Rebecca H. Peel, Charlotte E. M. Lloyd, Stephen J. Roberts, B. D. A. Naafs and Ian D. Bull
Microplastic pollution is a growing environmental problem. Consequently, an emerging area of research is the analysis of these micro-particles, to identify the distribution and impacts of plastic in the environment. This paper details the development and application of a pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) method for the quantification of microplastic pollution in terrestrial samples. Initial analysis of plastic standards using Py-GC-MS revealed diagnostic pyrolytic products, which were utilised alongside internal standards and linear regression to create calibrations for each studied synthetic plastic. A microplastic extraction protocol for soils and sediments was developed, namely an overnight density separation with wet peroxide digestion, and its efficacy confirmed through spiking and recovery experiments. Matrix effects were observed for PE, PS and PVC, highlighting the need to use multiple diagnostic compounds per plastic, where possible. Overall, these findings demonstrate that Py-GC-MS can be successfully applied for the determination of microplastic concentrations in terrestrial samples, with a view to establishing effective mitigation strategies.
{"title":"Quantification of microplastic targets in environmental matrices using pyrolysis-gas chromatography-mass spectrometry†","authors":"Rebecca H. Peel, Charlotte E. M. Lloyd, Stephen J. Roberts, B. D. A. Naafs and Ian D. Bull","doi":"10.1039/D4VA00269E","DOIUrl":"https://doi.org/10.1039/D4VA00269E","url":null,"abstract":"<p >Microplastic pollution is a growing environmental problem. Consequently, an emerging area of research is the analysis of these micro-particles, to identify the distribution and impacts of plastic in the environment. This paper details the development and application of a pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) method for the quantification of microplastic pollution in terrestrial samples. Initial analysis of plastic standards using Py-GC-MS revealed diagnostic pyrolytic products, which were utilised alongside internal standards and linear regression to create calibrations for each studied synthetic plastic. A microplastic extraction protocol for soils and sediments was developed, namely an overnight density separation with wet peroxide digestion, and its efficacy confirmed through spiking and recovery experiments. Matrix effects were observed for PE, PS and PVC, highlighting the need to use multiple diagnostic compounds per plastic, where possible. Overall, these findings demonstrate that Py-GC-MS can be successfully applied for the determination of microplastic concentrations in terrestrial samples, with a view to establishing effective mitigation strategies.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 159-171"},"PeriodicalIF":3.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00269e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madeleine Bradley, Danielle Land, Darrin A. Thompson and David M. Cwiertny
The global burden of chronic kidney disease (CKD) in terms of mortality and disability-adjusted life years has increased, and this trend is expected to worsen over the next few decades. The primary cause of CKD is known to be due to hypertension and diabetes, however, over the last three decades, a form of CKD has been described in people without any known risk factors. These cases can be described as chronic kidney disease of an unknown etiology (CKDu). Cases of CKDu are rising primarily among rural agricultural communities in affected regions and occur mostly among young male farmers. There is no agreement on whether CKDu in these emerging clusters represents a single disease or a group of different diseases. As such, hypothesized causes of CKDu development include chronic occupational heat stress and dehydration, as well as exposure to environmental contaminants and agrochemicals, such as heavy metals and pesticides. The purpose of this critical review is to bring together the current literature on proposed CKDu etiologies, specifically those related to work in the agricultural sector. This review examines what is known about these occupational and environmental factors and their potential impact on the widespread epidemics of CKDu.
{"title":"A critical review of a hidden epidemic: examining the occupational and environmental risk factors of chronic kidney disease of unknown etiology (CKDu)","authors":"Madeleine Bradley, Danielle Land, Darrin A. Thompson and David M. Cwiertny","doi":"10.1039/D4VA00304G","DOIUrl":"https://doi.org/10.1039/D4VA00304G","url":null,"abstract":"<p >The global burden of chronic kidney disease (CKD) in terms of mortality and disability-adjusted life years has increased, and this trend is expected to worsen over the next few decades. The primary cause of CKD is known to be due to hypertension and diabetes, however, over the last three decades, a form of CKD has been described in people without any known risk factors. These cases can be described as chronic kidney disease of an unknown etiology (CKDu). Cases of CKDu are rising primarily among rural agricultural communities in affected regions and occur mostly among young male farmers. There is no agreement on whether CKDu in these emerging clusters represents a single disease or a group of different diseases. As such, hypothesized causes of CKDu development include chronic occupational heat stress and dehydration, as well as exposure to environmental contaminants and agrochemicals, such as heavy metals and pesticides. The purpose of this critical review is to bring together the current literature on proposed CKDu etiologies, specifically those related to work in the agricultural sector. This review examines what is known about these occupational and environmental factors and their potential impact on the widespread epidemics of CKDu.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 57-76"},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00304g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel G. de Barros, Anna De Falco, Carlos Leonny R. Fragoso, Luis Fhernando Mendonça da Silva, Adriana Gioda and Roberto Bentes de Carvalho
The current study, conducted over a year, involved a comprehensive analysis of water samples from the Rainha River. This river crosses the Pontifical Catholic University of Rio de Janeiro Campus to assess water quality and potential applications. The samples underwent rigorous physical–chemical tests, including metal concentrations, pH, turbidity and toxicity assessments. The water collected and analysed by the standards proposed by CONAMA was found to be below the limit of regulation, classified at class 1, and requiring only a simplified treatment to remove microorganisms and achieve potability. Toxicity tests using Saccharomyces cerevisiae were performed to examine biological effects, revealing no significant toxicity. The next step was to design a water treatment plant, following the viability, water studies and identification. The process involved designing a block diagram and, later, the process flow diagram (PFD). The processes consist of getting water, passing through microfiltration, decontaminating it with hypochlorite, and using adsorption methods to turn it into a potable and useable on campus, thereby ensuring a safe and sustainable water supply for the university community.
{"title":"Physicochemical analysis and toxicity of the Rainha River waters: conceptual design of a treatment plant","authors":"Gabriel G. de Barros, Anna De Falco, Carlos Leonny R. Fragoso, Luis Fhernando Mendonça da Silva, Adriana Gioda and Roberto Bentes de Carvalho","doi":"10.1039/D4VA00252K","DOIUrl":"https://doi.org/10.1039/D4VA00252K","url":null,"abstract":"<p >The current study, conducted over a year, involved a comprehensive analysis of water samples from the Rainha River. This river crosses the Pontifical Catholic University of Rio de Janeiro Campus to assess water quality and potential applications. The samples underwent rigorous physical–chemical tests, including metal concentrations, pH, turbidity and toxicity assessments. The water collected and analysed by the standards proposed by CONAMA was found to be below the limit of regulation, classified at class 1, and requiring only a simplified treatment to remove microorganisms and achieve potability. Toxicity tests using <em>Saccharomyces cerevisiae</em> were performed to examine biological effects, revealing no significant toxicity. The next step was to design a water treatment plant, following the viability, water studies and identification. The process involved designing a block diagram and, later, the process flow diagram (PFD). The processes consist of getting water, passing through microfiltration, decontaminating it with hypochlorite, and using adsorption methods to turn it into a potable and useable on campus, thereby ensuring a safe and sustainable water supply for the university community.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 2","pages":" 245-251"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00252k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nidhi H. Oza, Dinkal Kasundra, Amar G. Deshmukh, Niteen Borane, Rajamouli Boddula and Paresh N. Patel
Hydrazine is a very toxic chemical that poses a major threat to human health and the environment. As a further expansion of our ongoing research, this report validates the enhanced real-time hydrazine sensing using benzothiophene-based semi-bis-chalcone (SBC). Hypothesized SBC molecules that can be easily attacked by nucleophilic groups were synthesised via classical Claisen–Schmidt condensation. Two derivatives of novel SBC scaffolds were synthesised by the reaction of simple acetone with benzothiophene carbaldehydes. This reaction involved the use of KOH and pyrrolidine as catalysts, and they demonstrated two different processes in comparative studies. KOH worked as a speedy catalyst, while pyrrolidine was demonstrated to be a more efficient catalyst. The structures of the synthesised compounds were established by various spectral techniques. The optical properties of the prepared SBCs were studied in different solvent systems and demonstrated that methanol was the more suitable solvent. Density functional theory (DFT) calculations of both compounds in methanol were performed using the Gaussian software. Time-dependent density functional theory (TDDFT) calculations were performed to study the dynamic behaviour of electrons in both molecules and materials by considering their density as a function of time. Both DFT and TDDFT calculations were observed to have a good correlation with the experimental results. The obtained absorption and photoluminescence results and their theoretical correlation suggested that the prepared SBCs can be optimized for applications in optoelectronics, sensing, and bioimaging. As an improvement to our earlier protocol, more efficient real-time hydrazine sensing SBCs probes were established with prolonged π-conjugation. An exhaustive protocol with a working pH range, analyte selectivity, and real sample test was developed. The studied SBCs showed a broad working pH range and excellent hydrazine sensing selectivity. With these two included in our large library of photoresponsive molecules, we aim to construct a model device for hydrazine sensing in real life applications.
{"title":"Benzothiophene based semi-bis-chalcone as a photo-luminescent chemosensor with real-time hydrazine sensing and DFT studies†","authors":"Nidhi H. Oza, Dinkal Kasundra, Amar G. Deshmukh, Niteen Borane, Rajamouli Boddula and Paresh N. Patel","doi":"10.1039/D4VA00306C","DOIUrl":"https://doi.org/10.1039/D4VA00306C","url":null,"abstract":"<p >Hydrazine is a very toxic chemical that poses a major threat to human health and the environment. As a further expansion of our ongoing research, this report validates the enhanced real-time hydrazine sensing using benzothiophene-based semi-bis-chalcone (SBC). Hypothesized SBC molecules that can be easily attacked by nucleophilic groups were synthesised <em>via</em> classical Claisen–Schmidt condensation. Two derivatives of novel SBC scaffolds were synthesised by the reaction of simple acetone with benzothiophene carbaldehydes. This reaction involved the use of KOH and pyrrolidine as catalysts, and they demonstrated two different processes in comparative studies. KOH worked as a speedy catalyst, while pyrrolidine was demonstrated to be a more efficient catalyst. The structures of the synthesised compounds were established by various spectral techniques. The optical properties of the prepared SBCs were studied in different solvent systems and demonstrated that methanol was the more suitable solvent. Density functional theory (DFT) calculations of both compounds in methanol were performed using the Gaussian software. Time-dependent density functional theory (TDDFT) calculations were performed to study the dynamic behaviour of electrons in both molecules and materials by considering their density as a function of time. Both DFT and TDDFT calculations were observed to have a good correlation with the experimental results. The obtained absorption and photoluminescence results and their theoretical correlation suggested that the prepared SBCs can be optimized for applications in optoelectronics, sensing, and bioimaging. As an improvement to our earlier protocol, more efficient real-time hydrazine sensing SBCs probes were established with prolonged π-conjugation. An exhaustive protocol with a working pH range, analyte selectivity, and real sample test was developed. The studied SBCs showed a broad working pH range and excellent hydrazine sensing selectivity. With these two included in our large library of photoresponsive molecules, we aim to construct a model device for hydrazine sensing in real life applications.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 2","pages":" 235-244"},"PeriodicalIF":3.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00306c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krittika Mittal, Ke Xu, Jingyun Zheng, Stephane Bayen, Julius Fobil and Niladri Basu
Effect-based methods (EBM) are of growing interest in environmental monitoring programs. Few EBM have incorporated transcriptomics even though these provide a wealth of biological information and can be modeled to yield transcriptomic points of departure (tPODs). The study objectives were to: (A) characterize cytotoxic effects of soil extracts on the rainbow trout RTgill-W1 and the human Caco-2 cell lines; (B) measure gene expression changes and calculate tPODs; and (C) compare in vitro responses to available measures of plastic-related compounds and metals. Extracts were prepared from 35 soil samples collected at the Agbogbloshie E-waste site (Accra, Ghana). Cells were exposed to six soil concentrations (0.3 to 9.4 mg dry weight of extract (eQsed) per mL). Many samples caused cytotoxicity with RTgill cells being more sensitive than Caco-2 cells. Eleven samples were analyzed for transcriptomics in both cell lines, with responses measured in all samples (52 to 5925 differentially expressed genes) even in the absence of cytotoxicity. In RTgill cells there was concordance between cytotoxic measures in tPOD values (spearman = 0.85). Though trends between in vitro measures and contaminant data were observed, more work is needed in this area before definitive conclusions are drawn. Nonetheless, this study helps support ongoing efforts in establishing alternative testing strategies (e.g., alternative to animal methods; toxicogenomics) for the assessment of complex environmental samples.
{"title":"Cytotoxic and molecular effects of soil extracts from the Agbogbloshie electronic-waste site on fish and human cell lines†","authors":"Krittika Mittal, Ke Xu, Jingyun Zheng, Stephane Bayen, Julius Fobil and Niladri Basu","doi":"10.1039/D4VA00178H","DOIUrl":"https://doi.org/10.1039/D4VA00178H","url":null,"abstract":"<p >Effect-based methods (EBM) are of growing interest in environmental monitoring programs. Few EBM have incorporated transcriptomics even though these provide a wealth of biological information and can be modeled to yield transcriptomic points of departure (tPODs). The study objectives were to: (A) characterize cytotoxic effects of soil extracts on the rainbow trout RTgill-W1 and the human Caco-2 cell lines; (B) measure gene expression changes and calculate tPODs; and (C) compare <em>in vitro</em> responses to available measures of plastic-related compounds and metals. Extracts were prepared from 35 soil samples collected at the Agbogbloshie E-waste site (Accra, Ghana). Cells were exposed to six soil concentrations (0.3 to 9.4 mg dry weight of extract (eQsed) per mL). Many samples caused cytotoxicity with RTgill cells being more sensitive than Caco-2 cells. Eleven samples were analyzed for transcriptomics in both cell lines, with responses measured in all samples (52 to 5925 differentially expressed genes) even in the absence of cytotoxicity. In RTgill cells there was concordance between cytotoxic measures in tPOD values (spearman = 0.85). Though trends between <em>in vitro</em> measures and contaminant data were observed, more work is needed in this area before definitive conclusions are drawn. Nonetheless, this study helps support ongoing efforts in establishing alternative testing strategies (<em>e.g.</em>, alternative to animal methods; toxicogenomics) for the assessment of complex environmental samples.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 12","pages":" 1802-1813"},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00178h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michaela K. Reay, Martine Graf, Lucy M. Greenfield, Rafael Bargiela, Charles Onyije, Charlotte E. M. Lloyd, Ian D. Bull, Richard P. Evershed, Peter N. Golyshin, David R. Chadwick and Davey L. Jones
Biodegradable plastic offers an alternative to conventional plastic for use in agriculture. However, slower degradation in the environment compared to industrial composting and high production of microplastics is of growing concern and poses the question whether they represent a viable replacement. It remains unclear whether observed effects of biodegradable plastics on the soil microbial community and plant nutrient uptake are from biodegradation or from the abiotic effects of the microplastics themselves. The aim of this study was to quantify the biodegradation of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), at increasing microplastic loadings (0.06–3.2% w/w) via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) alongside effects on soil health and plant growth (Zea mays L.). Between 1.5 and 5% of PHBV microplastic was degraded in soil after 8 weeks, with the rate declining with increasing PHBV concentrations due to microbial nitrogen (N) limitation, demonstrated by increased investment in N-cycling enzymes. Plants were also limited by both N and phosphorus (P). Greater extractable soil ammonium and nitrate contradicted N limitation, however, increases in soil hydrophobicity likely limited mobility, and thus plant and microbial utilisation. As a result, increased C from PHBV degradation did not result in a concurrent increase in microbial biomass, which was reduced under higher PHBV microplastic loading, indicating low microbial carbon use efficiency. While high PHBV microplastic loadings resulted in significant effects on the microbial community size and structure, soil properties and plant growth, there were minimal effects at low PHBV concentrations (0.06% w/w). Observations of nutrient limitation at higher plastic loadings has significant implications for the design of standard biodegradation assays, which must consider both abiotic and biotic effects of microplastic on soil nutrient cycling.
{"title":"Microbial degradation of bioplastic (PHBV) is limited by nutrient availability at high microplastic loadings†","authors":"Michaela K. Reay, Martine Graf, Lucy M. Greenfield, Rafael Bargiela, Charles Onyije, Charlotte E. M. Lloyd, Ian D. Bull, Richard P. Evershed, Peter N. Golyshin, David R. Chadwick and Davey L. Jones","doi":"10.1039/D4VA00311J","DOIUrl":"https://doi.org/10.1039/D4VA00311J","url":null,"abstract":"<p >Biodegradable plastic offers an alternative to conventional plastic for use in agriculture. However, slower degradation in the environment compared to industrial composting and high production of microplastics is of growing concern and poses the question whether they represent a viable replacement. It remains unclear whether observed effects of biodegradable plastics on the soil microbial community and plant nutrient uptake are from biodegradation or from the abiotic effects of the microplastics themselves. The aim of this study was to quantify the biodegradation of the bioplastic poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyvalerate) (PHBV), at increasing microplastic loadings (0.06–3.2% <em>w</em>/<em>w</em>) <em>via</em> pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) alongside effects on soil health and plant growth (<em>Zea mays</em> L.). Between 1.5 and 5% of PHBV microplastic was degraded in soil after 8 weeks, with the rate declining with increasing PHBV concentrations due to microbial nitrogen (N) limitation, demonstrated by increased investment in N-cycling enzymes. Plants were also limited by both N and phosphorus (P). Greater extractable soil ammonium and nitrate contradicted N limitation, however, increases in soil hydrophobicity likely limited mobility, and thus plant and microbial utilisation. As a result, increased C from PHBV degradation did not result in a concurrent increase in microbial biomass, which was reduced under higher PHBV microplastic loading, indicating low microbial carbon use efficiency. While high PHBV microplastic loadings resulted in significant effects on the microbial community size and structure, soil properties and plant growth, there were minimal effects at low PHBV concentrations (0.06% <em>w</em>/<em>w</em>). Observations of nutrient limitation at higher plastic loadings has significant implications for the design of standard biodegradation assays, which must consider both abiotic and biotic effects of microplastic on soil nutrient cycling.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 133-146"},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00311j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Municipal wastewater treatment plants (WWTPs) with sequencing batch reactors (SBRs) face many challenges due to organic shock load (OSL) flocculation caused by population growth and industrialization. Guaranteeing that effluent quality remains within regulatory limits is vital for environmental protection and public health. Using conventional methods for managing variations in OSL faces a lot of difficulties, specifically when it comes to accurately predicting the effluent quality that complies with regulatory standards. This study addressed this by integrating a machine learning (ML) model, to anticipate how varying OSL can affect the effluent quality of an operational SBR WWTP located in Egypt. The novelty of this research lies in using ML to predict the system's performance when applied to different OSL scenarios, showing a dynamic method for SBR optimization operations. Initial trials with OSL values of 2× and 1.6× the actual influent levels resulted in non-compliance with regulatory standards, whereas the optimal OSL was determined to be 1.3×. The study illustrates that the incorporation of ML into the process results in superior plant performance and greater decision-making amid variable settings, presenting an innovative approach for employing data-driven models in municipal wastewater treatment, and yielding fresh perspectives on the improvement of WWTP operations.
{"title":"Machine learning application in municipal wastewater treatment to enhance the performance of a sequencing batch reactor wastewater treatment plant","authors":"Hagar H. Hassan","doi":"10.1039/D4VA00285G","DOIUrl":"https://doi.org/10.1039/D4VA00285G","url":null,"abstract":"<p >Municipal wastewater treatment plants (WWTPs) with sequencing batch reactors (SBRs) face many challenges due to organic shock load (OSL) flocculation caused by population growth and industrialization. Guaranteeing that effluent quality remains within regulatory limits is vital for environmental protection and public health. Using conventional methods for managing variations in OSL faces a lot of difficulties, specifically when it comes to accurately predicting the effluent quality that complies with regulatory standards. This study addressed this by integrating a machine learning (ML) model, to anticipate how varying OSL can affect the effluent quality of an operational SBR WWTP located in Egypt. The novelty of this research lies in using ML to predict the system's performance when applied to different OSL scenarios, showing a dynamic method for SBR optimization operations. Initial trials with OSL values of 2× and 1.6× the actual influent levels resulted in non-compliance with regulatory standards, whereas the optimal OSL was determined to be 1.3×. The study illustrates that the incorporation of ML into the process results in superior plant performance and greater decision-making amid variable settings, presenting an innovative approach for employing data-driven models in municipal wastewater treatment, and yielding fresh perspectives on the improvement of WWTP operations.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 125-132"},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00285g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present work unveils a process to synthesize silver (Ag) and copper (Cu) doped zinc oxide (ZnO) nanoflowers for photocatalytic and antibacterial applications. Leucophyllum frutescens leaf extract (LFLE) was used for the rapid and efficient green synthesis of nanoparticles (NPs). The current study provides new insight into the fabrication of uniform exotic NPs with tunable size and shape that control their photocatalytic and therapeutic potential. UV-visible and photoluminescent spectroscopy exhibited the optical properties. The energy bandgap of 3.36 eV in the ZnONPs was reduced to 3.26, 3.21, and 3.24 eV, in Ag@ZnONPs, Cu@ZnONPs, and Ag–Cu@ZnONPs, respectively as calculated from the Tauc plots. Field-emission scanning electron microscope and high-resolution transmission electron microscope images revealed the flower-shaped morphology of the NPs. At the same time, energy dispersive spectra and elemental mapping confirmed the presence of Zn, O, Ag, and Cu in the respective NPs. X-ray diffraction confirmed the crystalline nature with the average crystallite size being 12.75 nm, 11.22 nm, 13.14 nm, and 13.23 nm for ZnONPs, Ag@ZnONPs, Cu@ZnONPs, and Ag–Cu@ZnONPs. Photocatalytic degradation of methylene blue dye was maximum in the Ag–Cu@ZnONPs that closely fitted with the pseudo-first-order reaction kinetics. Additionally, the Ag@ZnONPs with a higher aspect ratio due to smaller size resulted in superior antibacterial activity and synergy with antibiotics against Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. The results confirm the nanobiotechnological potential of L. frutescens which can be used for environmental remediation.
{"title":"Green synthesis of silver and copper-doped zinc oxide nanoflowers using Leucophyllum frutescens leaf extract for photodegradation of methylene blue dye and antibacterial applications†","authors":"Maitri Nandasana, Tanawat Imboon, Rashbihari Layek, Arindam Dey, Pranav Pandya, Vijay Singh Parihar, Madhumita S. Tawre, Santosh Sutar, Pathik Kumbhakar, Karishma Pardesi, Sirikanjana Thongmee and Sougata Ghosh","doi":"10.1039/D4VA00295D","DOIUrl":"https://doi.org/10.1039/D4VA00295D","url":null,"abstract":"<p >The present work unveils a process to synthesize silver (Ag) and copper (Cu) doped zinc oxide (ZnO) nanoflowers for photocatalytic and antibacterial applications. <em>Leucophyllum frutescens</em> leaf extract (LFLE) was used for the rapid and efficient green synthesis of nanoparticles (NPs). The current study provides new insight into the fabrication of uniform exotic NPs with tunable size and shape that control their photocatalytic and therapeutic potential. UV-visible and photoluminescent spectroscopy exhibited the optical properties. The energy bandgap of 3.36 eV in the ZnONPs was reduced to 3.26, 3.21, and 3.24 eV, in Ag@ZnONPs, Cu@ZnONPs, and Ag–Cu@ZnONPs, respectively as calculated from the Tauc plots. Field-emission scanning electron microscope and high-resolution transmission electron microscope images revealed the flower-shaped morphology of the NPs. At the same time, energy dispersive spectra and elemental mapping confirmed the presence of Zn, O, Ag, and Cu in the respective NPs. X-ray diffraction confirmed the crystalline nature with the average crystallite size being 12.75 nm, 11.22 nm, 13.14 nm, and 13.23 nm for ZnONPs, Ag@ZnONPs, Cu@ZnONPs, and Ag–Cu@ZnONPs. Photocatalytic degradation of methylene blue dye was maximum in the Ag–Cu@ZnONPs that closely fitted with the pseudo-first-order reaction kinetics. Additionally, the Ag@ZnONPs with a higher aspect ratio due to smaller size resulted in superior antibacterial activity and synergy with antibiotics against <em>Bacillus subtilis</em>, <em>Staphylococcus aureus</em>, and <em>Pseudomonas aeruginosa</em>. The results confirm the nanobiotechnological potential of <em>L. frutescens</em> which can be used for environmental remediation.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 97-114"},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00295d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Ammar, Sherif Ashraf and Jonas Baltrusaitis
The growing demand for food production worldwide has led to the increased use of fertilizers contributing to a range of environmental problems. To reduce these problems, the development of urea–hydroxyapatite (HAP) materials as nutrient-efficient fertilizer carriers has gained considerable attention as a more nutrient-efficient alternative to conventional nitrogen (N) and phosphorus (P) fertilizers. Conventional N fertilizers, such as urea, possess high solubility and rapidly release nitrogen leading to significant nutrient losses through leaching and volatilization. Conventional P fertilizers suffer from quite the opposite problem: they are quickly immobilized in soil and P release becomes very slow. HAP is a naturally occurring mineral and has been postulated, at the nanoscale, to release P at a controlled rate although risks associated with HAP nanoparticle occupational and environmental toxicity remain. HAP/urea hybrid materials present a unique opportunity for N–P–(Ca) fertilizer material design where innate properties of the parent materials, urea and HAP, are altered due to the purported chemical interactions, thus resulting in a novel and improved nutrient management paradigm. This review summarizes the developments in their synthesis, nutrient release and plant uptake while scrutinizing the reported underlying chemical interactions between both parent compounds, critical to the enhanced efficiency in soil.
{"title":"Hydroxyapatite/urea hybrid materials: what is the basis for the enhanced nutrient efficiency?","authors":"Mohamed Ammar, Sherif Ashraf and Jonas Baltrusaitis","doi":"10.1039/D4VA00197D","DOIUrl":"https://doi.org/10.1039/D4VA00197D","url":null,"abstract":"<p >The growing demand for food production worldwide has led to the increased use of fertilizers contributing to a range of environmental problems. To reduce these problems, the development of urea–hydroxyapatite (HAP) materials as nutrient-efficient fertilizer carriers has gained considerable attention as a more nutrient-efficient alternative to conventional nitrogen (N) and phosphorus (P) fertilizers. Conventional N fertilizers, such as urea, possess high solubility and rapidly release nitrogen leading to significant nutrient losses through leaching and volatilization. Conventional P fertilizers suffer from quite the opposite problem: they are quickly immobilized in soil and P release becomes very slow. HAP is a naturally occurring mineral and has been postulated, at the nanoscale, to release P at a controlled rate although risks associated with HAP nanoparticle occupational and environmental toxicity remain. HAP/urea hybrid materials present a unique opportunity for N–P–(Ca) fertilizer material design where innate properties of the parent materials, urea and HAP, are altered due to the purported chemical interactions, thus resulting in a novel and improved nutrient management paradigm. This review summarizes the developments in their synthesis, nutrient release and plant uptake while scrutinizing the reported underlying chemical interactions between both parent compounds, critical to the enhanced efficiency in soil.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 77-89"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00197d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana M. S. Paulo, Oihane Salazar, Joana Costa, Daniela P. Mesquita, Eugénio C. Ferreira, Paula M. L. Castro and Catarina L. Amorim
Saline wastewaters mainly result from various industrial activities. In response to water shortage, seawater is increasingly utilized for diverse purposes, leading to an increased production of saline wastewater. The presence of salts in wastewater frequently impairs the efficiency of biological wastewater treatment technologies. Among these, aerobic granular sludge (AGS) has emerged as the most effective aerobic biological treatment process for treating saline wastewater, primarily due to the high biomass aggregation and self-protection afforded by granules. In this study, the AGS biomass was acclimated to saline wastewater through a slow stepwise salt increment strategy over a period of ca. 250 days, from 0 to 14 g NaCl L−1. This acclimation strategy facilitated stable and efficient removal of carbon (>90%), phosphorus (>95%), and ammonium (>98%), without nitrite accumulation in the effluent. Notably, it was observed that the increase in extracellular polymeric substance (EPS) content was concomitant with the enrichment in EPS-producing bacteria, in the AGS biomass. Other salt tolerant bacteria were also enriched in the biomass, particularly those from the Lysobacter and Rhodocyclus bacterial genera, related to nutrient removal and AGS stability. Besides, the high nutrient removal performance was corroborated by the identification of bacteria responsible for these processes. Thus, by employing a slow stepwise increase of wastewater salinity, the AGS process successfully adapted by maintaining the metabolic diversity necessary for various biological removal processes. This study underscores the microbial selection and plasticity inherent in AGS processes, highlighting their significant potential for upgrading saline wastewater treatment.
{"title":"Unravelling microbiome changes in aerobic granular sludge saline wastewater treatment using a slow stepwise salt increase strategy†","authors":"Ana M. S. Paulo, Oihane Salazar, Joana Costa, Daniela P. Mesquita, Eugénio C. Ferreira, Paula M. L. Castro and Catarina L. Amorim","doi":"10.1039/D4VA00248B","DOIUrl":"https://doi.org/10.1039/D4VA00248B","url":null,"abstract":"<p >Saline wastewaters mainly result from various industrial activities. In response to water shortage, seawater is increasingly utilized for diverse purposes, leading to an increased production of saline wastewater. The presence of salts in wastewater frequently impairs the efficiency of biological wastewater treatment technologies. Among these, aerobic granular sludge (AGS) has emerged as the most effective aerobic biological treatment process for treating saline wastewater, primarily due to the high biomass aggregation and self-protection afforded by granules. In this study, the AGS biomass was acclimated to saline wastewater through a slow stepwise salt increment strategy over a period of <em>ca.</em> 250 days, from 0 to 14 g NaCl L<small><sup>−1</sup></small>. This acclimation strategy facilitated stable and efficient removal of carbon (>90%), phosphorus (>95%), and ammonium (>98%), without nitrite accumulation in the effluent. Notably, it was observed that the increase in extracellular polymeric substance (EPS) content was concomitant with the enrichment in EPS-producing bacteria, in the AGS biomass. Other salt tolerant bacteria were also enriched in the biomass, particularly those from the <em>Lysobacter</em> and <em>Rhodocyclus</em> bacterial genera, related to nutrient removal and AGS stability. Besides, the high nutrient removal performance was corroborated by the identification of bacteria responsible for these processes. Thus, by employing a slow stepwise increase of wastewater salinity, the AGS process successfully adapted by maintaining the metabolic diversity necessary for various biological removal processes. This study underscores the microbial selection and plasticity inherent in AGS processes, highlighting their significant potential for upgrading saline wastewater treatment.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 12","pages":" 1788-1801"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00248b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}