Pengyuan Li, Jiawei Liu, Shipeng Wang, Chengliang Tao, Yan Yang, Jinhui Wang, Jiangxin Wang
Stretchable devices have gained increasing interest in recent years, particularly in the field of wearable electronics. Among them, fiber-type devices with high mechanical conformability hold great potential to enable next-generation wearable and interactive applications with their special structure and high compatibility with the well-established textile industries. In this study, a hydrogel fiber providing large moisture retention and high mechanical compliance is fabricated, with which a new approach to enable highly stretchable electromechanical sensors based on knot structures is developed. Comparative analysis with common orthogonal textile structures reveal the superior performance of sensors based on ionotronic knots. Stress sensors with the double overhand knot exhibit ≈four times greater variation in capacitance than those with orthogonal structures, and sensors with the clove hitch knot exhibit a fast response time of 57 ms. Based on the characteristics of different knots, a sensor matrix based on clove hitch knots to map the pressure distribution, and a wearable mole code generator based on reef knots to recognize and encode wrist motions are developed. These applications demonstrate the excellent performance of knot-architecture sensors and their great potential in the fields of smart fabrics and human–machine interactions.
{"title":"Highly Stretchable Electromechanical Sensors with Ionotronic Knots Based on Hydrogel Fibers","authors":"Pengyuan Li, Jiawei Liu, Shipeng Wang, Chengliang Tao, Yan Yang, Jinhui Wang, Jiangxin Wang","doi":"10.1002/admt.202302202","DOIUrl":"10.1002/admt.202302202","url":null,"abstract":"<p>Stretchable devices have gained increasing interest in recent years, particularly in the field of wearable electronics. Among them, fiber-type devices with high mechanical conformability hold great potential to enable next-generation wearable and interactive applications with their special structure and high compatibility with the well-established textile industries. In this study, a hydrogel fiber providing large moisture retention and high mechanical compliance is fabricated, with which a new approach to enable highly stretchable electromechanical sensors based on knot structures is developed. Comparative analysis with common orthogonal textile structures reveal the superior performance of sensors based on ionotronic knots. Stress sensors with the double overhand knot exhibit ≈four times greater variation in capacitance than those with orthogonal structures, and sensors with the clove hitch knot exhibit a fast response time of 57 ms. Based on the characteristics of different knots, a sensor matrix based on clove hitch knots to map the pressure distribution, and a wearable mole code generator based on reef knots to recognize and encode wrist motions are developed. These applications demonstrate the excellent performance of knot-architecture sensors and their great potential in the fields of smart fabrics and human–machine interactions.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 22","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang-Jun Cui, Long Gao, Cuifeng Ying, Jian-Guo Tian, Zhi-Bo Liu
Many novel transport phenomena are observed in graphene nanochannels with ultrahigh surface flatness and nano- or sub-nanoscale constraints. Two critical physical parameters, surface slip length, and surface charge, play a vital role in the channel transport process. However, effectively controlling these parameters under such tight constraints remains a significant challenge. Here, it is developed a novel method that combines oxygen ion etching and layer-by-layer assembly of 2D material, to prepare graphene nanochannels. During the assembly process, defects are introduced into the graphene surface via oxygen ion etching. A significantly higher conductivity is observed for the pristine graphene channels compared to those with defects on both the upper and lower surfaces. Consistent with this observation, the conductivity of graphene channels with defects on only one surface falls between the two aforementioned values. Combined with theoretical analysis, the conductivity difference is attributed to the surface slip inhibition due to the introduced defects, and the change of surface charge, both caused by oxygen ion etching. By introducing defects, a new method is uncovered for fine-tuning ion transport in graphene nanochannels.
{"title":"Tunable Ion Conductivity in Defect-Controlled Graphene Nanochannels","authors":"Yang-Jun Cui, Long Gao, Cuifeng Ying, Jian-Guo Tian, Zhi-Bo Liu","doi":"10.1002/admt.202400530","DOIUrl":"10.1002/admt.202400530","url":null,"abstract":"<p>Many novel transport phenomena are observed in graphene nanochannels with ultrahigh surface flatness and nano- or sub-nanoscale constraints. Two critical physical parameters, surface slip length, and surface charge, play a vital role in the channel transport process. However, effectively controlling these parameters under such tight constraints remains a significant challenge. Here, it is developed a novel method that combines oxygen ion etching and layer-by-layer assembly of 2D material, to prepare graphene nanochannels. During the assembly process, defects are introduced into the graphene surface via oxygen ion etching. A significantly higher conductivity is observed for the pristine graphene channels compared to those with defects on both the upper and lower surfaces. Consistent with this observation, the conductivity of graphene channels with defects on only one surface falls between the two aforementioned values. Combined with theoretical analysis, the conductivity difference is attributed to the surface slip inhibition due to the introduced defects, and the change of surface charge, both caused by oxygen ion etching. By introducing defects, a new method is uncovered for fine-tuning ion transport in graphene nanochannels.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 22","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Chen, Xianghua Yu, Huabo Huang, Jiayou Ji, Liang Li
The nature of rigidity and low energy density of polypyrrole (PPy)-based electrodes limits their wide application in flexible energy storage devices. In this study, reduced graphene oxide (rGO) wrapped polypyrrole (PPy)/oxidized carbon cloth (OCC) (rGO@PPy/OCC) is prepared by the polymerization of pyrrole using MnO2 as the oxidant on the surface of OCC followed by the adsorption and reduction of graphene oxide (GO). The prepared rGO@PPy/OCC electrode exhibits a high gravimetric specific capacitance of 547 F g−1 at a current density of 0.5 A g−1 and a high area specific capacitance of 1641 mF cm−2 at a current density of 1.5 mA cm−2. It nearly maintains the initial capacitance after 8000 cycles at a high scan rate of 200 mV s−1 and at a large current density of 10 A g−1. Moreover, the flexible rGO@PPy/OCC electrodes are used to construct flexible solid-state supercapacitors (FSSC). The FSSC based on rGO@PPy/OCC exhibits a high energy density (33.89 Wh kg−1 and 101.81 µWh cm−2) and a capacitance retention of 95.10% after 1000 bending cycles, demonstrating the excellent cycling stability and flexibility. Therefore, it is potential for rGO@PPy/OCC as a flexible electrode to fabricate high-performance FSSC.
{"title":"Reduced Graphene Oxide Wrapped Polypyrrole on Carbon Cloth for High-Performance Flexible Solid-State Supercapacitors","authors":"Ming Chen, Xianghua Yu, Huabo Huang, Jiayou Ji, Liang Li","doi":"10.1002/admt.202400297","DOIUrl":"10.1002/admt.202400297","url":null,"abstract":"<p>The nature of rigidity and low energy density of polypyrrole (PPy)-based electrodes limits their wide application in flexible energy storage devices. In this study, reduced graphene oxide (rGO) wrapped polypyrrole (PPy)/oxidized carbon cloth (OCC) (rGO@PPy/OCC) is prepared by the polymerization of pyrrole using MnO<sub>2</sub> as the oxidant on the surface of OCC followed by the adsorption and reduction of graphene oxide (GO). The prepared rGO@PPy/OCC electrode exhibits a high gravimetric specific capacitance of 547 F g<sup>−1</sup> at a current density of 0.5 A g<sup>−1</sup> and a high area specific capacitance of 1641 mF cm<sup>−2</sup> at a current density of 1.5 mA cm<sup>−2</sup>. It nearly maintains the initial capacitance after 8000 cycles at a high scan rate of 200 mV s<sup>−1</sup> and at a large current density of 10 A g<sup>−1</sup>. Moreover, the flexible rGO@PPy/OCC electrodes are used to construct flexible solid-state supercapacitors (FSSC). The FSSC based on rGO@PPy/OCC exhibits a high energy density (33.89 Wh kg<sup>−1</sup> and 101.81 µWh cm<sup>−2</sup>) and a capacitance retention of 95.10% after 1000 bending cycles, demonstrating the excellent cycling stability and flexibility. Therefore, it is potential for rGO@PPy/OCC as a flexible electrode to fabricate high-performance FSSC.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanzhol Kurmashev, Julia A. Boos, Benoît-Joseph Laventie, A. Leoni Swart, Rosmarie Sütterlin, Tina Junne, Urs Jenal, Andreas Hierlemann
Transwell-based airway models have become increasingly important in studying the effects of respiratory diseases and drug treatment at the air–liquid interface of the lung epithelial barrier. However, the underlying mechanisms at the tissue and cell level often remain unclear, as transwell inserts feature limited live-cell imaging compatibility. Here, a novel microfluidic platform is reported for the cultivation of transwell-based lung tissues providing the possibility to alternate between air–liquid and liquid–liquid interfaces. While the air–liquid interface recapitulates physiological conditions for the lung model, the liquid–liquid interface enables live imaging of the tissue at high spatiotemporal resolution. The plastics-based microfluidic platform enables the insertion and recuperation of the transwell inserts, which allows for tissue cultivation and analysis under standardized well plate conditions. The device is used to monitor infections of Pseudomonas aeruginosa in human stem-cell-derived bronchial epithelial tissue. The progression of a P. aeruginosa infection in real-time at high resolution is continuously imaged, which provides insights into bacterial spreading and invasion on the apical tissue surface, as well as insights into tissue breaching and destruction over time. The airway tissue culture system is a powerful tool to visualize and elucidate key processes of developing respiratory diseases and to facilitate drug testing and development.
{"title":"Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues","authors":"Amanzhol Kurmashev, Julia A. Boos, Benoît-Joseph Laventie, A. Leoni Swart, Rosmarie Sütterlin, Tina Junne, Urs Jenal, Andreas Hierlemann","doi":"10.1002/admt.202400326","DOIUrl":"10.1002/admt.202400326","url":null,"abstract":"<p>Transwell-based airway models have become increasingly important in studying the effects of respiratory diseases and drug treatment at the air–liquid interface of the lung epithelial barrier. However, the underlying mechanisms at the tissue and cell level often remain unclear, as transwell inserts feature limited live-cell imaging compatibility. Here, a novel microfluidic platform is reported for the cultivation of transwell-based lung tissues providing the possibility to alternate between air–liquid and liquid–liquid interfaces. While the air–liquid interface recapitulates physiological conditions for the lung model, the liquid–liquid interface enables live imaging of the tissue at high spatiotemporal resolution. The plastics-based microfluidic platform enables the insertion and recuperation of the transwell inserts, which allows for tissue cultivation and analysis under standardized well plate conditions. The device is used to monitor infections of <i>Pseudomonas aeruginosa</i> in human stem-cell-derived bronchial epithelial tissue. The progression of a <i>P. aeruginosa</i> infection in real-time at high resolution is continuously imaged, which provides insights into bacterial spreading and invasion on the apical tissue surface, as well as insights into tissue breaching and destruction over time. The airway tissue culture system is a powerful tool to visualize and elucidate key processes of developing respiratory diseases and to facilitate drug testing and development.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christof Rein, Keynaz Kamranikia, Raymonde Council, Pegah Pezeshkpour, Frederik Kotz-Helmer, Bastian E. Rapp
The constant improvement of stereolithography (SL) in terms of achievable resolution and printing time has sparked high expectations that SL will enable the rapid prototyping of truly microfluidic chips with features below 100 µm. However, most commercial high-resolution stereolithography devices are based on Digital Light Processing (DLP) and thus sacrifice lateral printing size for resolution. Consequently, even 10 years after the advent of microstereolithography there is no commercialized 3D printing system that can effectively fulfill all the demands to replace soft lithography for microfluidic prototyping. In this work, for the first time, This study demonstrates that a commercial laser-based stereolithography device is capable of manufacturing microfluidic chips with embedded channels smaller than 100 µm with a footprint of 7.24 × 0.3 cm2. A chip fabricated in poly(ethylene glycol) diacrylate (PEGDA) that can readily be used for fluid mixing, is presented in this study. This research shows that the accessibility of high-resolution chips with footprints of several cm2, using laser-based stereolithography, enables the manufacturing of truly microfluidic systems with high impact on prototyping and manufacturing.
{"title":"Scanning-Laser-Based Microstereolithography of Microfluidic Chips with Micron Resolution","authors":"Christof Rein, Keynaz Kamranikia, Raymonde Council, Pegah Pezeshkpour, Frederik Kotz-Helmer, Bastian E. Rapp","doi":"10.1002/admt.202400047","DOIUrl":"10.1002/admt.202400047","url":null,"abstract":"<p>The constant improvement of stereolithography (SL) in terms of achievable resolution and printing time has sparked high expectations that SL will enable the rapid prototyping of truly microfluidic chips with features below 100 µm. However, most commercial high-resolution stereolithography devices are based on Digital Light Processing (DLP) and thus sacrifice lateral printing size for resolution. Consequently, even 10 years after the advent of microstereolithography there is no commercialized 3D printing system that can effectively fulfill all the demands to replace soft lithography for microfluidic prototyping. In this work, for the first time, This study demonstrates that a commercial laser-based stereolithography device is capable of manufacturing microfluidic chips with embedded channels smaller than 100 µm with a footprint of 7.24 × 0.3 cm<sup>2</sup>. A chip fabricated in poly(ethylene glycol) diacrylate (PEGDA) that can readily be used for fluid mixing, is presented in this study. This research shows that the accessibility of high-resolution chips with footprints of several cm<sup>2</sup>, using laser-based stereolithography, enables the manufacturing of truly microfluidic systems with high impact on prototyping and manufacturing.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clémence Badie, Ali Mirzaei, Jae-Hyoung Lee, Syreina Sayegh, Mikhael Bechelany, Lionel Santinacci, Hyoun Woo Kim, Sang Sub Kim
H2 Gas Detection
In article number 2302081, Mikhael Bechelany, Lionel Santinacci, Hyoun Woo Kim, Sang Sub Kim, and co-workers describe the development of a highly sensitive and selective H2 gas sensor. This sensor utilizes ZnO nanowires (NWs) decorated with Pd nanoparticles (NPs) and a NiO shell layer, all deposited via atomic layer deposition. This sensor demonstrates high sensitivity and selectivity to H2 gas even in the presence of H2/CO and H2/NO2 gasmixtures, offering potential for highly selective H2 gas detection.