首页 > 最新文献

Extracellular vesicles and circulating nucleic acids最新文献

英文 中文
Extracellular vesicles: cross-organismal RNA trafficking in plants, microbes, and mammalian cells. 细胞外囊泡:植物、微生物和哺乳动物细胞中的跨生物RNA运输。
Pub Date : 2023-06-01 DOI: 10.20517/evcna.2023.10
Qiang Cai, Lida Halilovic, Ting Shi, Angela Chen, Baoye He, Huaitong Wu, Hailing Jin

Extracellular vesicles (EVs) are membrane-enclosed nanometer-scale particles that transport biological materials such as RNAs, proteins, and metabolites. EVs have been discovered in nearly all kingdoms of life as a form of cellular communication across different cells and between interacting organisms. EV research has primarily focused on EV-mediated intra-organismal transport in mammals, which has led to the characterization of a plethora of EV contents from diverse cell types with distinct and impactful physiological effects. In contrast, research into EV-mediated transport in plants has focused on inter-organismal interactions between plants and interacting microbes. However, the overall molecular content and functions of plant and microbial EVs remain largely unknown. Recent studies into the plant-pathogen interface have demonstrated that plants produce and secrete EVs that transport small RNAs into pathogen cells to silence virulence-related genes. Plant-interacting microbes such as bacteria and fungi also secrete EVs which transport proteins, metabolites, and potentially RNAs into plant cells to enhance their virulence. This review will focus on recent advances in EV-mediated communications in plant-pathogen interactions compared to the current state of knowledge of mammalian EV capabilities and highlight the role of EVs in cross-kingdom RNA interference.

细胞外囊泡(EVs)是膜封闭的纳米级颗粒,可运输生物材料,如rna、蛋白质和代谢物。在几乎所有的生命王国中都发现了电动汽车,作为不同细胞之间和相互作用的生物体之间的细胞通信形式。EV研究主要集中在哺乳动物中EV介导的体内运输,这导致了来自不同细胞类型的大量EV含量的表征,这些细胞类型具有不同的和有影响的生理效应。相比之下,对植物中ev介导的转运的研究主要集中在植物与相互作用的微生物之间的生物间相互作用。然而,植物和微生物电动汽车的整体分子含量和功能在很大程度上仍然未知。最近对植物-病原体界面的研究表明,植物产生并分泌ev,将小rna转运到病原体细胞中,以沉默毒力相关基因。与植物相互作用的微生物,如细菌和真菌,也会分泌ev,将蛋白质、代谢物和潜在的rna转运到植物细胞中,以增强其毒力。本文将重点介绍EV介导的植物-病原体相互作用通讯的最新进展,并将其与哺乳动物EV能力的现状进行比较,并强调EV在跨界RNA干扰中的作用。
{"title":"Extracellular vesicles: cross-organismal RNA trafficking in plants, microbes, and mammalian cells.","authors":"Qiang Cai,&nbsp;Lida Halilovic,&nbsp;Ting Shi,&nbsp;Angela Chen,&nbsp;Baoye He,&nbsp;Huaitong Wu,&nbsp;Hailing Jin","doi":"10.20517/evcna.2023.10","DOIUrl":"https://doi.org/10.20517/evcna.2023.10","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are membrane-enclosed nanometer-scale particles that transport biological materials such as RNAs, proteins, and metabolites. EVs have been discovered in nearly all kingdoms of life as a form of cellular communication across different cells and between interacting organisms. EV research has primarily focused on EV-mediated intra-organismal transport in mammals, which has led to the characterization of a plethora of EV contents from diverse cell types with distinct and impactful physiological effects. In contrast, research into EV-mediated transport in plants has focused on inter-organismal interactions between plants and interacting microbes. However, the overall molecular content and functions of plant and microbial EVs remain largely unknown. Recent studies into the plant-pathogen interface have demonstrated that plants produce and secrete EVs that transport small RNAs into pathogen cells to silence virulence-related genes. Plant-interacting microbes such as bacteria and fungi also secrete EVs which transport proteins, metabolites, and potentially RNAs into plant cells to enhance their virulence. This review will focus on recent advances in EV-mediated communications in plant-pathogen interactions compared to the current state of knowledge of mammalian EV capabilities and highlight the role of EVs in cross-kingdom RNA interference.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"4 2","pages":"262-282"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10008221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Extracellular vesicles in the treatment and prevention of osteoarthritis: can horses help us translate this therapy to humans? 治疗和预防骨关节炎的细胞外小泡:马能帮助我们将这种疗法应用于人类吗?
Pub Date : 2023-06-01 Epub Date: 2023-04-17 DOI: 10.20517/evcna.2023.11
Thomas J O'Brien, Fiona Hollinshead, Laurie R Goodrich

Osteoarthritis (OA) is a common joint disease affecting humans and horses, resulting in significant morbidity, financial expense, and loss of athletic use. While the pathogenesis is incompletely understood, inflammation is considered crucial in the development and progression of the disease. Mesenchymal stromal cells (MSCs) have received increasing scientific attention for their anti-inflammatory, immunomodulatory, and pro-regenerative effects. However, there are concerns about their ability to become a commercially available therapeutic. Extracellular vesicles (EVs) are now recognized to play a crucial role in the therapeutic efficacy observed with MSCs and offer a potentially novel cell-free therapeutic that may negate many of the concerns with MSCs. There is evidence that EVs have profound anti-inflammatory, immunomodulatory, and pro-regenerative effects equal to or greater than the MSCs they are derived from in the treatment of OA. Most of these studies are in small animal models, limiting the translation of these results to humans. However, highly translational animal models are crucial for further understanding the efficacy of potential therapeutics and for close comparisons with humans. For this reason, the horse, which experiences the same gravitational impacts on joints similar to people, is a highly relevant large animal species for testing. The equine species has well-designed and validated OA models, and additionally, therapies can be further tested in naturally occurring OA to validate preclinical model testing. Therefore, the horse is a highly suitable model to increase our knowledge of the therapeutic potential of EVs.

骨关节炎(OA)是一种影响人类和马匹的常见关节疾病,导致严重的发病率、经济支出和运动功能丧失。虽然发病机制尚不完全清楚,但炎症被认为在疾病的发展和进展中至关重要。间充质基质细胞(MSCs)因其抗炎、免疫调节和促再生作用而受到越来越多的科学关注。然而,人们对它们成为商业上可用的治疗药物的能力表示担忧。细胞外囊泡(EVs)现在被认为在MSCs的治疗效果中发挥着至关重要的作用,并提供了一种潜在的新的无细胞治疗方法,可以消除MSCs的许多担忧。有证据表明,EVs在OA治疗中具有与MSCs相同或更大的抗炎、免疫调节和促再生作用。这些研究大多是在小动物模型中进行的,这限制了这些结果对人类的转化。然而,高度转化的动物模型对于进一步了解潜在疗法的疗效以及与人类进行密切比较至关重要。因此,马对与人相似的关节产生了同样的重力影响,是一种非常适合测试的大型动物物种。马有精心设计和验证的OA模型,此外,可以在自然发生的OA中进一步测试疗法,以验证临床前模型测试。因此,马是一种非常适合增加我们对EVs治疗潜力的了解的模型。
{"title":"Extracellular vesicles in the treatment and prevention of osteoarthritis: can horses help us translate this therapy to humans?","authors":"Thomas J O'Brien, Fiona Hollinshead, Laurie R Goodrich","doi":"10.20517/evcna.2023.11","DOIUrl":"10.20517/evcna.2023.11","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common joint disease affecting humans and horses, resulting in significant morbidity, financial expense, and loss of athletic use. While the pathogenesis is incompletely understood, inflammation is considered crucial in the development and progression of the disease. Mesenchymal stromal cells (MSCs) have received increasing scientific attention for their anti-inflammatory, immunomodulatory, and pro-regenerative effects. However, there are concerns about their ability to become a commercially available therapeutic. Extracellular vesicles (EVs) are now recognized to play a crucial role in the therapeutic efficacy observed with MSCs and offer a potentially novel cell-free therapeutic that may negate many of the concerns with MSCs. There is evidence that EVs have profound anti-inflammatory, immunomodulatory, and pro-regenerative effects equal to or greater than the MSCs they are derived from in the treatment of OA. Most of these studies are in small animal models, limiting the translation of these results to humans. However, highly translational animal models are crucial for further understanding the efficacy of potential therapeutics and for close comparisons with humans. For this reason, the horse, which experiences the same gravitational impacts on joints similar to people, is a highly relevant large animal species for testing. The equine species has well-designed and validated OA models, and additionally, therapies can be further tested in naturally occurring OA to validate preclinical model testing. Therefore, the horse is a highly suitable model to increase our knowledge of the therapeutic potential of EVs.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"4 2","pages":"151-169"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41222065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. 结直肠癌癌症中GPI-锚定蛋白及其细胞外载体之间的新联系。
Pub Date : 2023-06-01 Epub Date: 2023-05-18 DOI: 10.20517/evcna.2023.17
Oleg S Tutanov, Sarah E Glass, Robert J Coffey

Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to "bring order to chaos." In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.

尽管细胞外小泡(EVs)是在40多年前发现的,但人们对分泌型小泡及其伴随的货物作为新的细胞内通信模式的兴趣再次高涨。除了囊泡外,最近还分离和表征了两种无膜纳米颗粒,外单体和超单体。在这个快速扩张的领域,将货物和特定功能分配给特定承运人一直是一项挑战。分离方法的改进、控制良好的研究以及细胞外小泡研究的最低信息(MISEV)所详述的指南正被用来“拨乱反正”。在这篇综述中,我们将简要总结结直肠癌癌症背景下的三种类型的细胞外载体-小EV(sEV)、外单体和超单体。我们发现,许多GPI锚定蛋白(GPI-AP)在CRC中过表达,在外泌体(sEV的一个独特亚群)中富集,并且可以在外泌物和超泌物中检测到。这提供了使用DPEP1(一种在CRC中上调的GPI-AP)作为主要例子来详细说明GPI-AP的生物发生、修饰和贩运的机会。我们已经对CRC中分泌的GPI锚定蛋白进行了编目,并将重点介绍我们检测到的部分CRC相关GPI锚定于蛋白的特征。最后,我们将讨论在CRC中研究这些分泌型GPI AP的剩余挑战和未来机遇。
{"title":"Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer.","authors":"Oleg S Tutanov, Sarah E Glass, Robert J Coffey","doi":"10.20517/evcna.2023.17","DOIUrl":"10.20517/evcna.2023.17","url":null,"abstract":"<p><p>Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to \"bring order to chaos.\" In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"4 2","pages":"195-217"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting extracellular vesicles as a "cell-free" regenerative medicine approach. 生物打印细胞外囊泡作为一种“无细胞”再生医学方法。
Pub Date : 2023-05-23 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2023.19
Kexin Jiao, Chun Liu, Saraswat Basu, Nimal Raveendran, Tamaki Nakano, Sašo Ivanovski, Pingping Han

Regenerative medicine involves the restoration of tissue or organ function via the regeneration of these structures. As promising regenerative medicine approaches, either extracellular vesicles (EVs) or bioprinting are emerging stars to regenerate various tissues and organs (i.e., bone and cardiac tissues). Emerging as highly attractive cell-free, off-the-shelf nanotherapeutic agents for tissue regeneration, EVs are bilayered lipid membrane particles that are secreted by all living cells and play a critical role as cell-to-cell communicators through an exchange of EV cargos of protein, genetic materials, and other biological components. 3D bioprinting, combining 3D printing and biology, is a state-of-the-art additive manufacturing technology that uses computer-aided processes to enable simultaneous patterning of 3D cells and tissue constructs in bioinks. Although developing an effective system for targeted EVs delivery remains challenging, 3D bioprinting may offer a promising means to improve EVs delivery efficiency with controlled loading and release. The potential application of 3D bioprinted EVs to regenerate tissues has attracted attention over the past few years. As such, it is timely to explore the potential and associated challenges of utilizing 3D bioprinted EVs as a novel "cell-free" alternative regenerative medicine approach. In this review, we describe the biogenesis and composition of EVs, and the challenge of isolating and characterizing small EVs - sEVs (< 200 nm). Common 3D bioprinting techniques are outlined and the issue of bioink printability is explored. After applying the following search strategy in PubMed: "bioprinted exosomes" or "3D bioprinted extracellular vesicles", eight studies utilizing bioprinted EVs were found that have been included in this scoping review. Current studies utilizing bioprinted sEVs for various in vitro and in vivo tissue regeneration applications, including angiogenesis, osteogenesis, immunomodulation, chondrogenesis and myogenesis, are discussed. Finally, we explore the current challenges and provide an outlook on possible refinements for bioprinted sEVs applications.

再生医学涉及通过这些结构的再生来恢复组织或器官的功能。作为有前途的再生医学方法,细胞外囊泡(EVs)或生物打印是再生各种组织和器官(即骨骼和心脏组织)的新兴明星。作为一种极具吸引力的无细胞、现成的用于组织再生的纳米治疗剂,EV是由所有活细胞分泌的双层脂质膜颗粒,通过交换EV货物的蛋白质、遗传物质和其他生物成分,作为细胞间的通讯媒介发挥着关键作用。3D生物打印结合了3D打印和生物学,是一种最先进的增材制造技术,它使用计算机辅助过程在生物墨水中实现3D细胞和组织结构的同时图案化。尽管开发一种有效的靶向电动汽车递送系统仍然具有挑战性,但3D生物打印可能提供一种有前途的方法,可以通过控制装载和释放来提高电动汽车的递送效率。在过去的几年里,生物3D打印电动汽车在组织再生方面的潜在应用引起了人们的关注。因此,现在是时候探索利用3D生物打印电动汽车作为一种新的“无细胞”替代再生医学方法的潜力和相关挑战。本文综述了电动汽车的生物起源和组成,以及小型电动汽车- sev (< 200 nm)的分离和表征所面临的挑战。概述了常见的3D生物打印技术,并探讨了生物墨水可打印性的问题。在PubMed中使用以下搜索策略:“生物打印外泌体”或“3D生物打印细胞外囊泡”后,发现了8项利用生物打印ev的研究,这些研究已被纳入本范围综述。本文讨论了目前利用生物打印的sev进行各种体外和体内组织再生应用的研究,包括血管生成、成骨、免疫调节、软骨形成和肌肉生成。最后,我们探讨了当前面临的挑战,并对生物打印sev应用的可能改进进行了展望。
{"title":"Bioprinting extracellular vesicles as a \"cell-free\" regenerative medicine approach.","authors":"Kexin Jiao, Chun Liu, Saraswat Basu, Nimal Raveendran, Tamaki Nakano, Sašo Ivanovski, Pingping Han","doi":"10.20517/evcna.2023.19","DOIUrl":"10.20517/evcna.2023.19","url":null,"abstract":"<p><p>Regenerative medicine involves the restoration of tissue or organ function via the regeneration of these structures. As promising regenerative medicine approaches, either extracellular vesicles (EVs) or bioprinting are emerging stars to regenerate various tissues and organs (i.e., bone and cardiac tissues). Emerging as highly attractive cell-free, off-the-shelf nanotherapeutic agents for tissue regeneration, EVs are bilayered lipid membrane particles that are secreted by all living cells and play a critical role as cell-to-cell communicators through an exchange of EV cargos of protein, genetic materials, and other biological components. 3D bioprinting, combining 3D printing and biology, is a state-of-the-art additive manufacturing technology that uses computer-aided processes to enable simultaneous patterning of 3D cells and tissue constructs in bioinks. Although developing an effective system for targeted EVs delivery remains challenging, 3D bioprinting may offer a promising means to improve EVs delivery efficiency with controlled loading and release. The potential application of 3D bioprinted EVs to regenerate tissues has attracted attention over the past few years. As such, it is timely to explore the potential and associated challenges of utilizing 3D bioprinted EVs as a novel \"cell-free\" alternative regenerative medicine approach. In this review, we describe the biogenesis and composition of EVs, and the challenge of isolating and characterizing small EVs - sEVs (< 200 nm). Common 3D bioprinting techniques are outlined and the issue of bioink printability is explored. After applying the following search strategy in PubMed: \"bioprinted exosomes\" or \"3D bioprinted extracellular vesicles\", eight studies utilizing bioprinted EVs were found that have been included in this scoping review. Current studies utilizing bioprinted sEVs for various <i>in vitro</i> and <i>in vivo</i> tissue regeneration applications, including angiogenesis, osteogenesis, immunomodulation, chondrogenesis and myogenesis, are discussed. Finally, we explore the current challenges and provide an outlook on possible refinements for bioprinted sEVs applications.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"47 1","pages":"218-239"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80484083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights of engineered extracellular vesicles as promising therapeutic systems. 工程细胞外囊泡作为有前途的治疗系统的新见解。
Pub Date : 2023-04-27 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2023.22
Cheng Jiang, Hongxing Liu, Yuhui Liao, Yanyan Jiang

Extracellular vesicles (EVs) are natural biological particles that carry and deliver molecular fingerprints from parental cells to receptor cells, where they take effect. EVs are widely recognized for their role as intercellular communication mediators and high correlation with disease evolution, making them a valuable target in many aspects, especially biomarker profiling and therapeutics. In the past decade, scientists from various disciplines, including biology, physics, chemistry, materials science, electrical engineering, and mechanical engineering, have jointly devoted efforts to advance the study of EVs from fundamental molecular mechanisms to EV-based translational medicine, covering EV marker-based diagnostics and EV-based drug delivery. Diverse interfacial engineering strategies have been developed to facilitate in vitro and in vivo studies of EVs. This special issue, titled "Interfacial Engineering Strategies for EV in vitro and in vivo Studies", focuses on understanding the engineering logic and design rules of EVs in biomedical fields, highlighting their therapeutic potential in combating many diseases. This will provide new insights into the construction of promising diagnostic and therapeutic systems.

细胞外囊泡(EVs)是一种天然的生物颗粒,它携带并传递亲本细胞的分子指纹到受体细胞,并在受体细胞中起作用。由于其作为细胞间通讯介质的作用和与疾病进化的高度相关性,ev被广泛认为是许多方面的有价值的靶标,特别是生物标志物分析和治疗。近十年来,来自生物学、物理学、化学、材料科学、电气工程和机械工程等学科的科学家们共同努力,推动了电动汽车的研究从基础分子机制到基于电动汽车的转化医学,包括基于电动汽车的标志物诊断和基于电动汽车的给药。为了促进电动汽车的体内和体外研究,已经开发了多种界面工程策略。本期特刊题为“体外和体内研究的界面工程策略”,重点了解生物医学领域中EV的工程逻辑和设计规则,突出其在对抗多种疾病方面的治疗潜力。这将为构建有前景的诊断和治疗系统提供新的见解。
{"title":"New insights of engineered extracellular vesicles as promising therapeutic systems.","authors":"Cheng Jiang, Hongxing Liu, Yuhui Liao, Yanyan Jiang","doi":"10.20517/evcna.2023.22","DOIUrl":"10.20517/evcna.2023.22","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are natural biological particles that carry and deliver molecular fingerprints from parental cells to receptor cells, where they take effect. EVs are widely recognized for their role as intercellular communication mediators and high correlation with disease evolution, making them a valuable target in many aspects, especially biomarker profiling and therapeutics. In the past decade, scientists from various disciplines, including biology, physics, chemistry, materials science, electrical engineering, and mechanical engineering, have jointly devoted efforts to advance the study of EVs from fundamental molecular mechanisms to EV-based translational medicine, covering EV marker-based diagnostics and EV-based drug delivery. Diverse interfacial engineering strategies have been developed to facilitate <i>in vitro</i> and <i>in vivo</i> studies of EVs. This special issue, titled \"Interfacial Engineering Strategies for EV <i>in vitro</i> and <i>in vivo</i> Studies\", focuses on understanding the engineering logic and design rules of EVs in biomedical fields, highlighting their therapeutic potential in combating many diseases. This will provide new insights into the construction of promising diagnostic and therapeutic systems.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"13 1","pages":"191-194"},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88663208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodistribution of therapeutic extracellular vesicles. 治疗性细胞外囊泡的生物分布。
Pub Date : 2023-04-19 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2023.12
Dhanu Gupta, Oscar P B Wiklander, Matthew J A Wood, Samir El-Andaloussi

The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.

在过去的二十年中,细胞外囊泡(EVs)领域发生了巨大的范式转变,从被视为细胞垃圾袋到被认为是细胞间通讯的重要介质。它们在细胞和生物屏障之间转移大分子的独特能力使它们成为药物输送领域的新星。越来越多的证据表明,电动汽车可以作为一系列治疗大分子的有效药物递送载体。与许多合成给药系统相比,这些囊泡在体内表现出异常良好的耐受性。这一巨大的发展是通过技术的进步,在标记和了解ev的体内生物分布。在这篇综述中,我们总结了EV体内药代动力学的最新发现,并讨论了实现组织特异性递送需要克服的各种生物屏障。
{"title":"Biodistribution of therapeutic extracellular vesicles.","authors":"Dhanu Gupta, Oscar P B Wiklander, Matthew J A Wood, Samir El-Andaloussi","doi":"10.20517/evcna.2023.12","DOIUrl":"10.20517/evcna.2023.12","url":null,"abstract":"<p><p>The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated <i>in vivo</i>. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the <i>in vivo</i> biodistribution of EVs. Here in this review, we have summarised the recent findings in EV <i>in vivo</i> pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"1 1","pages":"170-190"},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91285401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles in phytopathogenic fungi. 植物病原真菌的细胞外囊泡。
Pub Date : 2023-03-30 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2023.04
Brian D Rutter, Roger W Innes

Extracellular vesicles (EVs) are nano-sized lipid compartments that mediate the intercellular transport of lipids, proteins, nucleic acids and metabolites. During infectious diseases, EVs released by host cells promote immune responses, while those released by pathogens attempt to subvert host immunity. There is a growing body of research investigating the role of fungal EVs in plant pathosystems. It is becoming clear that EVs released by fungal phytopathogens play a role during infection through the transport of protein effectors, toxic metabolites and RNA. Here, we discuss recent findings on EVs in fungal phytopathogens, including the methods employed in their isolation, their characterization, contents and functionality, as well as the key questions remaining to be addressed.

细胞外囊泡(EVs)是纳米级的脂质室,介导脂质、蛋白质、核酸和代谢物的细胞间运输。在感染性疾病中,宿主细胞释放的ev促进免疫应答,而病原体释放的ev试图破坏宿主免疫。有越来越多的研究调查真菌EVs在植物病理系统中的作用。真菌植物病原体释放的ev通过转运蛋白质效应器、毒性代谢物和RNA在感染过程中发挥作用,这一点越来越清楚。在此,我们讨论了真菌植物病原体中ev的最新发现,包括它们的分离方法、表征、含量和功能,以及尚待解决的关键问题。
{"title":"Extracellular vesicles in phytopathogenic fungi.","authors":"Brian D Rutter, Roger W Innes","doi":"10.20517/evcna.2023.04","DOIUrl":"10.20517/evcna.2023.04","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are nano-sized lipid compartments that mediate the intercellular transport of lipids, proteins, nucleic acids and metabolites. During infectious diseases, EVs released by host cells promote immune responses, while those released by pathogens attempt to subvert host immunity. There is a growing body of research investigating the role of fungal EVs in plant pathosystems. It is becoming clear that EVs released by fungal phytopathogens play a role during infection through the transport of protein effectors, toxic metabolites and RNA. Here, we discuss recent findings on EVs in fungal phytopathogens, including the methods employed in their isolation, their characterization, contents and functionality, as well as the key questions remaining to be addressed.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 1","pages":"90-106"},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90394854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulatory role of EV-derived non-coding RNA in lung cancer. ev衍生的非编码RNA在肺癌中的免疫调节作用。
Pub Date : 2023-03-24 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2022.42
Patrizia Ghidotti, Ilaria Petraroia, Orazio Fortunato, Francesca Pontis

Lung cancer is the deadliest cancer worldwide, primarily because of its metastatic spread. Extracellular vesicles (EVs) are small lipid-bilayer particles released by almost all types of cells. EVs play fundamental roles in cell-cell communication and cell-environment interactions by carrying proteins, nucleic acids such as DNA and RNA (mRNAs, lncRNAs, and miRNAs), and other bioactive molecules that are able to influence the behaviour of recipient cells. EVs have been described as key players in the modulation of tumour progression and the anticancer immune response. In this review, we highlight current knowledge on the role of non-coding RNAs in the modulation of the immune response, focusing on lung cancer. Since EVs are fundamental cell-to-cell mediators, we discuss the current knowledge on the immunomodulatory properties of tumour-derived EVs and, in particular, their ncRNA cargo during the different phases of lung cancer development and progression.

肺癌是世界上最致命的癌症,主要是因为它的转移性扩散。细胞外囊泡(EVs)是由几乎所有类型的细胞释放的小脂质双层颗粒。电动汽车通过携带蛋白质、核酸(如DNA和RNA) (mrna、lncrna和mirna)以及其他能够影响受体细胞行为的生物活性分子,在细胞间通信和细胞-环境相互作用中发挥着重要作用。EVs被描述为肿瘤进展和抗癌免疫反应调节的关键参与者。在这篇综述中,我们重点介绍了目前对非编码rna在调节免疫反应中的作用的了解,重点是肺癌。由于ev是基本的细胞间介质,我们讨论了目前关于肿瘤源性ev的免疫调节特性的知识,特别是它们在肺癌发生和进展的不同阶段的ncRNA货物。
{"title":"Immunomodulatory role of EV-derived non-coding RNA in lung cancer.","authors":"Patrizia Ghidotti, Ilaria Petraroia, Orazio Fortunato, Francesca Pontis","doi":"10.20517/evcna.2022.42","DOIUrl":"10.20517/evcna.2022.42","url":null,"abstract":"<p><p>Lung cancer is the deadliest cancer worldwide, primarily because of its metastatic spread. Extracellular vesicles (EVs) are small lipid-bilayer particles released by almost all types of cells. EVs play fundamental roles in cell-cell communication and cell-environment interactions by carrying proteins, nucleic acids such as DNA and RNA (mRNAs, lncRNAs, and miRNAs), and other bioactive molecules that are able to influence the behaviour of recipient cells. EVs have been described as key players in the modulation of tumour progression and the anticancer immune response. In this review, we highlight current knowledge on the role of non-coding RNAs in the modulation of the immune response, focusing on lung cancer. Since EVs are fundamental cell-to-cell mediators, we discuss the current knowledge on the immunomodulatory properties of tumour-derived EVs and, in particular, their ncRNA cargo during the different phases of lung cancer development and progression.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"1 1","pages":"59-71"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76041559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four distinct cytoplasmic structures generate and release specific vesicles, thus opening the way to intercellular communication. 四种不同的细胞质结构产生和释放特定的囊泡,从而开辟了细胞间通讯的途径。
Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2023.03
Gabriella Racchetti, Jacopo Meldolesi

In all cells, generation and release of specific vesicles are the initial steps of back-and-forth intercellular communication. These processes are critical in normal physiology and pathophysiology. Vesicles have particular functions appropriate to their targets. When stimulated, they are released into the extracellular space. Four cytoplasmic membrane-bound structures generate their particular vesicles. Among these structures, multivesicular bodies (MVBs) can accumulate many small vesicles in their lumen; release occurs upon MVB exocytosis. Ectosomes are larger vesicles characterized by their responses and are generated directly and released independently from specific microdomains pre-established in the thickness of the plasma membrane. Most lysosomes do not generate vesicles. However, unique components of a minor form, the endo-lysosome, constitute the third class of structures that release a few vesicles by exocytosis with molecules and structures inducing changes in the extracellular environment. The autophagosome, the fourth structure, releases several heterogeneous vesicles by exocytosis with malformed bio-molecules, assembled structures, and damaged organelles. Interestingly, the frequent interaction of autophagosomes with MVBs and their exosomes contributes to the regulation and intensity of their action. The specificity and function of released vesicles depend on their membranes' and luminal cargoes' composition and dynamics. An ongoing investigation of the various vesicles reveals new properties regarding their generation, release, and resulting extracellular processes. The growth of information about structures and their vesicles progressively extends the knowledge base regarding cell communication and contributes to their clinical applications.

在所有细胞中,特定囊泡的产生和释放是细胞间来回通讯的初始步骤。这些过程在正常生理和病理生理中至关重要。囊泡具有与其靶物相适应的特殊功能。当受到刺激时,它们被释放到细胞外空间。四种细胞质膜结合结构产生它们特有的囊泡。在这些结构中,多泡体(MVBs)可以在其腔内积聚许多小泡;释放发生在MVB胞吐。外泌体是一种更大的囊泡,其特征在于它们的反应,并且直接产生并独立于预先建立在质膜厚度上的特定微域释放。大多数溶酶体不产生囊泡。然而,一种次要形式的独特成分,即内溶酶体,构成了第三类结构,通过胞吐作用释放一些囊泡,其分子和结构诱导细胞外环境的变化。第四种结构是自噬体,它通过胞吐作用释放出带有畸形生物分子、组装结构和受损细胞器的异质囊泡。有趣的是,自噬体与MVBs及其外泌体的频繁相互作用有助于其作用的调节和强度。释放囊泡的特异性和功能取决于其膜和腔内货物的组成和动力学。对各种囊泡的持续研究揭示了它们的产生、释放和由此产生的细胞外过程的新特性。关于结构及其囊泡的信息的增长逐渐扩展了关于细胞通讯的知识库,并有助于它们的临床应用。
{"title":"Four distinct cytoplasmic structures generate and release specific vesicles, thus opening the way to intercellular communication.","authors":"Gabriella Racchetti, Jacopo Meldolesi","doi":"10.20517/evcna.2023.03","DOIUrl":"10.20517/evcna.2023.03","url":null,"abstract":"<p><p>In all cells, generation and release of specific vesicles are the initial steps of back-and-forth intercellular communication. These processes are critical in normal physiology and pathophysiology. Vesicles have particular functions appropriate to their targets. When stimulated, they are released into the extracellular space. Four cytoplasmic membrane-bound structures generate their particular vesicles. Among these structures, multivesicular bodies (MVBs) can accumulate many small vesicles in their lumen; release occurs upon MVB exocytosis. Ectosomes are larger vesicles characterized by their responses and are generated directly and released independently from specific microdomains pre-established in the thickness of the plasma membrane. Most lysosomes do not generate vesicles. However, unique components of a minor form, the endo-lysosome, constitute the third class of structures that release a few vesicles by exocytosis with molecules and structures inducing changes in the extracellular environment. The autophagosome, the fourth structure, releases several heterogeneous vesicles by exocytosis with malformed bio-molecules, assembled structures, and damaged organelles. Interestingly, the frequent interaction of autophagosomes with MVBs and their exosomes contributes to the regulation and intensity of their action. The specificity and function of released vesicles depend on their membranes' and luminal cargoes' composition and dynamics. An ongoing investigation of the various vesicles reveals new properties regarding their generation, release, and resulting extracellular processes. The growth of information about structures and their vesicles progressively extends the knowledge base regarding cell communication and contributes to their clinical applications.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"35 1","pages":"44-58"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80152165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs). 劫持细胞间运输以促进神经退行性疾病中蛋白质聚集体的传播:对隧道纳米管(tnt)的关注。
Pub Date : 2023-03-09 eCollection Date: 2023-01-01 DOI: 10.20517/evcna.2023.05
Ranabir Chakraborty, Sevan Belian, Chiara Zurzolo

Over the years, the influence of secretory mechanisms on intercellular communication has been extensively studied. In the central nervous system (CNS), both trans-synaptic (neurotransmitter-based) and long-distance (extracellular vesicles-based) communications regulate activities and homeostasis. In less than a couple of decades, however, there has been a major paradigm shift in our understanding of intercellular communication. Increasing evidence suggests that besides secretory mechanisms (via extracellular vesicles), several cells are capable of establishing long-distance communication routes referred to as Tunneling Nanotubes (TNTs). TNTs are membranous bridges classically supported by F-Actin filaments, allowing for the exchange of different types of intracellular components between the connected cells, ranging from ions and organelles to pathogens and toxic protein aggregates. The roles of TNTs in pathological spreading of several neurodegenerative conditions such as Prion diseases, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) have been well established. However, the fragile nature of these structures and lack of specific biomarkers raised some skepticism regarding their existence. In this review, we will first place TNTs within the spectrum of intercellular communication mechanisms before discussing their known and hypothesized biological relevance in vitro and in vivo in physiological and neurodegenerative contexts. Finally, we discuss the challenges and promising prospects in the field of TNT studies.

多年来,分泌机制对细胞间通讯的影响已被广泛研究。在中枢神经系统(CNS)中,跨突触(以神经递质为基础)和远距离(以细胞外囊泡为基础)通信调节活动和体内平衡。然而,在不到几十年的时间里,我们对细胞间通讯的理解发生了重大的范式转变。越来越多的证据表明,除了分泌机制(通过细胞外囊泡)外,一些细胞还能够建立被称为隧道纳米管(TNTs)的长距离通信路线。tnt是典型的由f -肌动蛋白丝支撑的膜性桥梁,允许连接的细胞之间交换不同类型的细胞内成分,从离子和细胞器到病原体和有毒蛋白质聚集体。TNTs在几种神经退行性疾病(如朊病毒病、阿尔茨海默病(AD)、帕金森病(PD)和亨廷顿病(HD))的病理扩散中的作用已经得到了很好的证实。然而,这些结构的脆弱性和缺乏特定的生物标志物引起了一些人对它们存在的怀疑。在这篇综述中,我们将首先把tnt放在细胞间通讯机制的范围内,然后讨论它们在体外和体内生理和神经退行性背景下已知的和假设的生物学相关性。最后,讨论了TNT研究面临的挑战和前景。
{"title":"Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs).","authors":"Ranabir Chakraborty, Sevan Belian, Chiara Zurzolo","doi":"10.20517/evcna.2023.05","DOIUrl":"10.20517/evcna.2023.05","url":null,"abstract":"<p><p>Over the years, the influence of secretory mechanisms on intercellular communication has been extensively studied. In the central nervous system (CNS), both trans-synaptic (neurotransmitter-based) and long-distance (extracellular vesicles-based) communications regulate activities and homeostasis. In less than a couple of decades, however, there has been a major paradigm shift in our understanding of intercellular communication. Increasing evidence suggests that besides secretory mechanisms (via extracellular vesicles), several cells are capable of establishing long-distance communication routes referred to as Tunneling Nanotubes (TNTs). TNTs are membranous bridges classically supported by F-Actin filaments, allowing for the exchange of different types of intracellular components between the connected cells, ranging from ions and organelles to pathogens and toxic protein aggregates. The roles of TNTs in pathological spreading of several neurodegenerative conditions such as Prion diseases, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) have been well established. However, the fragile nature of these structures and lack of specific biomarkers raised some skepticism regarding their existence. In this review, we will first place TNTs within the spectrum of intercellular communication mechanisms before discussing their known and hypothesized biological relevance <i>in vitro</i> and <i>in vivo</i> in physiological and neurodegenerative contexts. Finally, we discuss the challenges and promising prospects in the field of TNT studies.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"31 1","pages":"27-43"},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88018729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Extracellular vesicles and circulating nucleic acids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1