首页 > 最新文献

Cyborg and bionic systems (Washington, D.C.)最新文献

英文 中文
Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review 用于运动意图识别的无创人-假体接口:综述
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-06-04 DOI: 10.34133/2021/9863761
Dongfang Xu, Qining Wang
The lower-limb robotic prostheses can provide assistance for amputees' daily activities by restoring the biomechanical functions of missing limb(s). To set proper control strategies and develop the corresponding controller for robotic prosthesis, a prosthesis user's intent must be acquired in time, which is still a major challenge and has attracted intensive attentions. This work focuses on the robotic prosthesis user's locomotion intent recognition based on the noninvasive sensing methods from the recognition task perspective (locomotion mode recognition, gait event detection, and continuous gait phase estimation) and reviews the state-of-the-art intent recognition techniques in a lower-limb prosthesis scope. The current research status, including recognition approach, progress, challenges, and future prospects in the human's intent recognition, has been reviewed. In particular for the recognition approach, the paper analyzes the recent studies and discusses the role of each element in locomotion intent recognition. This work summarizes the existing research results and problems and contributes a general framework for the intent recognition based on lower-limb prosthesis.
下肢机器人假肢可以通过恢复失去肢体的生物力学功能,为截肢者的日常活动提供帮助。为了制定合适的假肢机器人控制策略和开发相应的控制器,必须及时获取假肢使用者的意图,这仍然是一个重大挑战,并引起了人们的广泛关注。本文从识别任务的角度(运动模式识别、步态事件检测和连续步态相位估计)对基于无创传感方法的机器人义肢使用者的运动意图识别进行了研究,并对目前下肢义肢范围内的最新意图识别技术进行了综述。综述了人类意图识别的研究现状,包括识别方法、进展、挑战和未来展望。特别是在识别方法方面,本文分析了近年来的研究成果,讨论了各要素在动作意图识别中的作用。本文总结了现有的研究成果和存在的问题,提出了基于下肢假肢的意图识别的总体框架。
{"title":"Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review","authors":"Dongfang Xu, Qining Wang","doi":"10.34133/2021/9863761","DOIUrl":"https://doi.org/10.34133/2021/9863761","url":null,"abstract":"The lower-limb robotic prostheses can provide assistance for amputees' daily activities by restoring the biomechanical functions of missing limb(s). To set proper control strategies and develop the corresponding controller for robotic prosthesis, a prosthesis user's intent must be acquired in time, which is still a major challenge and has attracted intensive attentions. This work focuses on the robotic prosthesis user's locomotion intent recognition based on the noninvasive sensing methods from the recognition task perspective (locomotion mode recognition, gait event detection, and continuous gait phase estimation) and reviews the state-of-the-art intent recognition techniques in a lower-limb prosthesis scope. The current research status, including recognition approach, progress, challenges, and future prospects in the human's intent recognition, has been reviewed. In particular for the recognition approach, the paper analyzes the recent studies and discusses the role of each element in locomotion intent recognition. This work summarizes the existing research results and problems and contributes a general framework for the intent recognition based on lower-limb prosthesis.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44478880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Origami Folding by Multifingered Hands with Motion Primitives 多指手与运动原语的折纸折叠
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-05-30 DOI: 10.34133/2021/9851834
A. Namiki, Shuichi Yokosawa
Origami, a traditional Japanese art, is an example of superior handwork produced by human hands. Achieving such extreme dexterity is one of the goals of robotic technology. In the work described in this paper, we developed a new general-purpose robot system with sufficient capabilities for performing Origami. We decomposed the complex folding motions into simple primitives and generated the overall motion as a combination of these primitives. Also, to measure the paper deformation in real-time, we built an estimator using a physical simulator and a depth camera. As a result, our experimental system achieved consecutive valley folds and a squash fold.
折纸是日本的一种传统艺术,是由人手制作的高级手工作品的一个例子。实现这种极端的灵活性是机器人技术的目标之一。在本文描述的工作中,我们开发了一种新的通用机器人系统,该系统具有足够的折纸能力。我们将复杂的折叠运动分解为简单的基元,并将整体运动生成为这些基元的组合。此外,为了实时测量纸张变形,我们使用物理模拟器和深度相机构建了一个估计器。结果,我们的实验系统实现了连续的山谷褶皱和南瓜褶皱。
{"title":"Origami Folding by Multifingered Hands with Motion Primitives","authors":"A. Namiki, Shuichi Yokosawa","doi":"10.34133/2021/9851834","DOIUrl":"https://doi.org/10.34133/2021/9851834","url":null,"abstract":"Origami, a traditional Japanese art, is an example of superior handwork produced by human hands. Achieving such extreme dexterity is one of the goals of robotic technology. In the work described in this paper, we developed a new general-purpose robot system with sufficient capabilities for performing Origami. We decomposed the complex folding motions into simple primitives and generated the overall motion as a combination of these primitives. Also, to measure the paper deformation in real-time, we built an estimator using a physical simulator and a depth camera. As a result, our experimental system achieved consecutive valley folds and a squash fold.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45018139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Functional Electrical Stimulation of Peroneal Muscles on Balance in Healthy Females 功能性电刺激对健康女性腓肌平衡的影响
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-05-13 DOI: 10.34133/2021/9801097
Zoe A Bamber, Wei Sun, R. S. Menon, P. Wheeler, I. Swain, D. Fong
Balance improvement could contribute to ankle stability for the prevention of ankle sprains. Functional electrical stimulation (FES) is an effective way of augmenting muscle activity and improving balance. This study investigated the effect of FES of peroneal muscles on single-and double-leg balance. Fifteen healthy females (age = 23.1 ± 1.6 years, height = 1.63 ± 0.07 m, and weight = 63.7 ± 9.9 kg) performed single- and double-leg standing balance tests with eyes open and closed before and after 15-minute FES intervention during treadmill running at a comfortable, self-selected pace. FES of peroneal muscles was provided bilaterally, using an Odstock Dropped Foot Stimulator. The total excursion of the centre of pressure (COP) was calculated to assess the standing balance control ability. The total excursion of COP in single- and double-leg stance with eyes open reduced significantly after FES intervention by 14.7% (p < 0.001) and 5.9% (p = 0.031), respectively. The eyes-closed condition exhibited a 12.7% (p = 0.002) reduction in single-leg stance but did not significantly change in double-leg stance (p > 0.05). Limb preference did not account for balance postintervention. No significant difference in total excursion of COP was found between preferred and less preferred limbs with both visual conditions (p > 0.05). FES of peroneal muscles improved standing balance control with eyes open in double-leg and single-leg stance and with eyes closed in double-leg stance. The improvements in balance control with FES treatment did not vary concerning limb preference.
平衡改善有助于踝关节稳定,预防踝关节扭伤。功能性电刺激(FES)是增强肌肉活动和改善平衡的有效方法。本研究探讨腓骨肌FES对单腿和双腿平衡的影响。15名健康女性(年龄= 23.1±1.6岁,身高= 1.63±0.07 m,体重= 63.7±9.9 kg)在FES干预前后分别睁眼和闭眼进行单腿和双腿站立平衡测试,以舒适的自主配速在跑步机上跑步15分钟。使用Odstock下垂足刺激器对两侧腓骨肌肉进行FES。计算压力中心的总偏移量(COP)来评估站立平衡控制能力。FES干预后,单腿站立和双腿站立睁眼时COP总偏移量分别显著降低14.7% (p < 0.001)和5.9% (p = 0.031)。闭眼状态在单腿站立时表现出12.7% (p = 0.002)的降低,而在双腿站立时没有显著变化(p = 0.05)。肢体偏好不能解释干预后的平衡。在两种视觉条件下,首选肢和非首选肢的COP总偏移量无显著差异(p < 0.05)。腓骨肌FES改善了双腿和单腿站立时睁眼和双腿站立时闭眼的站立平衡控制。FES治疗对平衡控制的改善在肢体偏好方面没有变化。
{"title":"Functional Electrical Stimulation of Peroneal Muscles on Balance in Healthy Females","authors":"Zoe A Bamber, Wei Sun, R. S. Menon, P. Wheeler, I. Swain, D. Fong","doi":"10.34133/2021/9801097","DOIUrl":"https://doi.org/10.34133/2021/9801097","url":null,"abstract":"Balance improvement could contribute to ankle stability for the prevention of ankle sprains. Functional electrical stimulation (FES) is an effective way of augmenting muscle activity and improving balance. This study investigated the effect of FES of peroneal muscles on single-and double-leg balance. Fifteen healthy females (age = 23.1 ± 1.6 years, height = 1.63 ± 0.07 m, and weight = 63.7 ± 9.9 kg) performed single- and double-leg standing balance tests with eyes open and closed before and after 15-minute FES intervention during treadmill running at a comfortable, self-selected pace. FES of peroneal muscles was provided bilaterally, using an Odstock Dropped Foot Stimulator. The total excursion of the centre of pressure (COP) was calculated to assess the standing balance control ability. The total excursion of COP in single- and double-leg stance with eyes open reduced significantly after FES intervention by 14.7% (p < 0.001) and 5.9% (p = 0.031), respectively. The eyes-closed condition exhibited a 12.7% (p = 0.002) reduction in single-leg stance but did not significantly change in double-leg stance (p > 0.05). Limb preference did not account for balance postintervention. No significant difference in total excursion of COP was found between preferred and less preferred limbs with both visual conditions (p > 0.05). FES of peroneal muscles improved standing balance control with eyes open in double-leg and single-leg stance and with eyes closed in double-leg stance. The improvements in balance control with FES treatment did not vary concerning limb preference.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"103 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69807558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Classifying Motion Intention of Step Length and Synchronous Walking Speed by Functional Near-Infrared Spectroscopy 用功能近红外光谱法对步长和同步步行速度的运动意图进行分类
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-04-22 DOI: 10.34133/2021/9821787
Yufei Zhu, Chunguang Li, Hedian Jin, Lining Sun
In some patients who have suffered an amputation or spinal cord injury, walking ability may be degraded or deteriorated. Helping these patients walk independently on their own initiative is of great significance. This paper proposes a method to identify subjects' motion intention under different levels of step length and synchronous walking speed by using functional near-infrared spectroscopy technology. Thirty-one healthy subjects were recruited to walk under six given sets of gait parameters (small step with low/midspeed, midstep with low/mid/high speed, and large step with midspeed). The channels were subdivided into more regions. More frequency bands (6 subbands on average in the range of 0-0.18 Hz) were decomposed by applying the wavelet packet method. Further, a genetic algorithm and a library for support vector machine algorithm were applied for selecting typical feature vectors, which were represented by important regions with partial important channels mentioned above. The walking speed recognition rate was 71.21% in different step length states, and the step length recognition rate was 71.21% in different walking speed states. This study explores the method of identifying motion intention in two-dimensional multivariate states. It lays the foundation for controlling walking-assistance equipment adaptively based on cerebral hemoglobin information.
在一些截肢或脊髓损伤的患者中,行走能力可能会下降或恶化。帮助这些患者自主行走具有重要意义。本文提出了一种利用功能近红外光谱技术识别受试者在不同步长和同步步行速度水平下的运动意图的方法。31名健康受试者被招募在六组给定的步态参数下行走(小步低速/中速、中步低速/中速和大步中速)。通道被细分为更多的区域。更多频带(0-0.18范围内平均有6个子频带 Hz)进行小波包分解。此外,应用遗传算法和支持向量机算法库来选择典型的特征向量,这些特征向量由上述具有部分重要通道的重要区域表示。在不同步长状态下,步行速度识别率为71.21%,在不同步行速度状态下,步长识别率为7.121%。本研究探讨了在二维多元状态下识别运动意图的方法。为基于脑血红蛋白信息的步行辅助设备自适应控制奠定了基础。
{"title":"Classifying Motion Intention of Step Length and Synchronous Walking Speed by Functional Near-Infrared Spectroscopy","authors":"Yufei Zhu, Chunguang Li, Hedian Jin, Lining Sun","doi":"10.34133/2021/9821787","DOIUrl":"https://doi.org/10.34133/2021/9821787","url":null,"abstract":"In some patients who have suffered an amputation or spinal cord injury, walking ability may be degraded or deteriorated. Helping these patients walk independently on their own initiative is of great significance. This paper proposes a method to identify subjects' motion intention under different levels of step length and synchronous walking speed by using functional near-infrared spectroscopy technology. Thirty-one healthy subjects were recruited to walk under six given sets of gait parameters (small step with low/midspeed, midstep with low/mid/high speed, and large step with midspeed). The channels were subdivided into more regions. More frequency bands (6 subbands on average in the range of 0-0.18 Hz) were decomposed by applying the wavelet packet method. Further, a genetic algorithm and a library for support vector machine algorithm were applied for selecting typical feature vectors, which were represented by important regions with partial important channels mentioned above. The walking speed recognition rate was 71.21% in different step length states, and the step length recognition rate was 71.21% in different walking speed states. This study explores the method of identifying motion intention in two-dimensional multivariate states. It lays the foundation for controlling walking-assistance equipment adaptively based on cerebral hemoglobin information.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43637719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Shape Estimation of Soft Manipulator Using Stretchable Sensor 基于可伸缩传感器的软机械手形状估计
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-04-21 DOI: 10.34133/2021/9843894
JinHo So, Uikyum Kim, Y. Kim, D. Seok, S. Yang, Kihyeon Kim, Jae Hyeong Park, Seong Tak Hwang, Young Jin Gong, H. Choi
The soft robot manipulator is attracting attention in the surgical fields with its intrinsic softness, lightness in its weight, and safety toward the human organ. However, it cannot be used widely because of its difficulty of control. To control a soft robot manipulator accurately, shape sensing is essential. This paper presents a method of estimating the shape of a soft robot manipulator by using a skin-type stretchable sensor composed of a multiwalled carbon nanotube (MWCNT) and silicone (p7670). The sensor can be easily fabricated and applied by simply attaching it to the surface of the soft manipulator. In its fabrication, MWCNT is sprayed on a teflon sheet, and liquid-state silicone is poured on it. After curing, we turn it over and cover it with another silicone layer. The sensor is fabricated with a sandwich structure to decrease the hysteresis of the sensor. After calibration and determining the relationship between the resistance of the sensor and the strain, three sensors are attached at 120° intervals. Using the obtained data, the curvature of the manipulator is calculated, and the entire shape is reconstructed. To validate its accuracy, the estimated shape is compared with the camera data. We experiment with three, six, and nine sensors attached, and the result of the error of shape estimation is compared. As a result, the minimum tip position error is approximately 8.9 mm, which corresponded to 4.45% of the total length of the manipulator when using nine sensors.
柔性机械臂以其固有的柔软性、重量轻、对人体器官的安全性等优点,正在引起外科领域的广泛关注。但由于控制难度大,不能广泛应用。要对柔性机器人机械手进行精确控制,形状传感是必不可少的。本文提出了一种利用多壁碳纳米管(MWCNT)和有机硅(p7670)组成的皮肤型可拉伸传感器来估计柔性机器人机械臂形状的方法。该传感器可以很容易地制造和应用,只需将其连接到软机械臂的表面。在制造过程中,MWCNT被喷涂在聚四氟乙烯薄片上,并在上面浇上液态硅树脂。固化后,我们把它翻过来,再盖上一层硅树脂。该传感器采用夹层结构,减小了传感器的磁滞。在校准并确定传感器电阻与应变之间的关系后,以120°的间隔连接三个传感器。利用得到的数据,计算机械手的曲率,重构机械手的整体形状。为了验证其准确性,将估计的形状与相机数据进行了比较。我们分别用3个、6个和9个传感器进行了实验,比较了形状估计误差的结果。结果表明,当使用9个传感器时,最小尖端位置误差约为8.9 mm,相当于机械手总长度的4.45%。
{"title":"Shape Estimation of Soft Manipulator Using Stretchable Sensor","authors":"JinHo So, Uikyum Kim, Y. Kim, D. Seok, S. Yang, Kihyeon Kim, Jae Hyeong Park, Seong Tak Hwang, Young Jin Gong, H. Choi","doi":"10.34133/2021/9843894","DOIUrl":"https://doi.org/10.34133/2021/9843894","url":null,"abstract":"The soft robot manipulator is attracting attention in the surgical fields with its intrinsic softness, lightness in its weight, and safety toward the human organ. However, it cannot be used widely because of its difficulty of control. To control a soft robot manipulator accurately, shape sensing is essential. This paper presents a method of estimating the shape of a soft robot manipulator by using a skin-type stretchable sensor composed of a multiwalled carbon nanotube (MWCNT) and silicone (p7670). The sensor can be easily fabricated and applied by simply attaching it to the surface of the soft manipulator. In its fabrication, MWCNT is sprayed on a teflon sheet, and liquid-state silicone is poured on it. After curing, we turn it over and cover it with another silicone layer. The sensor is fabricated with a sandwich structure to decrease the hysteresis of the sensor. After calibration and determining the relationship between the resistance of the sensor and the strain, three sensors are attached at 120° intervals. Using the obtained data, the curvature of the manipulator is calculated, and the entire shape is reconstructed. To validate its accuracy, the estimated shape is compared with the camera data. We experiment with three, six, and nine sensors attached, and the result of the error of shape estimation is compared. As a result, the minimum tip position error is approximately 8.9 mm, which corresponded to 4.45% of the total length of the manipulator when using nine sensors.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44758035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Pulsed Microfluid Force-Based On-Chip Modular Fabrication for Liver Lobule-Like 3D Cellular Models 基于脉冲微流体力的芯片模块化制备肝小叶样三维细胞模型
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-04-08 DOI: 10.34133/2021/9871396
Juan Cui, Huaping Wang, Qing Shi, Tao Sun
In vitro three-dimensional (3D) cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery. However, it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver. This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule. The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels. Through fluid force interaction by pulsed microflow, the hierarchical assembly units are driven to a stack, layer by layer, and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip. The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro. These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.
体外三维(3D)细胞模型具有天然组织样结构和功能,在再生医学和药物发现中具有替代人体组织的潜力。然而,由于肝脏的血管嵌入三维结构和复杂的细胞分布,目前的组织工程方法很难复制模拟体内微环境的肝脏结构。本文报道了一种基于脉冲微流的片上三维组装方法,构建三维肝小叶样模型,复制肝小叶的空间结构和功能。通过对不同负载细胞的水凝胶进行多步光刻,制备了具有分层细胞分布的异质负载细胞装配单元。通过脉冲微流的流体力相互作用,驱动层次化组装单元逐层堆叠,在组装芯片的封闭液腔内空间组装成三维元胞模型。三维模型呈肝小叶样六边形形态,细胞呈放射状分布,使动态灌注培养在体外长期培养中保持较高的细胞活力和功能表达。这些结果表明,制备的三维肝小叶样模型在药物测试和个体诊断和治疗研究中具有前景。
{"title":"Pulsed Microfluid Force-Based On-Chip Modular Fabrication for Liver Lobule-Like 3D Cellular Models","authors":"Juan Cui, Huaping Wang, Qing Shi, Tao Sun","doi":"10.34133/2021/9871396","DOIUrl":"https://doi.org/10.34133/2021/9871396","url":null,"abstract":"In vitro three-dimensional (3D) cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery. However, it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver. This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule. The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels. Through fluid force interaction by pulsed microflow, the hierarchical assembly units are driven to a stack, layer by layer, and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip. The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro. These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43156873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production 用于日常无维护肌肉组织生产的电刺激培养系统
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-04-08 DOI: 10.34133/2021/9820505
Y. Akiyama, Akemi Nakayama, S. Nakano, Ryuichiro Amiya, Jun Hirose
Low-labor production of tissue-engineered muscles (TEMs) is one of the key technologies to realize the practical use of muscle-actuated devices. This study developed and then demonstrated the daily maintenance-free culture system equipped with both electrical stimulation and medium replacement functions. To avoid ethical issues, immortal myoblast cells C2C12 were used. The system consisting of gel culture molds, a medium replacement unit, and an electrical stimulation unit could produce 12 TEMs at one time. The contractile forces of the TEMs were measured with a newly developed microforce measurement system. Even the TEMs cultured without electrical stimulation generated forces of almost 2 mN and were shortened by 10% in tetanic contractions. Regarding the contractile forces, electrical stimulation by a single pulse at 1 Hz was most effective, and the contractile forces in tetanus were over 2.5 mN. On the other hand, continuous pulses decreased the contractile forces of TEMs. HE-stained cross-sections showed that myoblast cells proliferated and fused into myotubes mainly in the peripheral regions, and fewer cells existed in the internal region. This must be due to insufficient supplies of oxygen and nutrients inside the TEMs. By increasing the supplies, one TEM might be able to generate a force up to around 10 mN. The tetanic forces of the TEMs produced by the system were strong enough to actuate microstructures like previously reported crawling robots. This daily maintenance-free culture system which could stably produce TEMs strong enough to be utilized for microrobots should contribute to the advancement of biohybrid devices.
组织工程肌肉的低劳动生产率是实现肌肉驱动装置实用化的关键技术之一。本研究开发并演示了具有电刺激和培养基更换功能的日常免维护培养系统。为了避免伦理问题,使用了永生成肌细胞C2C12。由凝胶培养模具、培养基更换单元和电刺激单元组成的系统可以一次产生12个TEM。TEM的收缩力是用新开发的微力测量系统测量的。即使在没有电刺激的情况下培养的TEMs也会产生几乎2 mN,在强直性收缩时缩短10%。关于收缩力,在1 Hz是最有效的,破伤风的收缩力超过2.5 mN。另一方面,连续脉冲降低了TEM的收缩力。HE染色截面显示,成肌细胞主要在外周区域增殖并融合成肌管,而在内部区域存在较少的细胞。这一定是由于TEM内氧气和营养物质供应不足。通过增加供应,一个TEM可能能够产生高达10左右的力 mN。由该系统产生的TEM的强直力足够强,可以像以前报道的爬行机器人一样驱动微观结构。这种日常免维护的培养系统可以稳定地产生足以用于微型机器人的TEM,这将有助于生物混合装置的发展。
{"title":"An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production","authors":"Y. Akiyama, Akemi Nakayama, S. Nakano, Ryuichiro Amiya, Jun Hirose","doi":"10.34133/2021/9820505","DOIUrl":"https://doi.org/10.34133/2021/9820505","url":null,"abstract":"Low-labor production of tissue-engineered muscles (TEMs) is one of the key technologies to realize the practical use of muscle-actuated devices. This study developed and then demonstrated the daily maintenance-free culture system equipped with both electrical stimulation and medium replacement functions. To avoid ethical issues, immortal myoblast cells C2C12 were used. The system consisting of gel culture molds, a medium replacement unit, and an electrical stimulation unit could produce 12 TEMs at one time. The contractile forces of the TEMs were measured with a newly developed microforce measurement system. Even the TEMs cultured without electrical stimulation generated forces of almost 2 mN and were shortened by 10% in tetanic contractions. Regarding the contractile forces, electrical stimulation by a single pulse at 1 Hz was most effective, and the contractile forces in tetanus were over 2.5 mN. On the other hand, continuous pulses decreased the contractile forces of TEMs. HE-stained cross-sections showed that myoblast cells proliferated and fused into myotubes mainly in the peripheral regions, and fewer cells existed in the internal region. This must be due to insufficient supplies of oxygen and nutrients inside the TEMs. By increasing the supplies, one TEM might be able to generate a force up to around 10 mN. The tetanic forces of the TEMs produced by the system were strong enough to actuate microstructures like previously reported crawling robots. This daily maintenance-free culture system which could stably produce TEMs strong enough to be utilized for microrobots should contribute to the advancement of biohybrid devices.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48726631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration 胶原微纤维生物打印血管化成熟脂肪组织用于软组织再生
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-03-13 DOI: 10.34133/2021/1412542
F. Louis, Marie Piantino, Hao Liu, D. Kang, Y. Sowa, S. Kitano, M. Matsusaki
The development of soft tissue regeneration has recently gained importance due to safety concerns about artificial breast implants. Current autologous fat graft implantations can result in up to 90% of volume loss in long-term outcomes due to their limited revascularization. Adipose tissue has a highly vascularized structure which enables its proper homeostasis as well as its endocrine function. Mature adipocytes surrounded by a dense vascular network are the specific features required for efficient regeneration of the adipose tissue to perform host anastomosis after its implantation. Recently, bioprinting has been introduced as a promising solution to recreate in vitro this architecture in large-scale tissues. However, the in vitro induction of both the angiogenesis and adipogenesis differentiations from stem cells yields limited maturation states for these two pathways. To overcome these issues, we report a novel method for obtaining a fully vascularized adipose tissue reconstruction using supporting bath bioprinting. For the first time, directly isolated mature adipocytes encapsulated in a bioink containing physiological collagen microfibers (CMF) were bioprinted in a gellan gum supporting bath. These multilayered bioprinted tissues retained high viability even after 7 days of culture. Moreover, the functionality was also confirmed by the maintenance of fatty acid uptake from mature adipocytes. Therefore, this method of constructing fully functional adipose tissue regeneration holds promise for future clinical applications.
由于人工乳房植入物的安全性问题,软组织再生的发展最近变得越来越重要。目前自体脂肪移植由于其有限的血运重建,在长期结果中可导致高达90%的体积损失。脂肪组织具有高度血管化的结构,使其具有适当的体内平衡和内分泌功能。成熟的脂肪细胞被致密的血管网络包围是脂肪组织植入后有效再生并进行宿主吻合所需的特定特征。最近,生物打印作为一种很有前途的解决方案被引入体外,在大规模组织中重建这种结构。然而,干细胞在体外诱导血管生成和脂肪生成分化时,这两种途径的成熟状态有限。为了克服这些问题,我们报告了一种使用支持浴生物打印获得完全血管化脂肪组织重建的新方法。首次将直接分离的成熟脂肪细胞包裹在含有生理性胶原微纤维(CMF)的生物墨水中,在结冷胶支撑浴中进行生物打印。这些多层生物打印组织在培养7天后仍保持较高的活力。此外,这种功能也被成熟脂肪细胞对脂肪酸摄取的维持所证实。因此,这种构建全功能脂肪组织再生的方法有望在未来的临床应用中得到应用。
{"title":"Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration","authors":"F. Louis, Marie Piantino, Hao Liu, D. Kang, Y. Sowa, S. Kitano, M. Matsusaki","doi":"10.34133/2021/1412542","DOIUrl":"https://doi.org/10.34133/2021/1412542","url":null,"abstract":"The development of soft tissue regeneration has recently gained importance due to safety concerns about artificial breast implants. Current autologous fat graft implantations can result in up to 90% of volume loss in long-term outcomes due to their limited revascularization. Adipose tissue has a highly vascularized structure which enables its proper homeostasis as well as its endocrine function. Mature adipocytes surrounded by a dense vascular network are the specific features required for efficient regeneration of the adipose tissue to perform host anastomosis after its implantation. Recently, bioprinting has been introduced as a promising solution to recreate in vitro this architecture in large-scale tissues. However, the in vitro induction of both the angiogenesis and adipogenesis differentiations from stem cells yields limited maturation states for these two pathways. To overcome these issues, we report a novel method for obtaining a fully vascularized adipose tissue reconstruction using supporting bath bioprinting. For the first time, directly isolated mature adipocytes encapsulated in a bioink containing physiological collagen microfibers (CMF) were bioprinted in a gellan gum supporting bath. These multilayered bioprinted tissues retained high viability even after 7 days of culture. Moreover, the functionality was also confirmed by the maintenance of fatty acid uptake from mature adipocytes. Therefore, this method of constructing fully functional adipose tissue regeneration holds promise for future clinical applications.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45393840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Cell-Based Biohybrid Sensor Device for Chemical Source Direction Estimation 用于化学源方向估计的基于细胞的生物混合传感器装置
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-01-23 DOI: 10.34133/2021/8907148
H. Oda, K. Kihara, Y. Morimoto, S. Takeuchi
This paper describes a method to estimate the direction from which the signal molecule reaches the sensor by using living cells. In this context, biohybrid sensors that utilize a sophisticated sensing system of cells can potentially offer high levels of chemical-detection sensitivity and selectivity. However, biohybrid-sensor-based chemical-source-direction estimation has not received research attention because the cellular response to chemicals has not been examined in the context of directional information. In our approach, we fabricated a device that can limit the interface between the cell-laden hydrogel and the chemical solution of interest to enhance the time difference over which the chemical solution reaches the cells. Chemical detection by cells that express specific receptors is reflected as the fluorescence of the calcium indicator within the cells. Our device has eight chambers that each house 3D cell-laden collagen hydrogels facing circularly outward. The device also works as a cover to prevent chemicals from permeating the hydrogel from above. In our study, by observing the time course of the fluorescence emission of each chamber, we were able to successfully estimate the chemical-source direction within an error range of 7–13°. Our results suggest that a combination of microstructure devices embedded with living cells can be used to exploit cell functionalities to yield chemical-source directional information.
本文描述了一种利用活细胞来估计信号分子到达传感器的方向的方法。在这种情况下,利用复杂的细胞传感系统的生物混合传感器可以潜在地提供高水平的化学检测灵敏度和选择性。然而,基于生物混合传感器的化学源方向估计尚未受到研究关注,因为细胞对化学物质的反应尚未在方向信息的背景下进行研究。在我们的方法中,我们制造了一种设备,可以限制负载细胞的水凝胶和感兴趣的化学溶液之间的界面,以增强化学溶液到达细胞的时间差。表达特定受体的细胞的化学检测被反映为细胞内钙指示剂的荧光。我们的设备有八个腔室,每个腔室容纳环形向外的3D细胞胶原水凝胶。该装置还可以作为盖子,防止化学物质从上面渗透到水凝胶中。在我们的研究中,通过观察每个腔室的荧光发射的时间过程,我们能够在7-13°的误差范围内成功地估计化学源方向。我们的研究结果表明,嵌入活细胞的微结构器件的组合可以用于利用细胞功能来产生化学源方向信息。
{"title":"Cell-Based Biohybrid Sensor Device for Chemical Source Direction Estimation","authors":"H. Oda, K. Kihara, Y. Morimoto, S. Takeuchi","doi":"10.34133/2021/8907148","DOIUrl":"https://doi.org/10.34133/2021/8907148","url":null,"abstract":"This paper describes a method to estimate the direction from which the signal molecule reaches the sensor by using living cells. In this context, biohybrid sensors that utilize a sophisticated sensing system of cells can potentially offer high levels of chemical-detection sensitivity and selectivity. However, biohybrid-sensor-based chemical-source-direction estimation has not received research attention because the cellular response to chemicals has not been examined in the context of directional information. In our approach, we fabricated a device that can limit the interface between the cell-laden hydrogel and the chemical solution of interest to enhance the time difference over which the chemical solution reaches the cells. Chemical detection by cells that express specific receptors is reflected as the fluorescence of the calcium indicator within the cells. Our device has eight chambers that each house 3D cell-laden collagen hydrogels facing circularly outward. The device also works as a cover to prevent chemicals from permeating the hydrogel from above. In our study, by observing the time course of the fluorescence emission of each chamber, we were able to successfully estimate the chemical-source direction within an error range of 7–13°. Our results suggest that a combination of microstructure devices embedded with living cells can be used to exploit cell functionalities to yield chemical-source directional information.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46787125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Design of Electrohydrodynamic Devices with Consideration of Electrostatic Energy 考虑静电能的电流体动力装置设计
Q1 ENGINEERING, BIOMEDICAL Pub Date : 2021-01-09 DOI: 10.34133/2021/5158282
Tasuku Sato, S. Sakuma, M. Hijikuro, S. Maeda, M. Anyoji, Y. Yamanishi
The importance of actuators that can be integrated with flexible robot structures and mechanisms has increased in recent years with the advance of soft robotics. In particular, electrohydrodynamic (EHD) actuators, which have expandable integrability to adapt to the flexible motion of soft robots, have received much attention in the field of soft robotics. Studies have deepened the understanding of steady states of EHD phenomena but nonsteady states are not well understood. We herein observe the development process of fluid in a microchannel adopting a Schlieren technique with the aid of a high-speed camera. In addition, we analyze the behavior of fluid flow in a microchannel that is designed to have pairs of parallel plate electrodes adopting a computational fluid dynamics technique. Results indicate the importance of considering flow generated by electrostatic energy, which tends to be ignored in constructing and evaluating EHD devices, and by the body force generated by the ion-drag force. By considering these effects, we estimate the development process of EHD flow and confirm the importance of considering the generation of vortices and their interactions inside the microchannel during the development of EHD devices.
近年来,随着软机器人技术的发展,能够与柔性机器人结构和机构集成的致动器变得越来越重要。特别是电液动力(EHD)作动器,由于其具有可扩展的可积性以适应软机器人的柔性运动,在软机器人领域受到了广泛的关注。研究加深了对EHD稳态现象的认识,但对非稳态现象的认识还不充分。本文借助高速摄像机,采用纹影技术观察了微通道中流体的发展过程。此外,我们还采用计算流体动力学技术分析了设计成一对平行板电极的微通道中的流体流动行为。结果表明,考虑静电能量产生的流动和离子阻力产生的体力的重要性,这在构建和评估EHD装置时往往被忽视。通过考虑这些影响,我们估计了EHD流动的发展过程,并确认了在EHD装置的开发过程中考虑微通道内涡的产生及其相互作用的重要性。
{"title":"Design of Electrohydrodynamic Devices with Consideration of Electrostatic Energy","authors":"Tasuku Sato, S. Sakuma, M. Hijikuro, S. Maeda, M. Anyoji, Y. Yamanishi","doi":"10.34133/2021/5158282","DOIUrl":"https://doi.org/10.34133/2021/5158282","url":null,"abstract":"The importance of actuators that can be integrated with flexible robot structures and mechanisms has increased in recent years with the advance of soft robotics. In particular, electrohydrodynamic (EHD) actuators, which have expandable integrability to adapt to the flexible motion of soft robots, have received much attention in the field of soft robotics. Studies have deepened the understanding of steady states of EHD phenomena but nonsteady states are not well understood. We herein observe the development process of fluid in a microchannel adopting a Schlieren technique with the aid of a high-speed camera. In addition, we analyze the behavior of fluid flow in a microchannel that is designed to have pairs of parallel plate electrodes adopting a computational fluid dynamics technique. Results indicate the importance of considering flow generated by electrostatic energy, which tends to be ignored in constructing and evaluating EHD devices, and by the body force generated by the ion-drag force. By considering these effects, we estimate the development process of EHD flow and confirm the importance of considering the generation of vortices and their interactions inside the microchannel during the development of EHD devices.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47853631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Cyborg and bionic systems (Washington, D.C.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1