Pub Date : 2023-05-18DOI: 10.1088/2752-5309/acd6b0
G. Scarpa, L. Berrang‐Ford, S. Twesigomwe, P. Kakwangire, M. Galazoula, C. Zavaleta-Cortijo, K. Patterson, D. Namanya, S. Lwasa, E. Ninshaba, M. Kiconco, IHACC Research Team, J. Cade
Dietary adequacy is hard to achieve for many people living in low-income countries, who suffer from nutritional deficiencies. Climate change, which alters weather conditions, has combined with other cascading and compound events to disrupt Indigenous communities’ food systems, limiting the consumption of adequate diets. The aim of this work was to conduct a proof-of-concept study exploring dietary adequacy, and to investigate evidence for temporal variation in the dietary intake of Indigenous and non-Indigenous communities in Kanungu District, Uganda in the context of the Covid-19 outbreak. We randomly selected 60 participants (20 mothers, 20 fathers and 20 children aged between 6 and 23 months) from two Indigenous Batwa and two Bakiga settlements. A mixed-methods study with concurrent qualitative and quantitative data collection was conducted. Monthly dietary intake data were collected from each participant from February to July 2021 through 24 h recall surveys using a specially developed Ugandan food composition database included in the online tool myfood24. At the same time, we also collected: (i) demographic and contextual data related to Covid-19; (ii) data on weather and seasonality; (iii) data on the perception of dietary intake over the year, and during the Covid-19 period; (iv) baseline anthropometric measurements. The majority of the participants did not achieve nutrient adequacy over the 6 months period, and household dietary diversity scores were generally low. Pregnant and lactating women consumed a diet which was severely inadequate in terms of nutrient consumption. Caloric and nutrient intake varied over the 6 months period, with the highest food consumption in June and lowest in April. Temporal variation was more evident among Batwa participants. Vitamin A intake varied more over months than other nutrients in adults’ and children’s diets, and none met iodine requirements. Participants characterised the diverse mechanisms by which season and weather variability determined the type and amount of food consumed each month. Dietary intake showed indications of temporal variation that differed between nutrients. Also, they reported that the Covid-19 pandemic influenced their diet. During lockdown, 58% of adults reported changing dietary habits by consuming less—and less nutritious—foods. The findings of this work highlight that the majority of the Batwa and Bakiga participants did not meet the dietary requirements for their age and gender. Also, our research indicates that weather patterns and seasonality may cause variations in smallholder food production with consequences on households’ dietary intake. Emerging evidence suggests that nutrients and caloric intake vary monthly and under different weather conditions. Accurate and time-varying nutrition evaluations would help in identifying seasonal and monthly dietary needs, supporting preventive interventions protecting children and their parents from any form of malnutrition. Consider
{"title":"Assessing dietary adequacy and temporal variability in the context of Covid-19 among Indigenous and rural communities in Kanungu District, Uganda: a mixed-methods study","authors":"G. Scarpa, L. Berrang‐Ford, S. Twesigomwe, P. Kakwangire, M. Galazoula, C. Zavaleta-Cortijo, K. Patterson, D. Namanya, S. Lwasa, E. Ninshaba, M. Kiconco, IHACC Research Team, J. Cade","doi":"10.1088/2752-5309/acd6b0","DOIUrl":"https://doi.org/10.1088/2752-5309/acd6b0","url":null,"abstract":"Dietary adequacy is hard to achieve for many people living in low-income countries, who suffer from nutritional deficiencies. Climate change, which alters weather conditions, has combined with other cascading and compound events to disrupt Indigenous communities’ food systems, limiting the consumption of adequate diets. The aim of this work was to conduct a proof-of-concept study exploring dietary adequacy, and to investigate evidence for temporal variation in the dietary intake of Indigenous and non-Indigenous communities in Kanungu District, Uganda in the context of the Covid-19 outbreak. We randomly selected 60 participants (20 mothers, 20 fathers and 20 children aged between 6 and 23 months) from two Indigenous Batwa and two Bakiga settlements. A mixed-methods study with concurrent qualitative and quantitative data collection was conducted. Monthly dietary intake data were collected from each participant from February to July 2021 through 24 h recall surveys using a specially developed Ugandan food composition database included in the online tool myfood24. At the same time, we also collected: (i) demographic and contextual data related to Covid-19; (ii) data on weather and seasonality; (iii) data on the perception of dietary intake over the year, and during the Covid-19 period; (iv) baseline anthropometric measurements. The majority of the participants did not achieve nutrient adequacy over the 6 months period, and household dietary diversity scores were generally low. Pregnant and lactating women consumed a diet which was severely inadequate in terms of nutrient consumption. Caloric and nutrient intake varied over the 6 months period, with the highest food consumption in June and lowest in April. Temporal variation was more evident among Batwa participants. Vitamin A intake varied more over months than other nutrients in adults’ and children’s diets, and none met iodine requirements. Participants characterised the diverse mechanisms by which season and weather variability determined the type and amount of food consumed each month. Dietary intake showed indications of temporal variation that differed between nutrients. Also, they reported that the Covid-19 pandemic influenced their diet. During lockdown, 58% of adults reported changing dietary habits by consuming less—and less nutritious—foods. The findings of this work highlight that the majority of the Batwa and Bakiga participants did not meet the dietary requirements for their age and gender. Also, our research indicates that weather patterns and seasonality may cause variations in smallholder food production with consequences on households’ dietary intake. Emerging evidence suggests that nutrients and caloric intake vary monthly and under different weather conditions. Accurate and time-varying nutrition evaluations would help in identifying seasonal and monthly dietary needs, supporting preventive interventions protecting children and their parents from any form of malnutrition. Consider","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47304479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a latest reanalysis dataset of atmospheric composition, the Global Exposure Mortality Model and a log-linear exposure-response function were employed to estimate the national deaths attributable to fine particulate matter (PM2.5) and ozone (O3) pollution in China for the period 2016–2020, including the lockdown due to COVID-19 pandemic in 2020. The national mortality attributable to long-term PM2.5 exposure decreased year by year from 2.18 million (95% confidence interval (1.83, 2.51), the same hereinafter) in 2016 to 1.99 million (1.66, 2.30) in 2020. In particular, the number in 2020 was 133.16 thousand less than 2019 owing to the reduced emissions during the pandemic, and the mortality attributable to short-term PM2.5 exposure dropped from 46.86 thousand in 2019 to 36.56 thousand in 2020. However, because O3 concentrations have kept increasing during the period, the national mortality attributable to long-term O3 exposure increased from 132.79 thousand (128.58, 137.00) in 2016 to 197.00 thousand (190.98, 203.03) in 2020. In addition, compared to before the pandemic, the national mortality attributable to short-term O3 exposure showed an increase in February, April and May of 2020, and the sharpest year-on-year increase of 162% occurred in April. The different trends of mortality after anthropogenic emissions were reduced pose a challenge for policy-makers and researchers.
{"title":"Human mortality attributable to outdoor air pollution in China during the period 2016–2020","authors":"Gang Liu, Lingling Jiang, Zhuoying Xu, Yifan Liu, Haikun Wang, Zhen Peng","doi":"10.1088/2752-5309/acd3a0","DOIUrl":"https://doi.org/10.1088/2752-5309/acd3a0","url":null,"abstract":"In this study, a latest reanalysis dataset of atmospheric composition, the Global Exposure Mortality Model and a log-linear exposure-response function were employed to estimate the national deaths attributable to fine particulate matter (PM2.5) and ozone (O3) pollution in China for the period 2016–2020, including the lockdown due to COVID-19 pandemic in 2020. The national mortality attributable to long-term PM2.5 exposure decreased year by year from 2.18 million (95% confidence interval (1.83, 2.51), the same hereinafter) in 2016 to 1.99 million (1.66, 2.30) in 2020. In particular, the number in 2020 was 133.16 thousand less than 2019 owing to the reduced emissions during the pandemic, and the mortality attributable to short-term PM2.5 exposure dropped from 46.86 thousand in 2019 to 36.56 thousand in 2020. However, because O3 concentrations have kept increasing during the period, the national mortality attributable to long-term O3 exposure increased from 132.79 thousand (128.58, 137.00) in 2016 to 197.00 thousand (190.98, 203.03) in 2020. In addition, compared to before the pandemic, the national mortality attributable to short-term O3 exposure showed an increase in February, April and May of 2020, and the sharpest year-on-year increase of 162% occurred in April. The different trends of mortality after anthropogenic emissions were reduced pose a challenge for policy-makers and researchers.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49031911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1088/2752-5309/acc886
J. Buonocore, S. Reka, Do-Jin Yang, Charles Chang, Ananya Roy, T. Thompson, D. Lyon, Renee McVay, D. Michanowicz, S. Arunachalam
Oil and gas production is one of the largest emitters of methane, a potent greenhouse gas and a significant contributor of air pollution emissions. While research on methane emissions from oil and gas production has grown rapidly, there is comparatively limited information on the distribution of impacts of this sector on air quality and associated health impacts. Understanding the contribution of air quality and health impacts of oil and gas can be useful for designing mitigation strategies. Here we assess air quality and human health impacts associated with ozone, fine particulate matter, and nitrogen dioxide from the oil and gas sector in the US in 2016, and compare this impact with that of the associated methane emissions. We find that air pollution in 2016 from the oil and gas sector in the US resulted in 410 000 asthma exacerbations, 2200 new cases of childhood asthma and 7500 excess deaths, with $77 billion in total health impacts. NO2 was the highest contributor to health impacts (37%) followed by ozone (35%), and then PM2.5 (28%). When monetized, these air quality health impacts of oil and gas production exceeded estimated climate impact costs from methane leakage by a factor of 3. These impacts add to the total life cycle impacts of oil and gas, and represent potential additional health benefits of strategies that reduce consumption of oil and gas. Policies to reduce oil and gas production emissions will lead to additional and significant health benefits from co-pollutant reductions that are not currently quantified or monetized.
{"title":"Air pollution and health impacts of oil & gas production in the United States","authors":"J. Buonocore, S. Reka, Do-Jin Yang, Charles Chang, Ananya Roy, T. Thompson, D. Lyon, Renee McVay, D. Michanowicz, S. Arunachalam","doi":"10.1088/2752-5309/acc886","DOIUrl":"https://doi.org/10.1088/2752-5309/acc886","url":null,"abstract":"Oil and gas production is one of the largest emitters of methane, a potent greenhouse gas and a significant contributor of air pollution emissions. While research on methane emissions from oil and gas production has grown rapidly, there is comparatively limited information on the distribution of impacts of this sector on air quality and associated health impacts. Understanding the contribution of air quality and health impacts of oil and gas can be useful for designing mitigation strategies. Here we assess air quality and human health impacts associated with ozone, fine particulate matter, and nitrogen dioxide from the oil and gas sector in the US in 2016, and compare this impact with that of the associated methane emissions. We find that air pollution in 2016 from the oil and gas sector in the US resulted in 410 000 asthma exacerbations, 2200 new cases of childhood asthma and 7500 excess deaths, with $77 billion in total health impacts. NO2 was the highest contributor to health impacts (37%) followed by ozone (35%), and then PM2.5 (28%). When monetized, these air quality health impacts of oil and gas production exceeded estimated climate impact costs from methane leakage by a factor of 3. These impacts add to the total life cycle impacts of oil and gas, and represent potential additional health benefits of strategies that reduce consumption of oil and gas. Policies to reduce oil and gas production emissions will lead to additional and significant health benefits from co-pollutant reductions that are not currently quantified or monetized.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45714113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1088/2752-5309/acd2f6
Daaniya Iyaz, Alexandra Perkins, J. Cogen, A. Doubleday, C. Sack, T. B. Busch Isaksen
Pacific Northwest wildfire smoke events have been increasing in prevalence and severity over the past three decades, resulting in documented negative health outcomes in adults. However, there is less evidence demonstrating the effect of wildfire smoke in pediatric populations. To evaluate the association between wildfire smoke exposure and healthcare utilization in a pediatric tertiary medical center in Seattle, WA. We utilized a case–crossover study to determine the odds of pediatric emergency department (ED) visit/ hospital admission at Seattle Children’s Hospital on wildfire smoke days versus non-wildfire smoke days during wildfire season (June to September), 2006–2020. The health outcomes dataset reports hospital encounters in two categories: ED visits or admissions that are for inpatient or observational purposes. The health outcomes dataset reports hospital encounters in two categories: ED visits or admissions that are for inpatient or observational purposes. The reported encounter types are mutually exclusive. We stratified analyses by individual-level characteristics and examined associations for lagged exposures 0–7 d prior to admission. In adjusted analyses, smoke exposure was associated with a 7.0% (95% CI: 3.0%–12.0%) increase in odds of all-cause hospital admissions and a 0.0% (95% CI: −3.0%, 3.0%) change in odds of all-cause ED visits. We also observed increases in the odds of all-cause hospital admissions ranging from 4.0% to 8.0%, for lagged exposure on days 1–7. When stratified by health outcomes, we found a 9.0% (95% CI: 1.0%–17.0%) and an 11.0% (95% CI:1.0%–21.0%) increase in the odds of ED visits for respiratory and respiratory infection-related concerns, respectively. Our results demonstrate associations between wildfire smoke and negative health effects in children. Similar to other studies, we found that wildfire smoke exposure was associated with an increase in respiratory-related ED visits and all-cause hospital admissions in a pediatric population. These results will help inform patient education and motivate interventions to reduce pediatric morbidity during wildfire season.
{"title":"Association between wildfire smoke exposure and Seattle, Washington Pediatric Hospital services, 2006–2020","authors":"Daaniya Iyaz, Alexandra Perkins, J. Cogen, A. Doubleday, C. Sack, T. B. Busch Isaksen","doi":"10.1088/2752-5309/acd2f6","DOIUrl":"https://doi.org/10.1088/2752-5309/acd2f6","url":null,"abstract":"Pacific Northwest wildfire smoke events have been increasing in prevalence and severity over the past three decades, resulting in documented negative health outcomes in adults. However, there is less evidence demonstrating the effect of wildfire smoke in pediatric populations. To evaluate the association between wildfire smoke exposure and healthcare utilization in a pediatric tertiary medical center in Seattle, WA. We utilized a case–crossover study to determine the odds of pediatric emergency department (ED) visit/ hospital admission at Seattle Children’s Hospital on wildfire smoke days versus non-wildfire smoke days during wildfire season (June to September), 2006–2020. The health outcomes dataset reports hospital encounters in two categories: ED visits or admissions that are for inpatient or observational purposes. The health outcomes dataset reports hospital encounters in two categories: ED visits or admissions that are for inpatient or observational purposes. The reported encounter types are mutually exclusive. We stratified analyses by individual-level characteristics and examined associations for lagged exposures 0–7 d prior to admission. In adjusted analyses, smoke exposure was associated with a 7.0% (95% CI: 3.0%–12.0%) increase in odds of all-cause hospital admissions and a 0.0% (95% CI: −3.0%, 3.0%) change in odds of all-cause ED visits. We also observed increases in the odds of all-cause hospital admissions ranging from 4.0% to 8.0%, for lagged exposure on days 1–7. When stratified by health outcomes, we found a 9.0% (95% CI: 1.0%–17.0%) and an 11.0% (95% CI:1.0%–21.0%) increase in the odds of ED visits for respiratory and respiratory infection-related concerns, respectively. Our results demonstrate associations between wildfire smoke and negative health effects in children. Similar to other studies, we found that wildfire smoke exposure was associated with an increase in respiratory-related ED visits and all-cause hospital admissions in a pediatric population. These results will help inform patient education and motivate interventions to reduce pediatric morbidity during wildfire season.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48454983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1088/2752-5309/acb22b
E. Bonilla, L. Mickley, G. Raheja, S. Eastham, J. Buonocore, A. Alencar, L. Verchot, D. Westervelt, M. C. Castro
Smoke particulate matter emitted by fires in the Amazon Basin poses a threat to human health. Past research on this threat has mainly focused on the health impacts on countries as a whole or has relied on hospital admission data to quantify the health response. Such analyses do not capture the impact on people living in Indigenous territories close to the fires and who often lack access to medical care and may not show up at hospitals. Here we quantify the premature mortality due to smoke exposure of people living in Indigenous territories across the Amazon Basin. We use the atmospheric chemistry transport model GEOS-Chem to simulate PM2.5 from fires and other sources, and we apply a recently updated concentration dose-response function. We estimate that smoke from fires in South America accounted for ∼12 000 premature deaths each year from 2014–2019 across the continent, with about ∼230 of these deaths occurring in Indigenous lands. Put another way, smoke exposure accounts for 2 premature deaths per 100 000 people per year across South America, but 4 premature deaths per 100 000 people in the Indigenous territories. Bolivia and Brazil represent hotspots of smoke exposure and deaths in Indigenous territories in these countries are 9 and 12 per 100 000 people, respectively. Our analysis shows that smoke PM2.5 from fires has a detrimental effect on human health across South America, with a disproportionate impact on people living in Indigenous territories.
{"title":"Health impacts of smoke exposure in South America: increased risk for populations in the Amazonian Indigenous territories","authors":"E. Bonilla, L. Mickley, G. Raheja, S. Eastham, J. Buonocore, A. Alencar, L. Verchot, D. Westervelt, M. C. Castro","doi":"10.1088/2752-5309/acb22b","DOIUrl":"https://doi.org/10.1088/2752-5309/acb22b","url":null,"abstract":"Smoke particulate matter emitted by fires in the Amazon Basin poses a threat to human health. Past research on this threat has mainly focused on the health impacts on countries as a whole or has relied on hospital admission data to quantify the health response. Such analyses do not capture the impact on people living in Indigenous territories close to the fires and who often lack access to medical care and may not show up at hospitals. Here we quantify the premature mortality due to smoke exposure of people living in Indigenous territories across the Amazon Basin. We use the atmospheric chemistry transport model GEOS-Chem to simulate PM2.5 from fires and other sources, and we apply a recently updated concentration dose-response function. We estimate that smoke from fires in South America accounted for ∼12 000 premature deaths each year from 2014–2019 across the continent, with about ∼230 of these deaths occurring in Indigenous lands. Put another way, smoke exposure accounts for 2 premature deaths per 100 000 people per year across South America, but 4 premature deaths per 100 000 people in the Indigenous territories. Bolivia and Brazil represent hotspots of smoke exposure and deaths in Indigenous territories in these countries are 9 and 12 per 100 000 people, respectively. Our analysis shows that smoke PM2.5 from fires has a detrimental effect on human health across South America, with a disproportionate impact on people living in Indigenous territories.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47889037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-29DOI: 10.1088/2752-5309/acc887
S. Wheat, E. Sbiroli, M. Dunn, B. Chekuri, Amanda Millstein, Terry O'Connor, C. Rublee, J. Lemery, Vijay S. Limaye
While evidence points to climate change adversely impacting health and wellbeing, there remains a great need for more authoritative and actionable data that better describes the full magnitude and scope of this growing crisis. Given the uncertainty inherent to current detection and attribution studies, the improved specificity offered by the 10th revision of the International Classification of Diseases (ICD-10) coding of climate-sensitive health outcomes at the point of care may help to better quantify the connection between more intense and frequent extreme weather events and specific health sequela. With improved application of the available ICD-10 codes designed to capture climate-sensitive health outcomes, the ICD-10 system can function as a leading indicator. In this collaboration, publicly available ICD-10 code data was downloaded from Centers for Medicare and Medicaid Services archives and cross-referenced with 29 keywords (e.g. heat, hurricane, smoke, etc) determined by relevance to climate impacts on human health from consensus literature. We identified 46 unique ICD-10 codes for climate-sensitive health conditions. By highlighting the need for broader application of these codes and advocating for the development of new codes that better document the growing burden of climate-sensitive health outcomes, we hope to drive the development of more evidence-based, health-protective interdisciplinary climate action strategies across health systems.
{"title":"Coding for climate: sourcing better climate-health data from medical billing","authors":"S. Wheat, E. Sbiroli, M. Dunn, B. Chekuri, Amanda Millstein, Terry O'Connor, C. Rublee, J. Lemery, Vijay S. Limaye","doi":"10.1088/2752-5309/acc887","DOIUrl":"https://doi.org/10.1088/2752-5309/acc887","url":null,"abstract":"While evidence points to climate change adversely impacting health and wellbeing, there remains a great need for more authoritative and actionable data that better describes the full magnitude and scope of this growing crisis. Given the uncertainty inherent to current detection and attribution studies, the improved specificity offered by the 10th revision of the International Classification of Diseases (ICD-10) coding of climate-sensitive health outcomes at the point of care may help to better quantify the connection between more intense and frequent extreme weather events and specific health sequela. With improved application of the available ICD-10 codes designed to capture climate-sensitive health outcomes, the ICD-10 system can function as a leading indicator. In this collaboration, publicly available ICD-10 code data was downloaded from Centers for Medicare and Medicaid Services archives and cross-referenced with 29 keywords (e.g. heat, hurricane, smoke, etc) determined by relevance to climate impacts on human health from consensus literature. We identified 46 unique ICD-10 codes for climate-sensitive health conditions. By highlighting the need for broader application of these codes and advocating for the development of new codes that better document the growing burden of climate-sensitive health outcomes, we hope to drive the development of more evidence-based, health-protective interdisciplinary climate action strategies across health systems.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43521805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.1088/2752-5309/acc680
K. Clark, M. Sheehan
The emergence and global spread of the COVID-19 pandemic in 2020 converged with wildfire seasons of unprecedented extent. These co-occurring crises brought the potential for amplified health impacts. A systematized literature review was conducted to identify the health impacts from co-exposure to wildfires and the COVID-19 pandemic. A search of PubMed and Scopus identified 373 distinct references which were screened according to predetermined criteria. A total of 22 peer-reviewed publications were included in the final analysis. Studies were located in Australia and the western United States, with a single study in the Amazonian region of Brazil. The studies identified focused primarily on the impact of wildfire smoke exposure on COVID-19 infection and mortality, and the impact of exposure to both crises on mental health. The collective evidence shows that wildfire exposure within the context of the pandemic exacerbated COVID-19 infection and mortality as well as various adverse mental health effects. Additional research is needed in more diverse contexts and with individual-level data. Findings highlight the need for public health preparedness to anticipate overlapping, related crises and to advance climate change mitigation to protect public health.
{"title":"Wildfires and the COVID-19 pandemic: a systematized literature review of converging health crises","authors":"K. Clark, M. Sheehan","doi":"10.1088/2752-5309/acc680","DOIUrl":"https://doi.org/10.1088/2752-5309/acc680","url":null,"abstract":"The emergence and global spread of the COVID-19 pandemic in 2020 converged with wildfire seasons of unprecedented extent. These co-occurring crises brought the potential for amplified health impacts. A systematized literature review was conducted to identify the health impacts from co-exposure to wildfires and the COVID-19 pandemic. A search of PubMed and Scopus identified 373 distinct references which were screened according to predetermined criteria. A total of 22 peer-reviewed publications were included in the final analysis. Studies were located in Australia and the western United States, with a single study in the Amazonian region of Brazil. The studies identified focused primarily on the impact of wildfire smoke exposure on COVID-19 infection and mortality, and the impact of exposure to both crises on mental health. The collective evidence shows that wildfire exposure within the context of the pandemic exacerbated COVID-19 infection and mortality as well as various adverse mental health effects. Additional research is needed in more diverse contexts and with individual-level data. Findings highlight the need for public health preparedness to anticipate overlapping, related crises and to advance climate change mitigation to protect public health.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43077652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-09DOI: 10.1088/2752-5309/acc2dc
Lara Schwarz, Rosana Aguilera, Javier Emmanuel Castillo Quiñones, L. C. Aguilar-Dodier, María Evarista Arellano García, T. Benmarhnia
2020 broke records for the most active fire year on the West Coast, resulting in the worst air quality observed in decades. Concurrently, the public health threat of COVID-19 caused over 1 million deaths in the United States (US) and Mexico in 2020 and 2021. Due to the effect of air pollution on respiratory diseases, wildfire-specific particulate matter is a hypothesized driver of COVID-19 severity and death. Capitalizing on wildfire smoke that hit the San Diego-Tijuana border region in September 2020, we applied synthetic control methods to explore its potential differential role in affecting COVID-19 mortality on both sides of the border. Daily data on COVID-19 cumulative deaths for US counties were obtained from the CDC COVID tracker and data for Mexican municipalities was obtained from the Mexican Secretary of Health. Counties and municipalities with wildfire smoke exposure were identified using the National Oceanic and Atmospheric Administration hazard mapping smoke product (HMS); a day where 90% of the area was covered by smoke was considered exposed for the main analyses. Unexposed counties/municipalities were considered as potential controls. The San Diego-Tijuana border region was covered by dense smoke by the 7th of September; 707 COVID-19 deaths had occurred in San Diego and 1367 in Tijuana. While a slight increase in cumulative mortality was observed in San Diego, no change was found in Tijuana; neither estimate indicated a strong precise effect of wildfire smoke on COVID-19 mortality. We hope this study will serve as an illustration of how border contexts can be used to investigate differential vulnerability to wildfire smoke for infectious diseases. Examining the interactive effect of COVID-19 and smoke can help in recognizing the implications of these dual health risks which will be increasingly important as wildfires become more frequent and severe in the context of climate change.
{"title":"The potential impact of wildfire smoke on COVID-19 cumulative deaths in the San Diego-Tijuana border region","authors":"Lara Schwarz, Rosana Aguilera, Javier Emmanuel Castillo Quiñones, L. C. Aguilar-Dodier, María Evarista Arellano García, T. Benmarhnia","doi":"10.1088/2752-5309/acc2dc","DOIUrl":"https://doi.org/10.1088/2752-5309/acc2dc","url":null,"abstract":"2020 broke records for the most active fire year on the West Coast, resulting in the worst air quality observed in decades. Concurrently, the public health threat of COVID-19 caused over 1 million deaths in the United States (US) and Mexico in 2020 and 2021. Due to the effect of air pollution on respiratory diseases, wildfire-specific particulate matter is a hypothesized driver of COVID-19 severity and death. Capitalizing on wildfire smoke that hit the San Diego-Tijuana border region in September 2020, we applied synthetic control methods to explore its potential differential role in affecting COVID-19 mortality on both sides of the border. Daily data on COVID-19 cumulative deaths for US counties were obtained from the CDC COVID tracker and data for Mexican municipalities was obtained from the Mexican Secretary of Health. Counties and municipalities with wildfire smoke exposure were identified using the National Oceanic and Atmospheric Administration hazard mapping smoke product (HMS); a day where 90% of the area was covered by smoke was considered exposed for the main analyses. Unexposed counties/municipalities were considered as potential controls. The San Diego-Tijuana border region was covered by dense smoke by the 7th of September; 707 COVID-19 deaths had occurred in San Diego and 1367 in Tijuana. While a slight increase in cumulative mortality was observed in San Diego, no change was found in Tijuana; neither estimate indicated a strong precise effect of wildfire smoke on COVID-19 mortality. We hope this study will serve as an illustration of how border contexts can be used to investigate differential vulnerability to wildfire smoke for infectious diseases. Examining the interactive effect of COVID-19 and smoke can help in recognizing the implications of these dual health risks which will be increasingly important as wildfires become more frequent and severe in the context of climate change.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42293860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-09DOI: 10.1088/2752-5309/acc2dd
D. Helldén, R. Ndejjo, Amanda Sturm, Ida Persson, R. Wanyenze, K. Ebi, M. Nilsson, T. Alfvén
Children are bearing and will continue to bear a high burden from climate change, through direct and indirect pathways. Climate change adaptation interventions are essential to limit the current and projected impacts of climate change on child health. However, the perspective of children and their health with regards to adaptation in research and policy is limited. Ensuring that adaptation interventions are context specific, consider interrelated barriers to implementation and leverage existing structures including multisectoral collaboration is vital. Further, a life-course perspective on child health and well-being could serve as a template for tailoring adaptation interventions to the specific vulnerabilities and needs of specific development periods of the child. A meaningful engagement of children and young persons in the design and implementation of adaptation interventions is essential to increase effectiveness and uptake. With climate change effecting millions of children worldwide, it is high time to put child health at the center of adaptation.
{"title":"Climate change adaptation across the life-course - from pregnancy to adolescence – it’s time to advance the field of climate change and child health","authors":"D. Helldén, R. Ndejjo, Amanda Sturm, Ida Persson, R. Wanyenze, K. Ebi, M. Nilsson, T. Alfvén","doi":"10.1088/2752-5309/acc2dd","DOIUrl":"https://doi.org/10.1088/2752-5309/acc2dd","url":null,"abstract":"Children are bearing and will continue to bear a high burden from climate change, through direct and indirect pathways. Climate change adaptation interventions are essential to limit the current and projected impacts of climate change on child health. However, the perspective of children and their health with regards to adaptation in research and policy is limited. Ensuring that adaptation interventions are context specific, consider interrelated barriers to implementation and leverage existing structures including multisectoral collaboration is vital. Further, a life-course perspective on child health and well-being could serve as a template for tailoring adaptation interventions to the specific vulnerabilities and needs of specific development periods of the child. A meaningful engagement of children and young persons in the design and implementation of adaptation interventions is essential to increase effectiveness and uptake. With climate change effecting millions of children worldwide, it is high time to put child health at the center of adaptation.","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47318591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1088/2752-5309/ac78fa
Jennifer D Stowell, Yuantong Sun, Keith R Spangler, Chad W Milando, Aaron Bernstein, Kate R Weinberger, Shengzhi Sun, Gregory A Wellenius
High ambient temperatures have become more likely due to climate change and are linked to higher rates of heat-related illness, respiratory and cardiovascular diseases, mental health disorders, and other diseases. To date, far fewer studies have examined the effects of high temperatures on children versus adults, and studies including children have seldom been conducted on a national scale. Compared to adults, children have behavioral and physiological differences that may give them differential heat vulnerability. We acquired medical claims data from a large database of commercially insured US children aged 0-17 from May to September (warm-season) 2016-2019. Daily maximum ambient temperature and daily mean relative humidity estimates were aggregated to the county level using the Parameter-elevation Relationships on Independent Slopes dataset, and extreme heat was defined as the 95th percentile of the county-specific daily maximum temperature distribution. Using a case-crossover design and temperature lags 0-5 days, we estimated the associations between extreme heat and cause-specific emergency department visits (ED) in children aged <18 years, using the median county-specific daily maximum temperature distribution as the reference. Approximately 1.2 million ED visits in children from 2489 US counties were available during the study period. The 95th percentile of warm-season temperatures ranged from 71 °F to 112 °F (21.7 °C to 44.4 °C). Comparing 95th to the 50th percentile, extreme heat was associated with higher rates of ED visits for heat-related illness; endocrine, nutritional and metabolic diseases; and otitis media and externa, but not for all-cause admissions. Subgroup analyses suggested differences by age, with extreme heat positively associated with heat-related illness for both the 6-12 year (odds ratio [OR]: 1.34, 95% confidence interval [CI]: 1.16, 1.56) and 13-17 year age groups (OR: 1.55, 95% CI: 1.37, 1.76). Among children with health insurance across the US, days of extreme heat were associated with higher rates of healthcare utilization. These results highlight the importance of individual and population-level actions to protect children and adolescents from extreme heat, particularly in the context of continued climate change.
{"title":"Warm-season temperatures and emergency department visits among children with health insurance.","authors":"Jennifer D Stowell, Yuantong Sun, Keith R Spangler, Chad W Milando, Aaron Bernstein, Kate R Weinberger, Shengzhi Sun, Gregory A Wellenius","doi":"10.1088/2752-5309/ac78fa","DOIUrl":"https://doi.org/10.1088/2752-5309/ac78fa","url":null,"abstract":"<p><p>High ambient temperatures have become more likely due to climate change and are linked to higher rates of heat-related illness, respiratory and cardiovascular diseases, mental health disorders, and other diseases. To date, far fewer studies have examined the effects of high temperatures on children versus adults, and studies including children have seldom been conducted on a national scale. Compared to adults, children have behavioral and physiological differences that may give them differential heat vulnerability. We acquired medical claims data from a large database of commercially insured US children aged 0-17 from May to September (warm-season) 2016-2019. Daily maximum ambient temperature and daily mean relative humidity estimates were aggregated to the county level using the Parameter-elevation Relationships on Independent Slopes dataset, and extreme heat was defined as the 95th percentile of the county-specific daily maximum temperature distribution. Using a case-crossover design and temperature lags 0-5 days, we estimated the associations between extreme heat and cause-specific emergency department visits (ED) in children aged <18 years, using the median county-specific daily maximum temperature distribution as the reference. Approximately 1.2 million ED visits in children from 2489 US counties were available during the study period. The 95th percentile of warm-season temperatures ranged from 71 °F to 112 °F (21.7 °C to 44.4 °C). Comparing 95th to the 50th percentile, extreme heat was associated with higher rates of ED visits for heat-related illness; endocrine, nutritional and metabolic diseases; and otitis media and externa, but not for all-cause admissions. Subgroup analyses suggested differences by age, with extreme heat positively associated with heat-related illness for both the 6-12 year (odds ratio [OR]: 1.34, 95% confidence interval [CI]: 1.16, 1.56) and 13-17 year age groups (OR: 1.55, 95% CI: 1.37, 1.76). Among children with health insurance across the US, days of extreme heat were associated with higher rates of healthcare utilization. These results highlight the importance of individual and population-level actions to protect children and adolescents from extreme heat, particularly in the context of continued climate change.</p>","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":"1 1","pages":"015002"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10375213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}