Pub Date : 2015-06-25DOI: 10.12989/AER.2015.4.2.135
S. Ha, D. Kyung, Woojin Lee
In this study, we evaluated the adsorption/desorption of uranium (U) in pure soil environment using continuous column reactor. We additionally investigated the adsorption/desorption mechanism of U on vivianite surface in molecular scale using quantum calculation. We observed that below 0.1 μM of U was detected after 20 d from U injection (1 μM) in adsorption test. However, all of absorbed U was detached from vivianite surface in 24 h by injection of CARB solution (1.44 × 10 M NaHCO3 and 2.8 × 10 M Na2CO3). Based on exchange energy calculation, we found that UO2 (CO3)2 and UO2 (CO3)3 species have higher repulsive energy than UO2 (OH)2 species. The results obtained from this study could be applied to predict the behavior of uranium in contaminated and remediation sites.
采用连续塔式反应器对纯土壤环境中铀(U)的吸附/解吸进行了研究。此外,我们还利用量子计算在分子尺度上研究了铀在活石表面的吸附/解吸机理。我们观察到,注射U (1 μM) 20 d后,可检测到0.1 μM以下的U。然而,通过注射CARB溶液(1.44 × 10 M NaHCO3和2.8 × 10 M Na2CO3),吸收的U在24 h内全部从活石表面分离。通过交换能计算,我们发现UO2 (CO3)2和UO2 (CO3)3具有比UO2 (OH)2更高的排斥能。本研究结果可用于预测铀在污染场地和修复场地中的行为。
{"title":"Adsorption/desorption of uranium on iron-bearing soil mineral surface","authors":"S. Ha, D. Kyung, Woojin Lee","doi":"10.12989/AER.2015.4.2.135","DOIUrl":"https://doi.org/10.12989/AER.2015.4.2.135","url":null,"abstract":"In this study, we evaluated the adsorption/desorption of uranium (U) in pure soil environment using continuous column reactor. We additionally investigated the adsorption/desorption mechanism of U on vivianite surface in molecular scale using quantum calculation. We observed that below 0.1 μM of U was detected after 20 d from U injection (1 μM) in adsorption test. However, all of absorbed U was detached from vivianite surface in 24 h by injection of CARB solution (1.44 × 10 M NaHCO3 and 2.8 × 10 M Na2CO3). Based on exchange energy calculation, we found that UO2 (CO3)2 and UO2 (CO3)3 species have higher repulsive energy than UO2 (OH)2 species. The results obtained from this study could be applied to predict the behavior of uranium in contaminated and remediation sites.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"1 1","pages":"135-142"},"PeriodicalIF":0.0,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78721162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-12DOI: 10.12989/AER.2015.4.2.069
S. G. Hakimabadi, A. Ahmadpour, M. H. Mosavian, T. R. Bastami
A new magnetite-silica core/shell nanocomposite (Fe3O4@nSiO2@mSiO2) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The lowangle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.
{"title":"Functionalized magnetite / silica nanocomposite for oily wastewater treatment","authors":"S. G. Hakimabadi, A. Ahmadpour, M. H. Mosavian, T. R. Bastami","doi":"10.12989/AER.2015.4.2.069","DOIUrl":"https://doi.org/10.12989/AER.2015.4.2.069","url":null,"abstract":"A new magnetite-silica core/shell nanocomposite (Fe3O4@nSiO2@mSiO2) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The lowangle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"21 1","pages":"69-81"},"PeriodicalIF":0.0,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89075198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-03-25DOI: 10.12989/AER.2015.4.1.017
D. Kyung, Sukwon Ji, Woojin Lee
In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on CO2 hydrate dissolution rates in the ocean. Mass transfer equations and CO2 solubility data were used to estimate the CO2 hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the CO2 hydrate dissolution rates due to the increase of CO2 particle density. In the high salinity condition, the rates of CO2 hydrate dissolution were decreased compared to pure water control. This is due to decrease of CO2 solubility in surrounding water, thus reducing the mass transfer of CO2 from the hydrate particle to CO2 under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the CO2 hydrate dissolution for long-term stable CO2 storage in the ocean as a form of CO2 hydrate.
{"title":"Numerical study of CO 2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity","authors":"D. Kyung, Sukwon Ji, Woojin Lee","doi":"10.12989/AER.2015.4.1.017","DOIUrl":"https://doi.org/10.12989/AER.2015.4.1.017","url":null,"abstract":"In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on CO2 hydrate dissolution rates in the ocean. Mass transfer equations and CO2 solubility data were used to estimate the CO2 hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the CO2 hydrate dissolution rates due to the increase of CO2 particle density. In the high salinity condition, the rates of CO2 hydrate dissolution were decreased compared to pure water control. This is due to decrease of CO2 solubility in surrounding water, thus reducing the mass transfer of CO2 from the hydrate particle to CO2 under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the CO2 hydrate dissolution for long-term stable CO2 storage in the ocean as a form of CO2 hydrate.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"33 1","pages":"17-24"},"PeriodicalIF":0.0,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76970898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-03-01DOI: 10.12989/AER.2015.4.1.001
M. Iqbal, Lubna Ahmed, M. Shafiq, M. Athar
A pot experiment was conducted to assess the effects of red pepper (Capsicum annuum) and coriander (Coriandrum sativum) on seedling growth of wheat (Triticum aestivum). The aqueous extracts treatment of red pepper and coriander showed a significant (p < 0.05) reduction in root, shoot and seedling length, number of leaves and seedling dry weight of wheat (T. aestivum) as compared to control. The inhibitory different effect on growth of wheat (T. aestivum) was directly proportional to the increasing concentration (1, 2, 3, 4 and 5%) of aqueous extracts of red pepper and coriander as compared to control treatment (0%). The root, shoot, seedling length and number of leaves of T. aestivum significantly p < 0.05 decreased at 5% concentration of red pepper as compared to control. The root, shoot and seedling growth of T. aestivum was also significantly reduced at 1, 2, 3, 4 and 5% concentration of coriander as compared to control. The root, shoot and leaves dry weight of T. aestivum at 5% coriander extract treatment concentration decreased as compared to control. The tolerance in seedlings of T. aestivum to red pepper and coriander extract treatment was dose dependent as compared to control. The seedlings of T. aestivum showed low percentage of tolerance to pepper extract treatment than coriander extract treatment.
{"title":"Allelopathic effects of red pepper ( Capsicum annuum L.) and coriander ( Coriandrum sativum L.) on early seedling growth of wheat ( Triticum aestivum L.)","authors":"M. Iqbal, Lubna Ahmed, M. Shafiq, M. Athar","doi":"10.12989/AER.2015.4.1.001","DOIUrl":"https://doi.org/10.12989/AER.2015.4.1.001","url":null,"abstract":"A pot experiment was conducted to assess the effects of red pepper (Capsicum annuum) and coriander (Coriandrum sativum) on seedling growth of wheat (Triticum aestivum). The aqueous extracts treatment of red pepper and coriander showed a significant (p < 0.05) reduction in root, shoot and seedling length, number of leaves and seedling dry weight of wheat (T. aestivum) as compared to control. The inhibitory different effect on growth of wheat (T. aestivum) was directly proportional to the increasing concentration (1, 2, 3, 4 and 5%) of aqueous extracts of red pepper and coriander as compared to control treatment (0%). The root, shoot, seedling length and number of leaves of T. aestivum significantly p < 0.05 decreased at 5% concentration of red pepper as compared to control. The root, shoot and seedling growth of T. aestivum was also significantly reduced at 1, 2, 3, 4 and 5% concentration of coriander as compared to control. The root, shoot and leaves dry weight of T. aestivum at 5% coriander extract treatment concentration decreased as compared to control. The tolerance in seedlings of T. aestivum to red pepper and coriander extract treatment was dose dependent as compared to control. The seedlings of T. aestivum showed low percentage of tolerance to pepper extract treatment than coriander extract treatment.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"18 1","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85090203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-03-01DOI: 10.12989/AER.2015.4.1.025
Gülhan Köneçoğlu, Toygun Safak, Y. Kalpaklı, M. Akgün
Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of 50 mgL-1 for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as Kdye = 6.689u10-2 L mg-1 and kc = 0.599 mg L-1min-1, respectively.
{"title":"Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO 2","authors":"Gülhan Köneçoğlu, Toygun Safak, Y. Kalpaklı, M. Akgün","doi":"10.12989/AER.2015.4.1.025","DOIUrl":"https://doi.org/10.12989/AER.2015.4.1.025","url":null,"abstract":"Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of 50 mgL-1 for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as Kdye = 6.689u10-2 L mg-1 and kc = 0.599 mg L-1min-1, respectively.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"51 2","pages":"25-38"},"PeriodicalIF":0.0,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91406252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-03-01DOI: 10.12989/AER.2015.4.1.039
Y. Zuo, Zhuo Zhu, Mohammed Alshanqiti, Joseph P. Michael, Yiwei Deng
Bisphenol A is widely used in plastic and other industrial consumer products. Release of bisphenol A and its analogues into the aquatic environment during manufacture, use and disposal has been a great scientific and public concern due to their toxicity and endocrine disrupting effects on aquatic wildlife and even human beings. More recent studies have shown that these alkylphenols may affect the molting processes and survival of crustacean species such as American lobster, crab and shrimp. In this study, we have developed gas chromatography with flame ionization detection (GC-FID) and gas chromatography- mass spectrometric (GC-MS) methods for the determination of bisphenol A and its analogues in shrimp Macrobrachium rosenbergii, blue crab Callinectes sapidus and American lobster Homarus americanus samples. Bisphenol A, 2,4-bis-(dimethylbenzyl)phenol and 4-cumylphenol were found in shrimp in the concentration ranges of 0.67-5.51, 0.36-1.61, and < LOD (the limit of detection)-1.96 ng/g (wet weight), and in crab of 0.10-0.44, 0.13-0.62, and 0.26-0.58 ng/g (wet weight), respectively. In lobster tissue samples, bisphenol A, 2-t-butyl-4-(dimethylbenzyl)phenol, 2,6-bis-(t-butyl)-4-(dimethylbenzyl)phenol, 2,4-bis- (dimethybenzyl)phenol, 2,4-bis-(dimethylbenzyl)-6-t-butylphenol and 4-cumylphenol were determined at the concentration ranges of 4.48-7.01, 1.23-2.63, 2.71-9.10, 0.35-0.91, 0.64-3.25, and 0.44-1.00 ng/g (wet weight), respectively. At these concentration levels, BPA and its analogs may interfere the reproduction and development of crustaceans, such as larval survival, molting, metamorphosis and shell hardening.
{"title":"Bisphenol A and the related alkylphenol contaminants in crustaceans and their potential bioeffects","authors":"Y. Zuo, Zhuo Zhu, Mohammed Alshanqiti, Joseph P. Michael, Yiwei Deng","doi":"10.12989/AER.2015.4.1.039","DOIUrl":"https://doi.org/10.12989/AER.2015.4.1.039","url":null,"abstract":"Bisphenol A is widely used in plastic and other industrial consumer products. Release of bisphenol A and its analogues into the aquatic environment during manufacture, use and disposal has been a great scientific and public concern due to their toxicity and endocrine disrupting effects on aquatic wildlife and even human beings. More recent studies have shown that these alkylphenols may affect the molting processes and survival of crustacean species such as American lobster, crab and shrimp. In this study, we have developed gas chromatography with flame ionization detection (GC-FID) and gas chromatography- mass spectrometric (GC-MS) methods for the determination of bisphenol A and its analogues in shrimp Macrobrachium rosenbergii, blue crab Callinectes sapidus and American lobster Homarus americanus samples. Bisphenol A, 2,4-bis-(dimethylbenzyl)phenol and 4-cumylphenol were found in shrimp in the concentration ranges of 0.67-5.51, 0.36-1.61, and < LOD (the limit of detection)-1.96 ng/g (wet weight), and in crab of 0.10-0.44, 0.13-0.62, and 0.26-0.58 ng/g (wet weight), respectively. In lobster tissue samples, bisphenol A, 2-t-butyl-4-(dimethylbenzyl)phenol, 2,6-bis-(t-butyl)-4-(dimethylbenzyl)phenol, 2,4-bis- (dimethybenzyl)phenol, 2,4-bis-(dimethylbenzyl)-6-t-butylphenol and 4-cumylphenol were determined at the concentration ranges of 4.48-7.01, 1.23-2.63, 2.71-9.10, 0.35-0.91, 0.64-3.25, and 0.44-1.00 ng/g (wet weight), respectively. At these concentration levels, BPA and its analogs may interfere the reproduction and development of crustaceans, such as larval survival, molting, metamorphosis and shell hardening.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"32 1","pages":"39-48"},"PeriodicalIF":0.0,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77749643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-03-01DOI: 10.12989/AER.2015.4.1.049
R. Wuana, R. Sha’Ato, Shiana Iorhen
Chemically activated and carbonized adsorbents were prepared from Moringa oleifera pod husks (MOP), characterized and evaluated for their ability to remove a common antibiotic - ofloxacin (OFX) from aqueous solution. The pulverized precursor was steeped in a saturated ammonium chloride solution for a day to give the chemically activated adsorbent (AMOP). A portion of AMOP was pyrolyzed in a muffle furnace at 623 K for 30 min to furnish its carbonized analogue (CMOP). The adsorbents showed favorable physicochemical attributes. The effects of operational parameters such as initial OFX solution pH and concentration, adsorbent dosage, temperature and contact time on OFX removal were investigated. At equilibrium, optimal removal efficiencies of 90.98% and 99.84% were achieved at solution pH 5 for AMOP and CMOP, respectively. The equilibrium adsorption data fitted into both the Langmuir and Freundlich isotherms. Gibbs free energy change (ΔGo), enthalpy change (ΔHo) and entropy change (ΔSo) indicated that the adsorption of OFX was feasible, spontaneous, exothermic and occurred via the physisorption mode. Adsorption kinetics obeyed the Blanchard pseudo-second-order model. The results may find applications in the adsorptive removal of micro-contaminants of pharmaceutical origin from wastewater.
{"title":"Aqueous phase removal of ofloxacin using adsorbents from Moringa oleifera pod husks","authors":"R. Wuana, R. Sha’Ato, Shiana Iorhen","doi":"10.12989/AER.2015.4.1.049","DOIUrl":"https://doi.org/10.12989/AER.2015.4.1.049","url":null,"abstract":"Chemically activated and carbonized adsorbents were prepared from Moringa oleifera pod husks (MOP), characterized and evaluated for their ability to remove a common antibiotic - ofloxacin (OFX) from aqueous solution. The pulverized precursor was steeped in a saturated ammonium chloride solution for a day to give the chemically activated adsorbent (AMOP). A portion of AMOP was pyrolyzed in a muffle furnace at 623 K for 30 min to furnish its carbonized analogue (CMOP). The adsorbents showed favorable physicochemical attributes. The effects of operational parameters such as initial OFX solution pH and concentration, adsorbent dosage, temperature and contact time on OFX removal were investigated. At equilibrium, optimal removal efficiencies of 90.98% and 99.84% were achieved at solution pH 5 for AMOP and CMOP, respectively. The equilibrium adsorption data fitted into both the Langmuir and Freundlich isotherms. Gibbs free energy change (ΔGo), enthalpy change (ΔHo) and entropy change (ΔSo) indicated that the adsorption of OFX was feasible, spontaneous, exothermic and occurred via the physisorption mode. Adsorption kinetics obeyed the Blanchard pseudo-second-order model. The results may find applications in the adsorptive removal of micro-contaminants of pharmaceutical origin from wastewater.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"61 1","pages":"49-68"},"PeriodicalIF":0.0,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84806134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-25DOI: 10.12989/AER.2014.3.4.355
V. Katiyar
The present study has been performed on one year old tree saplings of Azadirachta indica (L.), Cassia siamea (L.), Dalbergia sissoo (Roxb.), Eucalyptus rostrata (L.), Mangifera indica (L.) and Schyzygium cumini (L.) in order to assess the effect of exposure of SO2-NO2, alone and combination of two gases. Tree saplings have been exposed to an average of 495 g m SO2 and 105 g m NO2 for 40 d at the rate of 4 h d during 10:00 am to 01:00 pm in OTC. Total chlorophyll, specific leaf area (SLA), nitrate reductase (NR) activity, foliar protein, free proline content and free amino acids (AAs) of foliage have been the plant parameters, taken into consideration to evaluate the effect of gaseous exposure. Exposure of two gases has caused reduction in total chlorophyll content (P < 0.05, 0.01). Physiological and biochemical process has been seemed to be altered noticeable due to the combined effect of SO2 + NO2 followed by SO2 alone (P < 0.05, 0.01). NO2 mediated stress has produced, stimulatory and inhibitory responses in tree saplings. Results reveal that tree saplings have been attempted to absorb the NO2 through N assimilation pathway. E. rostrata, C. siamea have been emerged as moderate tolerant to SO2 mediated stress followed by A. indica. Response pattern of S. cumini, M. indica and D. sissoo set them as good indicators of SO2 NO2 exposure. Effects of two gases on tree saplings have been found to be synergistic.
{"title":"Effect of SO 2 - NO 2 fumigation on wooden tree seedlings in open top chamber system","authors":"V. Katiyar","doi":"10.12989/AER.2014.3.4.355","DOIUrl":"https://doi.org/10.12989/AER.2014.3.4.355","url":null,"abstract":"The present study has been performed on one year old tree saplings of Azadirachta indica (L.), Cassia siamea (L.), Dalbergia sissoo (Roxb.), Eucalyptus rostrata (L.), Mangifera indica (L.) and Schyzygium cumini (L.) in order to assess the effect of exposure of SO2-NO2, alone and combination of two gases. Tree saplings have been exposed to an average of 495 g m SO2 and 105 g m NO2 for 40 d at the rate of 4 h d during 10:00 am to 01:00 pm in OTC. Total chlorophyll, specific leaf area (SLA), nitrate reductase (NR) activity, foliar protein, free proline content and free amino acids (AAs) of foliage have been the plant parameters, taken into consideration to evaluate the effect of gaseous exposure. Exposure of two gases has caused reduction in total chlorophyll content (P < 0.05, 0.01). Physiological and biochemical process has been seemed to be altered noticeable due to the combined effect of SO2 + NO2 followed by SO2 alone (P < 0.05, 0.01). NO2 mediated stress has produced, stimulatory and inhibitory responses in tree saplings. Results reveal that tree saplings have been attempted to absorb the NO2 through N assimilation pathway. E. rostrata, C. siamea have been emerged as moderate tolerant to SO2 mediated stress followed by A. indica. Response pattern of S. cumini, M. indica and D. sissoo set them as good indicators of SO2 NO2 exposure. Effects of two gases on tree saplings have been found to be synergistic.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"1 1","pages":"355-365"},"PeriodicalIF":0.0,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90162257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-25DOI: 10.12989/AER.2014.3.4.337
J. G. Sgorlon, C. Tavares, J. Franco
The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.
{"title":"Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste","authors":"J. G. Sgorlon, C. Tavares, J. Franco","doi":"10.12989/AER.2014.3.4.337","DOIUrl":"https://doi.org/10.12989/AER.2014.3.4.337","url":null,"abstract":"The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"61 1","pages":"337-353"},"PeriodicalIF":0.0,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83139016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-25DOI: 10.12989/AER.2014.3.4.321
K. Bhattacharyya, Mayur J. Mahanta
Eight trace metals, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, were measured in the urban soil of Guwahati City, Assam, India from 31 sites representing five different types of land use, residential, commercial, industrial, public utilities, and roadside. Cd and Co occurred in very low concentrations (Cd << Co) in all types of land use without any significant variation from one type of land use to another. Ni concentrations were more than those of Co, and the concentrations depended on land use pattern. Average Cr and Cu concentrations were ≥ 100 mg/kg, but Cr had a significantly higher presence in industrial land use. Pb concentrations showed similar trends. The two metals, Mn and Zn, were present in much larger amounts compared to the others with values ≥ 300 mg/kg. Industrial and roadside soil contained much more Mn while commercial soil was enriched with Zn. Toxicity Characteristic Leaching Procedure (TCLP) was used for elucidating the mobility characteristics of the eight heavy metals. Mn suffered the highest leaching from commercial land (9.9 mg/kg on average) and also from other types of land. Co, Cu and Pb showed higher leachability from commercial soils but the leached concentrations were less than those of Mn. The two metals, Zn and Ni, were leached from residential land in considerable amounts. The TCLP showed Mn to be the most leachable metal and Cr the least.
{"title":"Accumulation of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in urban soil and their mobility characteristics","authors":"K. Bhattacharyya, Mayur J. Mahanta","doi":"10.12989/AER.2014.3.4.321","DOIUrl":"https://doi.org/10.12989/AER.2014.3.4.321","url":null,"abstract":"Eight trace metals, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, were measured in the urban soil of Guwahati City, Assam, India from 31 sites representing five different types of land use, residential, commercial, industrial, public utilities, and roadside. Cd and Co occurred in very low concentrations (Cd << Co) in all types of land use without any significant variation from one type of land use to another. Ni concentrations were more than those of Co, and the concentrations depended on land use pattern. Average Cr and Cu concentrations were ≥ 100 mg/kg, but Cr had a significantly higher presence in industrial land use. Pb concentrations showed similar trends. The two metals, Mn and Zn, were present in much larger amounts compared to the others with values ≥ 300 mg/kg. Industrial and roadside soil contained much more Mn while commercial soil was enriched with Zn. Toxicity Characteristic Leaching Procedure (TCLP) was used for elucidating the mobility characteristics of the eight heavy metals. Mn suffered the highest leaching from commercial land (9.9 mg/kg on average) and also from other types of land. Co, Cu and Pb showed higher leachability from commercial soils but the leached concentrations were less than those of Mn. The two metals, Zn and Ni, were leached from residential land in considerable amounts. The TCLP showed Mn to be the most leachable metal and Cr the least.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"28 1","pages":"321-335"},"PeriodicalIF":0.0,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82254192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}