The associations of the Notch pathway with the major oncogenic pathways (especially the receptor tyrosine kinases, RTKs) are primarily responsible for inducing EMT (epithelial to mesenchymal transition), angiogenesis, and chemoresistance. In this study, Axitinib is used in combination with LY411575 (γ-secretase inhibitor) and it is observed that the co-treatment synergistically induced apoptosis (by 37.36% in MDAMB231 and 27.9% in MDAMB468), arrests cells at the G2/M phase, decreases the stemness properties of the triple-negative breast cancer (TNBC) cells. It also diminishes the spheroid forming ability, enhances the expression of epithelial markers, such as E-cadherin (by 2.2 fold in MDAMB231 and 2.51 fold in MDAMB468), and downregulated the expression of mesenchymal markers. Additionally, the protein expression profile of the pro-oncogenic and pro-survival genes also reduces significantly after the administration of co-therapy, which is highlighted by a reduction in the levels of pEGFR, pFAK, pMAPK, NF-κB, etc. Moreover, the expression of pericyte markers (such as PDGFRs, α-SMA, c-kit, and NG2) reduces significantly in both TNBC cells upon co-treatment, thereby hinting toward the inhibition of epithelial-to-pericyte transition (EPT). The current work endows with the effectiveness of the co-therapy on the EMT and EPT dynamics of TNBC upon inhibition of the major crosstalk between the Vascular endothelial growth factor (VEGF)t and Notch pathway.
{"title":"Targeting Cross-Talks of Notch and VEGF to Tweak the EMT and EPT Dynamics in Triple Negative Breast Cancer Cells","authors":"Plaboni Sen, Siddhartha Sankar Ghosh","doi":"10.1002/adtp.202400059","DOIUrl":"10.1002/adtp.202400059","url":null,"abstract":"<p>The associations of the Notch pathway with the major oncogenic pathways (especially the receptor tyrosine kinases, RTKs) are primarily responsible for inducing EMT (epithelial to mesenchymal transition), angiogenesis, and chemoresistance. In this study, Axitinib is used in combination with LY411575 (γ-secretase inhibitor) and it is observed that the co-treatment synergistically induced apoptosis (by 37.36% in MDAMB231 and 27.9% in MDAMB468), arrests cells at the G2/M phase, decreases the stemness properties of the triple-negative breast cancer (TNBC) cells. It also diminishes the spheroid forming ability, enhances the expression of epithelial markers, such as E-cadherin (by 2.2 fold in MDAMB231 and 2.51 fold in MDAMB468), and downregulated the expression of mesenchymal markers. Additionally, the protein expression profile of the pro-oncogenic and pro-survival genes also reduces significantly after the administration of co-therapy, which is highlighted by a reduction in the levels of pEGFR, pFAK, pMAPK, NF-κB, etc. Moreover, the expression of pericyte markers (such as PDGFRs, α-SMA, c-kit, and NG2) reduces significantly in both TNBC cells upon co-treatment, thereby hinting toward the inhibition of epithelial-to-pericyte transition (EPT). The current work endows with the effectiveness of the co-therapy on the EMT and EPT dynamics of TNBC upon inhibition of the major crosstalk between the Vascular endothelial growth factor (VEGF)t and Notch pathway.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amin Ariaee, Hannah R. Wardill, Anthony Wignall, Aurelia S. Elz, Leah Wright, Clive Prestidge, Paul Joyce
Obesity, a global epidemic, leads to metabolic dysregulation and systemic inflammation. Recently, therapies targeting the gut microbiome have garnered attention for metabolic health regulation. This study evaluates the potential of inulin‐coated medium‐chain triglyceride (InuMCT) microcapsules in rats with diet‐induced obesity (DIO). Inulin prebiotic fibers have been shown to promote the gut microbiome, while the digestion products of medium chain triglycerides (MCTs), free fatty acids, and mono‐/diglycerides, can attenuate pro‐inflammatory outcomes. It is hypothesized that encapsulating MCTs within inulin via spray drying creates a solid dosage form that can exert multifunctional effects in ameliorating inflammation in DIO. Inulin and InuMCT treatments not only reduce DIO weight gain but also improve metabolic markers in high‐fat diet (HFD) fed rats. Specifically, inulin attenuates the reduction of high‐density lipoprotein (HDL) by 55% and lowers glucose levels by 21%. Meanwhile, InuMCT increases HDL by 23% and reduces glucose levels by 15%. Furthermore, inulin decreases serum proinflammatory tumor necrosis factor‐alpha (TNF‐α) by 35%, while InuMCT further reduces TNF‐α to normal diet levels within 21 days. These results highlight InuMCT's superior efficacy, offering a promising strategy for combating obesity and related metabolic diseases.
肥胖症是一种全球性流行病,会导致代谢失调和全身炎症。最近,针对肠道微生物组的代谢健康调节疗法引起了人们的关注。本研究评估了菊粉包被中链甘油三酯(InuMCT)微胶囊在饮食诱发肥胖(DIO)大鼠中的潜力。菊粉益生纤维已被证明能促进肠道微生物群,而中链甘油三酯(MCT)的消化产物、游离脂肪酸和单甘酯/甘油二酯能减轻促炎结果。据推测,通过喷雾干燥将中链甘油三酯封装在菊粉中可形成一种固体剂型,在改善 DIO 炎症方面发挥多功能作用。菊粉和 InuMCT 治疗不仅能减少 DIO 大鼠的体重增加,还能改善高脂饮食(HFD)喂养大鼠的代谢指标。具体来说,菊粉能使高密度脂蛋白(HDL)减少 55%,使血糖水平降低 21%。同时,菊粉可使高密度脂蛋白增加 23%,使血糖水平降低 15%。此外,菊粉可使血清促炎性肿瘤坏死因子-α(TNF-α)降低35%,而InuMCT可在21天内将TNF-α进一步降低到正常饮食水平。这些结果凸显了 InuMCT 的卓越功效,为防治肥胖症和相关代谢疾病提供了一种前景广阔的策略。
{"title":"Therapeutic Potential of Inulin‐Coated MCT Microcapsules in Modulating the Gut Microbiome for Effective Treatment of Diet‐Induced Obesity","authors":"Amin Ariaee, Hannah R. Wardill, Anthony Wignall, Aurelia S. Elz, Leah Wright, Clive Prestidge, Paul Joyce","doi":"10.1002/adtp.202400305","DOIUrl":"https://doi.org/10.1002/adtp.202400305","url":null,"abstract":"Obesity, a global epidemic, leads to metabolic dysregulation and systemic inflammation. Recently, therapies targeting the gut microbiome have garnered attention for metabolic health regulation. This study evaluates the potential of inulin‐coated medium‐chain triglyceride (InuMCT) microcapsules in rats with diet‐induced obesity (DIO). Inulin prebiotic fibers have been shown to promote the gut microbiome, while the digestion products of medium chain triglycerides (MCTs), free fatty acids, and mono‐/diglycerides, can attenuate pro‐inflammatory outcomes. It is hypothesized that encapsulating MCTs within inulin via spray drying creates a solid dosage form that can exert multifunctional effects in ameliorating inflammation in DIO. Inulin and InuMCT treatments not only reduce DIO weight gain but also improve metabolic markers in high‐fat diet (HFD) fed rats. Specifically, inulin attenuates the reduction of high‐density lipoprotein (HDL) by 55% and lowers glucose levels by 21%. Meanwhile, InuMCT increases HDL by 23% and reduces glucose levels by 15%. Furthermore, inulin decreases serum proinflammatory tumor necrosis factor‐alpha (TNF‐α) by 35%, while InuMCT further reduces TNF‐α to normal diet levels within 21 days. These results highlight InuMCT's superior efficacy, offering a promising strategy for combating obesity and related metabolic diseases.","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"23 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dendritic cell (DC) vaccines play an important role in anti-tumor immunotherapy. Tumor-associated cells or cytokines in the tumor microenvironment (TME) can inhibit the antigen-presenting function of DC. Immunogenic cell death (ICD) can enhance the uptake and presentation of tumor antigens by DC. This study investigates the maturation mechanism of DC induced by low-temperature plasma (LTP), as well as the therapeutic and protective effects of LTP-induced DC vaccine in a tumor model. DC2.4 that is co-cultured with LTP-treated B16F10 (LTP-B16) or with these supernatants exhibited decreased phagocytic activity, increased production of cytokines (IL-12, IL-6, TNF-α, and IL-1β), and increased expression of cell surface activation markers (CD80, CD86, and MHC II). The expression of CD80+/CD86+ is decreased after pre-treatment with TLR4 and NF-κB (p65) inhibitors, respectively. In vivo, trials indicated that the LTP-induced DC vaccine-induced anti-tumor immunity and, when combined with cisplatin, synergistically reduced tumor growth.
{"title":"Preparation of a Plasma-Induced Dendritic Cell Vaccine and its Anti-Tumor Immunity in a Murine Model of Melanoma","authors":"Xiangni Wang, Jinren Liu, Xiying Wang, Jiajia Lu, Guimin Xu, Yixin Cui, Zhirou He, Yulin Xu, Xingmin Shi, Guanjun Zhang","doi":"10.1002/adtp.202400142","DOIUrl":"10.1002/adtp.202400142","url":null,"abstract":"<p>Dendritic cell (DC) vaccines play an important role in anti-tumor immunotherapy. Tumor-associated cells or cytokines in the tumor microenvironment (TME) can inhibit the antigen-presenting function of DC. Immunogenic cell death (ICD) can enhance the uptake and presentation of tumor antigens by DC. This study investigates the maturation mechanism of DC induced by low-temperature plasma (LTP), as well as the therapeutic and protective effects of LTP-induced DC vaccine in a tumor model. DC2.4 that is co-cultured with LTP-treated B16F10 (LTP-B16) or with these supernatants exhibited decreased phagocytic activity, increased production of cytokines (IL-12, IL-6, TNF-α, and IL-1β), and increased expression of cell surface activation markers (CD80, CD86, and MHC II). The expression of CD80<sup>+</sup>/CD86<sup>+</sup> is decreased after pre-treatment with TLR4 and NF-κB (p65) inhibitors, respectively. In vivo, trials indicated that the LTP-induced DC vaccine-induced anti-tumor immunity and, when combined with cisplatin, synergistically reduced tumor growth.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farinaz Jonidi Shariatzadeh, Vinith Yathindranath, Yang Liu, Donald W. Miller, Francis Lin, Sarvesh Logsetty, Song Liu
Excessive scar formation is a major complication of wound healing. Premature release of anti-scarring drugs can negatively impact healing. This study aims to develop a targeted delivery system for the controlled release of anti-scarring drugs during the scar formation stage. Solid lipid nanoparticles (SLNs) coated with Clathrin, a cage-like protein, to prevent premature drug release is developed. Insulin-like growth factor (IGF) is conjugated to the SLNs for targeted delivery via its affinity for connective tissue growth factor (CTGF), a protein overexpressed during scar formation. The IGF-Clathrin-SLNs exhibited a size of 300 ± 20 nm and a zeta potential of 9.23 ± 0.4 mV. In vitro studies demonstrated sustained release of the encapsulated drug- kynurenic acid; less than 10% of kynurenic acid is released within three days, while over 50% is released within 10 h upon Clathrin removal using a surfactant at pH 8. Cellular uptake studies confirmed targeting efficacy. Fibroblasts with low CTGF expression displayed low uptake (<10%), whereas MCF7 cells with high CTGF expression showed significantly higher uptake (80%). This work demonstrates a promising targeted delivery platform for the controlled release of anti-scarring drugs during scar formation.
{"title":"Enhanced Targeted Drug Delivery for Scar Prevention: Clathrin-Coated Solid Lipid Nanoparticles for Model Drug Encapsulation","authors":"Farinaz Jonidi Shariatzadeh, Vinith Yathindranath, Yang Liu, Donald W. Miller, Francis Lin, Sarvesh Logsetty, Song Liu","doi":"10.1002/adtp.202400185","DOIUrl":"10.1002/adtp.202400185","url":null,"abstract":"<p>Excessive scar formation is a major complication of wound healing. Premature release of anti-scarring drugs can negatively impact healing. This study aims to develop a targeted delivery system for the controlled release of anti-scarring drugs during the scar formation stage. Solid lipid nanoparticles (SLNs) coated with Clathrin, a cage-like protein, to prevent premature drug release is developed. Insulin-like growth factor (IGF) is conjugated to the SLNs for targeted delivery via its affinity for connective tissue growth factor (CTGF), a protein overexpressed during scar formation. The IGF-Clathrin-SLNs exhibited a size of 300 ± 20 nm and a zeta potential of 9.23 ± 0.4 mV. In vitro studies demonstrated sustained release of the encapsulated drug- kynurenic acid; less than 10% of kynurenic acid is released within three days, while over 50% is released within 10 h upon Clathrin removal using a surfactant at pH 8. Cellular uptake studies confirmed targeting efficacy. Fibroblasts with low CTGF expression displayed low uptake (<10%), whereas MCF7 cells with high CTGF expression showed significantly higher uptake (80%). This work demonstrates a promising targeted delivery platform for the controlled release of anti-scarring drugs during scar formation.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suyue Gao, Tingyu Zheng, Kai Tian, Zou Jia, Wushuang Xu, Pingfan Wu, Shikun Cao, Ke Li, Lijun Wu
Wounds caused by radiation exposure are often hard to heal. The functional hydrogel can be used as a wound treatment material of multiple dimensions according to patients' needs. Hyaluronic acid hydrogel can be used to create a moist environment conducive to wound healing. In this study, new complex hydrogels based on physically crosslinked hyaluronic acid are investigated, which adopt the freeze-thaw technique, loaded with small molecule drugs deferoxamine and retinoic acid, and effectively promote the healing of radiation-induced skin ulcers. The combined application of deferoxamine and retinoic acid can improve skin injury after radiation, promoting angiogenesis, reducing inflammation, and protecting skin appendages. In vitro and in vivo results show enhanced cell viability and biological function, significantly accelerate healing of the irradiated wounds, and improve collagen deposition in the skin of the irradiated rats. Also, the skin appendages, such as hair follicles, are protected to a certain extent, implying functionally repairing the skin. Considering the ease of use of the hydrogel system in clinical applications, complex hydrogels can be considered a suitable candidate for treating radiation-induced skin injury.
{"title":"Application of Physically Crosslinked Hyaluronic Acid Hydrogel in the Treatment of Radiation-Induced Skin Injury","authors":"Suyue Gao, Tingyu Zheng, Kai Tian, Zou Jia, Wushuang Xu, Pingfan Wu, Shikun Cao, Ke Li, Lijun Wu","doi":"10.1002/adtp.202400165","DOIUrl":"10.1002/adtp.202400165","url":null,"abstract":"<p>Wounds caused by radiation exposure are often hard to heal. The functional hydrogel can be used as a wound treatment material of multiple dimensions according to patients' needs. Hyaluronic acid hydrogel can be used to create a moist environment conducive to wound healing. In this study, new complex hydrogels based on physically crosslinked hyaluronic acid are investigated, which adopt the freeze-thaw technique, loaded with small molecule drugs deferoxamine and retinoic acid, and effectively promote the healing of radiation-induced skin ulcers. The combined application of deferoxamine and retinoic acid can improve skin injury after radiation, promoting angiogenesis, reducing inflammation, and protecting skin appendages. In vitro and in vivo results show enhanced cell viability and biological function, significantly accelerate healing of the irradiated wounds, and improve collagen deposition in the skin of the irradiated rats. Also, the skin appendages, such as hair follicles, are protected to a certain extent, implying functionally repairing the skin. Considering the ease of use of the hydrogel system in clinical applications, complex hydrogels can be considered a suitable candidate for treating radiation-induced skin injury.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunxi Wang, Andrew N. Macintyre, Thomas H. Oguin III, Kevin R. McCarthy, M. Anthony Moody, Fan Yuan
Nucleic acid vaccines play important roles in the prevention and treatment of diseases. However, limited immunogenicity remains a major obstacle for DNA vaccine applications in the clinic. To address the issue, the present study investigates a cocktail approach to DNA vaccination. In this proof-of-the-concept study, the cocktail consists of two DNAs encoding viral hemagglutinin (HA) and granulocyte-macrophage colony stimulatory factor (GM-CSF), respectively. Data from the study demonstrate that recruitment and activation of antigen-presenting cells (APCs) can be substantially improved by spatiotemporal regulation of GM-CSF and HA expressions at the site of vaccination. The types of recruited APCs and their phenotypes are also controllable by adjusting the cocktail compositions. Compared to the mono-ingredient vaccine, the optimized cocktail vaccine is able to enhance the anti-viral humoral and T cell immune responses. No significant systemic inflammation is detected after either prime or boost immunization using the cocktail vaccine. Data in the study suggest that the DNA cocktail is a safe, effective, and controllable platform for improving vaccine efficacy.
核酸疫苗在预防和治疗疾病方面发挥着重要作用。然而,有限的免疫原性仍然是 DNA 疫苗应用于临床的主要障碍。为了解决这个问题,本研究调查了一种鸡尾酒 DNA 疫苗接种方法。在这项概念验证研究中,鸡尾酒由分别编码病毒血凝素(HA)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)的两种DNA组成。研究数据表明,通过在接种部位对 GM-CSF 和 HA 的表达进行时空调控,可以大大改善抗原递呈细胞(APC)的招募和活化。招募的抗原呈递细胞类型及其表型也可通过调整鸡尾酒成分来控制。与单成分疫苗相比,优化的鸡尾酒疫苗能够增强抗病毒体液免疫和 T 细胞免疫反应。使用鸡尾酒疫苗进行初次免疫或加强免疫后,均未发现明显的全身性炎症。研究数据表明,DNA 鸡尾酒是一种安全、有效、可控的提高疫苗功效的平台。
{"title":"Spatiotemporal Control of Immune Responses with Nucleic Acid Cocktail Vaccine","authors":"Chunxi Wang, Andrew N. Macintyre, Thomas H. Oguin III, Kevin R. McCarthy, M. Anthony Moody, Fan Yuan","doi":"10.1002/adtp.202400263","DOIUrl":"10.1002/adtp.202400263","url":null,"abstract":"<p>Nucleic acid vaccines play important roles in the prevention and treatment of diseases. However, limited immunogenicity remains a major obstacle for DNA vaccine applications in the clinic. To address the issue, the present study investigates a cocktail approach to DNA vaccination. In this proof-of-the-concept study, the cocktail consists of two DNAs encoding viral hemagglutinin (HA) and granulocyte-macrophage colony stimulatory factor (GM-CSF), respectively. Data from the study demonstrate that recruitment and activation of antigen-presenting cells (APCs) can be substantially improved by spatiotemporal regulation of GM-CSF and HA expressions at the site of vaccination. The types of recruited APCs and their phenotypes are also controllable by adjusting the cocktail compositions. Compared to the mono-ingredient vaccine, the optimized cocktail vaccine is able to enhance the anti-viral humoral and T cell immune responses. No significant systemic inflammation is detected after either prime or boost immunization using the cocktail vaccine. Data in the study suggest that the DNA cocktail is a safe, effective, and controllable platform for improving vaccine efficacy.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon nanotubes (CNTs) have emerged as revolutionary tools, offering innovative approaches to both diagnostic and therapeutic challenges spanning various cancer types. CNTs serve as imaging agents for early detection through MRI, CT, and fluorescence. They provide precise results with biosensors detecting cancer biomarkers for rapid diagnosis. In cancer therapy, CNTs excel in targeted drug delivery, enhancing bioavailability and minimizing off‐target effects. Their prowess in photothermal therapy selectively eradicates cancer cells. Despite challenges, ongoing research highlights CNT's transformative potential, promising enhanced precision, efficacy, and personalized cancer care across diverse malignancies in future clinical practice.
{"title":"Carbon Nanotubes in Cancer Diagnosis and Treatment: Current Trends and Future Perspectives","authors":"Sunny Kumar, Aafreen Ansari, Malini Basu, Sayani Ghosh, Sabana Begam, Mrinal K Ghosh","doi":"10.1002/adtp.202400283","DOIUrl":"https://doi.org/10.1002/adtp.202400283","url":null,"abstract":"Carbon nanotubes (CNTs) have emerged as revolutionary tools, offering innovative approaches to both diagnostic and therapeutic challenges spanning various cancer types. CNTs serve as imaging agents for early detection through MRI, CT, and fluorescence. They provide precise results with biosensors detecting cancer biomarkers for rapid diagnosis. In cancer therapy, CNTs excel in targeted drug delivery, enhancing bioavailability and minimizing off‐target effects. Their prowess in photothermal therapy selectively eradicates cancer cells. Despite challenges, ongoing research highlights CNT's transformative potential, promising enhanced precision, efficacy, and personalized cancer care across diverse malignancies in future clinical practice.","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"23 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Wu, Liming He, Ling Yang, Xun Li, Jie Wang, Min Ren, Yunxia Gao, Yi Chen, Hong Wei, Ming Zhang, Maling Gou
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Currently, the efficacy of existing eye-preserving local treatments for primary UM is unsatisfactory, expressing a need to explore a new therapy for UM treatment. α-Hemolysin (Hla), a pathogenic toxin fom Staphylococcus aureus, can induce cell death by disrupting the cell membrane and has potential antitumor effects. However, the broad toxicity of Hla limits its application in tumor therapy. In this study, the Hla-based gene therapy strategy that uses plasmids to encode the Hla gene and applies tumor-targeting nanoparticles to load the plasmids to form a nanocomplex is proposed. This gene formulation can overcome the obstructions of ocular barriers with its favorable neutral surface charge and nano size, allowing for precise targeting of tumor cells after local administration. The nanocomplex can effectively transfect tumor cells, and the expression of Hla can significantly inhibit tumor growth and directly exert a killing effect. Moreover, the nanocomplex can enhance the antitumor effect by recruiting CD4+ and CD8+ T lymphocytes and reducing angiogenesis after local administration. The study provides a novel gene therapy strategy for primary UM treatment and demonstrates a potential application for future gene therapy in intraocular tumors.
葡萄膜黑色素瘤(UM)是成人最常见的原发性眼内恶性肿瘤。目前,现有的保眼局部治疗原发性葡萄膜黑色素瘤的疗效并不理想,因此有必要探索一种新的葡萄膜黑色素瘤治疗方法。α-溶血素(Hla)是一种来自金黄色葡萄球菌的致病毒素,可通过破坏细胞膜诱导细胞死亡,具有潜在的抗肿瘤作用。然而,Hla 的广泛毒性限制了其在肿瘤治疗中的应用。本研究提出了基于Hla的基因治疗策略,即利用质粒编码Hla基因,并应用肿瘤靶向纳米粒子装载质粒形成纳米复合物。这种基因制剂以其良好的中性表面电荷和纳米尺寸克服了眼屏障的阻碍,可在局部给药后精确靶向肿瘤细胞。纳米复合物能有效转染肿瘤细胞,Hla的表达能显著抑制肿瘤生长,直接发挥杀伤作用。此外,纳米复合物在局部给药后还能通过招募 CD4+ 和 CD8+ T 淋巴细胞和减少血管生成来增强抗肿瘤效果。该研究为原发性 UM 的治疗提供了一种新的基因治疗策略,并展示了未来基因治疗在眼内肿瘤中的潜在应用。
{"title":"Neutral Nanocomplex Delivers Plasmid Encoding α-Hemolysin for Uveal Melanoma Treatment","authors":"Shanshan Wu, Liming He, Ling Yang, Xun Li, Jie Wang, Min Ren, Yunxia Gao, Yi Chen, Hong Wei, Ming Zhang, Maling Gou","doi":"10.1002/adtp.202400187","DOIUrl":"10.1002/adtp.202400187","url":null,"abstract":"<p>Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Currently, the efficacy of existing eye-preserving local treatments for primary UM is unsatisfactory, expressing a need to explore a new therapy for UM treatment. α-Hemolysin (Hla), a pathogenic toxin fom Staphylococcus aureus, can induce cell death by disrupting the cell membrane and has potential antitumor effects. However, the broad toxicity of Hla limits its application in tumor therapy. In this study, the Hla-based gene therapy strategy that uses plasmids to encode the <i>Hla</i> gene and applies tumor-targeting nanoparticles to load the plasmids to form a nanocomplex is proposed. This gene formulation can overcome the obstructions of ocular barriers with its favorable neutral surface charge and nano size, allowing for precise targeting of tumor cells after local administration. The nanocomplex can effectively transfect tumor cells, and the expression of Hla can significantly inhibit tumor growth and directly exert a killing effect. Moreover, the nanocomplex can enhance the antitumor effect by recruiting CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes and reducing angiogenesis after local administration. The study provides a novel gene therapy strategy for primary UM treatment and demonstrates a potential application for future gene therapy in intraocular tumors.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Ryan Jarrett, Lisette Pregelj, Craig Andrew Bell, Nicholas Lyle Fletcher, Kristofer James Thurecht
Research into mechanisms and potential applications of nanomaterials in medicine has expanded steadily in recent decades, with increasing translational focus. Development costs, including for clinical trials, are often cited as factors limiting the translational viability of novel nanomedicines, especially compared to small new molecular entities (NMEs) and therapeutic biologics. Yet, to date, there has been no systematic investigation into the clinical programs or costs of translating and commercializing nanomedicines, nor a comparison to NMEs and therapeutic biologics, to support these claims. Here, nanomedicines approved by the United States Food and Drug Administration's Center for Drug Evaluation and Research (CDER) from 2011 to 2023 are systematically identified and categorized. Nanomedicines were identified as formulations where submicron particle size contributes to product function. Like biologics and NMEs, nanomedicines are most frequently approved for oncological indications. Notably, all anti-cancer nanomedicines are indicated to treat orphan diseases, which is representative of the potential for nanomedicines to occupy pharmaceutical niches in treating diseases affecting smaller patient cohorts. The median estimated cost of pivotal trials for nanomedicines is 47% that of biologics and NMEs approved in the same timeframe. The findings indicate higher manufacturing costs in nanomedicine development may be mitigated by savings elsewhere, increasing translational viability.
{"title":"Material Trends and Clinical Costings in Systematically Identified CDER-Approved Nanomedicines","authors":"Thomas Ryan Jarrett, Lisette Pregelj, Craig Andrew Bell, Nicholas Lyle Fletcher, Kristofer James Thurecht","doi":"10.1002/adtp.202400124","DOIUrl":"10.1002/adtp.202400124","url":null,"abstract":"<p>Research into mechanisms and potential applications of nanomaterials in medicine has expanded steadily in recent decades, with increasing translational focus. Development costs, including for clinical trials, are often cited as factors limiting the translational viability of novel nanomedicines, especially compared to small new molecular entities (NMEs) and therapeutic biologics. Yet, to date, there has been no systematic investigation into the clinical programs or costs of translating and commercializing nanomedicines, nor a comparison to NMEs and therapeutic biologics, to support these claims. Here, nanomedicines approved by the United States Food and Drug Administration's Center for Drug Evaluation and Research (CDER) from 2011 to 2023 are systematically identified and categorized. Nanomedicines were identified as formulations where submicron particle size contributes to product function. Like biologics and NMEs, nanomedicines are most frequently approved for oncological indications. Notably, all anti-cancer nanomedicines are indicated to treat orphan diseases, which is representative of the potential for nanomedicines to occupy pharmaceutical niches in treating diseases affecting smaller patient cohorts. The median estimated cost of pivotal trials for nanomedicines is 47% that of biologics and NMEs approved in the same timeframe. The findings indicate higher manufacturing costs in nanomedicine development may be mitigated by savings elsewhere, increasing translational viability.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeon Jin Ju, Min Ju Kim, Shina Kim, Kyung Eun Son, Min Young Lee, Han Su Kim, Moon Suk Kim
Injectable depots have received increasing notoriety as local drug delivery vehicles for tumor treatment. Here, an intratumoral formulation of doxorubicin (Dox) is proposed that relies on the electrostatic interaction between the carboxylic group of click-type crosslinked hyaluronic acid (Cx-HA) and cationic Dox to achieve effective tumor treatment. The Dox-loaded click-type crosslinked HA (Cx-HA-Dox) formulation exhibits adequate injectability for intratumoral injection and rapidly forms a depot at the tumor site, remaining inside the tumor for over 18 days. This enhances the bioavailability and therapeutic efficacy of Dox primarily within the tumor, minimizing off-target side effects. Intratumoral injection of Cx-HA-Dox in animal models significantly suppresses tumor growth, as evidenced by a decrease in tumor volume over time. Histological analysis reveals limited angiogenesis in the treated tumors and an increase in the number of large apoptotic cells. Overall, the findings suggest that the electrostatically crosslinked Cx-HA-Dox depot can synergistically enhance the anticancer activity of Dox.
{"title":"Enhanced Anticancer Effects of Intratumorally Injected Electrostatic Doxorubicin-Loaded Click-Type Crosslinked Hyaluronic Acid Hydrogel","authors":"Hyeon Jin Ju, Min Ju Kim, Shina Kim, Kyung Eun Son, Min Young Lee, Han Su Kim, Moon Suk Kim","doi":"10.1002/adtp.202400246","DOIUrl":"10.1002/adtp.202400246","url":null,"abstract":"<p>Injectable depots have received increasing notoriety as local drug delivery vehicles for tumor treatment. Here, an intratumoral formulation of doxorubicin (Dox) is proposed that relies on the electrostatic interaction between the carboxylic group of click-type crosslinked hyaluronic acid (Cx-HA) and cationic Dox to achieve effective tumor treatment. The Dox-loaded click-type crosslinked HA (Cx-HA-Dox) formulation exhibits adequate injectability for intratumoral injection and rapidly forms a depot at the tumor site, remaining inside the tumor for over 18 days. This enhances the bioavailability and therapeutic efficacy of Dox primarily within the tumor, minimizing off-target side effects. Intratumoral injection of Cx-HA-Dox in animal models significantly suppresses tumor growth, as evidenced by a decrease in tumor volume over time. Histological analysis reveals limited angiogenesis in the treated tumors and an increase in the number of large apoptotic cells. Overall, the findings suggest that the electrostatically crosslinked Cx-HA-Dox depot can synergistically enhance the anticancer activity of Dox.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}