platelet Detection Based on Improved YOLO_v3","authors":"Renting Liu, Chunhui Ren, Miaomiao Fu, Z. Chu, Jiuchuan Guo","doi":"10.34133/2022/9780569","DOIUrl":"https://doi.org/10.34133/2022/9780569","url":null,"abstract":"Platelet detection and counting play a greatly significant role in medical field, especially in routine blood tests which can be used to judge blood status and diagnose related diseases. Therefore, platelet detection is valuable for diagnosing related blood diseases such as liver-related diseases. Blood analyzers and visual microscope counting were widely used for platelet detection, but the experimental procedure took nearly 20 minutes and can only be performed by a professional doctor. In recent years, technological breakthroughs in artificial intelligence have made it possible to detect red blood cells through deep learning methods. However, due to the inaccessibility of platelet datasets and the small size of platelets, deep learning-based platelet detection studies are almost nonexistent. In this paper, we carried out experiments for platelet detection based on commonly used object detection models, such as Single Shot Multibox Detector (SSD), RetinaNet, Faster_rcnn, and You Only Look Once_v3 (YOLO_v3). Compared with the other three models, YOLO_v3 can detect platelets more effectively. And we proposed three ideas for improvement based on YOLO_v3. Our study demonstrated that YOLO_v3 can be adopted for platelet detection accurately and in real time. We also implemented YOLO_v3 with multiscale fusion, YOLO_v3 with anchor box clustering, and YOLO_v3 with match parameter on our self-created dataset and, respectively, achieved 1.8% higher average precision (AP), 2.38% higher AP, and 2.05% higher AP than YOLO_v3. The comprehensive experiments revealed that YOLO_v3 with the improved ideas performs better in platelet detection than YOLO_v3.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45464144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}