Pub Date : 2022-01-01Epub Date: 2022-07-19DOI: 10.20517/evcna.2022.19
Vaughn D Craddock, Christine M Cook, Navneet K Dhillon
The COVID-19 pandemic has challenged researchers to rapidly understand the capabilities of the SARS-CoV-2 virus and investigate potential therapeutics for SARS-CoV-2 infection. COVID-19 has been associated with devastating lung and cardiac injury, profound inflammation, and a heightened coagulopathic state, which may, in part, be driven by cellular crosstalk facilitated by extracellular vesicles (EVs). In recent years, EVs have emerged as important biomarkers of disease, and while extracellular vesicles may contribute to the spread of COVID-19 infection from one cell to the next, they also may be engineered to play a protective or therapeutic role as decoys or "delivery drivers" for therapeutic agents. This review explores these roles and areas for future study.
{"title":"Exploring extracellular vesicles as mediators of clinical disease and vehicles for viral therapeutics: Insights from the COVID-19 pandemic.","authors":"Vaughn D Craddock, Christine M Cook, Navneet K Dhillon","doi":"10.20517/evcna.2022.19","DOIUrl":"https://doi.org/10.20517/evcna.2022.19","url":null,"abstract":"<p><p>The COVID-19 pandemic has challenged researchers to rapidly understand the capabilities of the SARS-CoV-2 virus and investigate potential therapeutics for SARS-CoV-2 infection. COVID-19 has been associated with devastating lung and cardiac injury, profound inflammation, and a heightened coagulopathic state, which may, in part, be driven by cellular crosstalk facilitated by extracellular vesicles (EVs). In recent years, EVs have emerged as important biomarkers of disease, and while extracellular vesicles may contribute to the spread of COVID-19 infection from one cell to the next, they also may be engineered to play a protective or therapeutic role as decoys or \"delivery drivers\" for therapeutic agents. This review explores these roles and areas for future study.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":" ","pages":"172-188"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40583726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
{"title":"Extracellular vesicles in reproduction and pregnancy","authors":"Tahlia I. Smith, A. Russell","doi":"10.20517/evcna.2022.27","DOIUrl":"https://doi.org/10.20517/evcna.2022.27","url":null,"abstract":"Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89789591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte V Hegeman, Olivier G. de Jong, M. Lorenowicz
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
{"title":"A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders","authors":"Charlotte V Hegeman, Olivier G. de Jong, M. Lorenowicz","doi":"10.20517/evcna.2022.41","DOIUrl":"https://doi.org/10.20517/evcna.2022.41","url":null,"abstract":"Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75121118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liquid biopsy of tumor-derived extracellular vesicles (EVs) has great potential as a biomarker source for prostate cancer (CaP) early diagnosis and predicting the stages of cancer. The contents of EVs play an important role in intercellular communication and have specific expression in blood and urine samples from CaP patients. Powered by high-throughput, next-generation sequencing and proteomic technologies, novel EV biomarkers are easily detected in a non-invasive manner in different stages of CaP patients. These identified potential biomarkers can be further validated with a large sample size, machine learning model, and other different methods to improve the sensitivity and specificity of CaP diagnosis. The EV-based liquid biopsy is a novel and less-invasive alternative to surgical biopsies which would enable clinicians to potentially discover a whole picture of tumor through a simple blood or urine sample. In summary, this approach holds promise for developing personalized medicine to guide treatment decisions precisely for CaP patients.
{"title":"Liquid biopsy of extracellular vesicle biomarkers for prostate cancer personalized treatment decision","authors":"Meng Han, Bairen Pang, Cheng Zhou, Xin Li, Qi Wang, Junhui Jiang, Yong Li","doi":"10.20517/evcna.2021.20","DOIUrl":"https://doi.org/10.20517/evcna.2021.20","url":null,"abstract":"Liquid biopsy of tumor-derived extracellular vesicles (EVs) has great potential as a biomarker source for prostate cancer (CaP) early diagnosis and predicting the stages of cancer. The contents of EVs play an important role in intercellular communication and have specific expression in blood and urine samples from CaP patients. Powered by high-throughput, next-generation sequencing and proteomic technologies, novel EV biomarkers are easily detected in a non-invasive manner in different stages of CaP patients. These identified potential biomarkers can be further validated with a large sample size, machine learning model, and other different methods to improve the sensitivity and specificity of CaP diagnosis. The EV-based liquid biopsy is a novel and less-invasive alternative to surgical biopsies which would enable clinicians to potentially discover a whole picture of tumor through a simple blood or urine sample. In summary, this approach holds promise for developing personalized medicine to guide treatment decisions precisely for CaP patients.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85799590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgement to reviewers of Extracellular Vesicles and Circulating Nucleic Acids in 2021","authors":"","doi":"10.20517/evcna.2022.01","DOIUrl":"https://doi.org/10.20517/evcna.2022.01","url":null,"abstract":"","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88545228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite recent progress in molecular diagnostics defining four distinct medulloblastoma groups, the clinical management of these malignant childhood tumors of the cerebellum remains challenging. After surgical removal of the tumor, both cytotoxic chemotherapy and irradiation can offer additional curative benefits, but they also include a significant risk of long-term damage. Early molecular profiling aims to predict the outcome of such aggressive therapies. This prevents unnecessary damage to patients who may not need it and helps to identify those patients with remaining tumor cells who may benefit from more aggressive treatment with the intent to cure. Monitoring tumor evolution in real time allows personalized precision medicine with an immediate clinical response resulting in a better outcome. Liquid biopsy includes various methodologies already applied in numerous studies and clinical trials for common cancers including brain tumors, but information on medulloblastomas is limited. This review summarizes the recent developments of how liquid biopsy can support or even replace the standard monitoring of medulloblastomas by medical imaging or cytology and discusses what will be needed to make liquid biopsy a new gold standard in diagnosis, therapy, and follow-up of medulloblastomas for the benefit of the patients.
{"title":"Liquid biopsy for monitoring medulloblastoma","authors":"R. Eibl, M. Schneemann","doi":"10.20517/evcna.2022.36","DOIUrl":"https://doi.org/10.20517/evcna.2022.36","url":null,"abstract":"Despite recent progress in molecular diagnostics defining four distinct medulloblastoma groups, the clinical management of these malignant childhood tumors of the cerebellum remains challenging. After surgical removal of the tumor, both cytotoxic chemotherapy and irradiation can offer additional curative benefits, but they also include a significant risk of long-term damage. Early molecular profiling aims to predict the outcome of such aggressive therapies. This prevents unnecessary damage to patients who may not need it and helps to identify those patients with remaining tumor cells who may benefit from more aggressive treatment with the intent to cure. Monitoring tumor evolution in real time allows personalized precision medicine with an immediate clinical response resulting in a better outcome. Liquid biopsy includes various methodologies already applied in numerous studies and clinical trials for common cancers including brain tumors, but information on medulloblastomas is limited. This review summarizes the recent developments of how liquid biopsy can support or even replace the standard monitoring of medulloblastomas by medical imaging or cytology and discusses what will be needed to make liquid biopsy a new gold standard in diagnosis, therapy, and follow-up of medulloblastomas for the benefit of the patients.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75645476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis of cell-free DNA (cfDNA) in the blood has shown promise for monitoring a variety of biological processes. Plasma cfDNA is a mixture comprising DNA molecules released from various bodily tissues, mediated by characteristic DNA fragmentations occurring during cell death. Fragmentation of cfDNA is non-random and contains tissue-of-origin information, which has been demonstrated in circulating fetal, tumoral, and transplanted organ-derived cfDNA molecules. Many studies have elucidated a plurality of fragmentomic markers for noninvasive prenatal, cancer, and organ transplantation assessment, such as fragment sizes, fragment ends, end motifs, and nucleosome footprints. Recently, researchers have further revealed the large population of previously unidentified long cfDNA molecules (kilobases in size) in the plasma DNA pool. This review focuses on the emerging biological properties of cfDNA, together with a discussion on its potential clinical implications.
{"title":"Emerging frontiers of cell-free DNA fragmentomics","authors":"Xi Hu, Spencer C. Ding, P. Jiang","doi":"10.20517/evcna.2022.34","DOIUrl":"https://doi.org/10.20517/evcna.2022.34","url":null,"abstract":"Analysis of cell-free DNA (cfDNA) in the blood has shown promise for monitoring a variety of biological processes. Plasma cfDNA is a mixture comprising DNA molecules released from various bodily tissues, mediated by characteristic DNA fragmentations occurring during cell death. Fragmentation of cfDNA is non-random and contains tissue-of-origin information, which has been demonstrated in circulating fetal, tumoral, and transplanted organ-derived cfDNA molecules. Many studies have elucidated a plurality of fragmentomic markers for noninvasive prenatal, cancer, and organ transplantation assessment, such as fragment sizes, fragment ends, end motifs, and nucleosome footprints. Recently, researchers have further revealed the large population of previously unidentified long cfDNA molecules (kilobases in size) in the plasma DNA pool. This review focuses on the emerging biological properties of cfDNA, together with a discussion on its potential clinical implications.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"207 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72547440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Yang, C. Zeng, Kun Yang, Shaohua Xu, Zhou Zhang, Qinyun Cai, Chuan He, Wei Zhang, Song-Mei Liu
Aim Diabetic nephropathy (DN) has become the most common cause of end-stage renal disease (ESRD) in most countries. Elucidating novel epigenetic contributors to DN can not only enhance our understanding of this complex disorder, but also lay the foundation for developing more effective monitoring tools and preventive interventions in the future, thus contributing to our ultimate goal of improving patient care. Methods The 5hmC-Seal, a highly selective, chemical labeling technique, was used to profile genome-wide 5-hydroxymethylcytosines (5hmC), a stable cytosine modification type marking gene activation, in circulating cell-free DNA (cfDNA) samples from a cohort of patients recruited at Zhongnan Hospital, including T2D patients with nephropathy (DN, n = 12), T2D patients with non-DN vascular complications (non-DN, n = 29), and T2D patients without any complication (controls, n = 14). Differentially analysis was performed to find DN-associated 5hmC features, followed by the exploration of biomarker potential of 5hmC in cfDNA for DN using a machine learning approach. Results Genome-wide analyses of 5hmC in cfDNA detected 427 and 336 differential 5hmC modifications associated with DN, compared with non-DN individuals and controls, and suggested relevant pathways such as NOD-like receptor signaling pathway and tyrosine metabolism. Our exploration using a machine learning approach revealed an exploratory model comprised of ten 5hmC genes showing the possibility to distinguish DN from non-DN individuals or controls. Conclusion Genome-wide analysis suggests the possibility of exploiting novel 5hmC in patient-derived cfDNA as a non-invasive tool for monitoring DN in high risk T2D patients in the future.
在大多数国家,糖尿病肾病(DN)已成为终末期肾病(ESRD)最常见的病因。阐明新的表观遗传因素不仅可以增强我们对这种复杂疾病的理解,而且可以为未来开发更有效的监测工具和预防干预奠定基础,从而有助于我们改善患者护理的最终目标。方法采用高选择性化学标记技术5hmC- seal,对中南医院循环无细胞DNA (cfDNA)样本进行全基因组5-羟甲基胞嘧啶(5hmC)分析,该基因是一种稳定的胞嘧啶修饰型标记基因激活物,该样本包括合并肾病的T2D患者(DN, n = 12)、合并非DN血管并发症的T2D患者(非DN, n = 29)和无并发症的T2D患者(对照组,n = 14)。进行差异分析以发现DN相关的5hmC特征,然后使用机器学习方法探索cfDNA中5hmC对DN的生物标志物潜力。结果与非DN个体和对照组相比,cfDNA中5hmC的全基因组分析发现了427和336个与DN相关的差异5hmC修饰,并提示了nod样受体信号通路和酪氨酸代谢等相关途径。我们使用机器学习方法的探索揭示了一个由十个5hmC基因组成的探索性模型,显示了区分DN与非DN个体或对照的可能性。结论全基因组分析表明,利用患者源性cfDNA中的新型5hmC作为未来监测高风险T2D患者DN的无创工具是可能的。
{"title":"Genome-wide Analysis Reflects Novel 5-Hydroxymethylcytosines Implicated in Diabetic Nephropathy and the Biomarker Potential.","authors":"Ying Yang, C. Zeng, Kun Yang, Shaohua Xu, Zhou Zhang, Qinyun Cai, Chuan He, Wei Zhang, Song-Mei Liu","doi":"10.20517/evcna.2022.03","DOIUrl":"https://doi.org/10.20517/evcna.2022.03","url":null,"abstract":"Aim Diabetic nephropathy (DN) has become the most common cause of end-stage renal disease (ESRD) in most countries. Elucidating novel epigenetic contributors to DN can not only enhance our understanding of this complex disorder, but also lay the foundation for developing more effective monitoring tools and preventive interventions in the future, thus contributing to our ultimate goal of improving patient care. Methods The 5hmC-Seal, a highly selective, chemical labeling technique, was used to profile genome-wide 5-hydroxymethylcytosines (5hmC), a stable cytosine modification type marking gene activation, in circulating cell-free DNA (cfDNA) samples from a cohort of patients recruited at Zhongnan Hospital, including T2D patients with nephropathy (DN, n = 12), T2D patients with non-DN vascular complications (non-DN, n = 29), and T2D patients without any complication (controls, n = 14). Differentially analysis was performed to find DN-associated 5hmC features, followed by the exploration of biomarker potential of 5hmC in cfDNA for DN using a machine learning approach. Results Genome-wide analyses of 5hmC in cfDNA detected 427 and 336 differential 5hmC modifications associated with DN, compared with non-DN individuals and controls, and suggested relevant pathways such as NOD-like receptor signaling pathway and tyrosine metabolism. Our exploration using a machine learning approach revealed an exploratory model comprised of ten 5hmC genes showing the possibility to distinguish DN from non-DN individuals or controls. Conclusion Genome-wide analysis suggests the possibility of exploiting novel 5hmC in patient-derived cfDNA as a non-invasive tool for monitoring DN in high risk T2D patients in the future.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"1 1","pages":"49-60"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74925619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-05-31DOI: 10.20517/evcna.2022.14
Muthukumar Kannan, Seema Singh, Divya T Chemparathy, Abiola A Oladapo, Dinesh Y Gawande, Shashank M Dravid, Shilpa Buch, Susmita Sil
Aim: Activation of microglial NLRP3 inflammasome is an essential contributor to neuroinflammation underlying HIV-associated neurological disorders (HAND). Under pathological conditions, microglia-derived-EVs (MDEVs) can affect neuronal functions by delivering neurotoxic mediators to recipient cells. However, the role of microglial NLRP3 in mediating neuronal synaptodendritic injury has remained unexplored to date. In the present study, we sought to assess the regulatory role of HIV-1 Tat induced microglial NLRP3 in neuronal synaptodendritic injury. We hypothesized that HIV-1 Tat mediated microglia EVs carrying significant levels of NLRP3 contribute to the synaptodendritic injury, thereby affecting the maturation of neurons.
Methods: To understand the cross-talk between microglia and neuron, we isolated EVs from BV2 and human primary microglia (HPM) cells with or without NLRP3 depletion using siNLRP3 RNA. EVs were isolated by differential centrifugation, characterized by ZetaView nanoparticle tracking analysis, electron microscopy, and western blot analysis for exosome markers. Purified EVs were exposed to primary rat neurons isolated from E18 rats. Along with green fluorescent protein (GFP) plasmid transfection, immunocytochemistry was performed to visualize neuronal synaptodendritic injury. Western blotting was employed to measure siRNA transfection efficiency and the extent of neuronal synaptodegeneration. Images were captured in confocal microscopy, and subsequently, Sholl analysis was performed for analyzing dendritic spines using neuronal reconstruction software Neurolucida 360. Electrophysiology was performed on hippocampal neurons for functional assessment.
Results: Our findings demonstrated that HIV-1 Tat induced expression of microglial NLRP3 and IL1β, and further that these were packaged in microglial exosomes (MDEV) and were also taken up by the neurons. Exposure of rat primary neurons to microglial Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, synaptophysin, excitatory vGLUT1, as well as upregulation of inhibitory proteins- Gephyrin, GAD65, thereby implicating impaired neuronal transmissibility. Our findings also showed that Tat-MDEVs not only caused loss of dendritic spines but also affected numbers of spine sub-types- mushroom and stubby. Synaptodendritic injury further affected functional impairment as evidenced by the decrease in miniature excitatory postsynaptic currents (mEPSCs). To assess the regulatory role of NLRP3 in this process, neurons were also exposed to Tat-MDEVs from NLRP3 silenced microglia. Tat-MDEVs from NLRP3 silenced microglia exerted a protective role on neuronal synaptic proteins, spine density as well as mEPSCs.
Conclusion: In summary, our study underscores the role of microglial NLRP3 as an important contributor to Tat-MDEV mediated synaptodendritic injury. While the role of NLRP3 in inflammation is we
{"title":"HIV-1 Tat induced microglial EVs leads to neuronal synaptodendritic injury: microglia-neuron cross-talk in NeuroHIV.","authors":"Muthukumar Kannan, Seema Singh, Divya T Chemparathy, Abiola A Oladapo, Dinesh Y Gawande, Shashank M Dravid, Shilpa Buch, Susmita Sil","doi":"10.20517/evcna.2022.14","DOIUrl":"10.20517/evcna.2022.14","url":null,"abstract":"<p><strong>Aim: </strong>Activation of microglial NLRP3 inflammasome is an essential contributor to neuroinflammation underlying HIV-associated neurological disorders (HAND). Under pathological conditions, microglia-derived-EVs (MDEVs) can affect neuronal functions by delivering neurotoxic mediators to recipient cells. However, the role of microglial NLRP3 in mediating neuronal synaptodendritic injury has remained unexplored to date. In the present study, we sought to assess the regulatory role of HIV-1 Tat induced microglial NLRP3 in neuronal synaptodendritic injury. We hypothesized that HIV-1 Tat mediated microglia EVs carrying significant levels of NLRP3 contribute to the synaptodendritic injury, thereby affecting the maturation of neurons.</p><p><strong>Methods: </strong>To understand the cross-talk between microglia and neuron, we isolated EVs from BV2 and human primary microglia (HPM) cells with or without NLRP3 depletion using siNLRP3 RNA. EVs were isolated by differential centrifugation, characterized by ZetaView nanoparticle tracking analysis, electron microscopy, and western blot analysis for exosome markers. Purified EVs were exposed to primary rat neurons isolated from E18 rats. Along with green fluorescent protein (GFP) plasmid transfection, immunocytochemistry was performed to visualize neuronal synaptodendritic injury. Western blotting was employed to measure siRNA transfection efficiency and the extent of neuronal synaptodegeneration. Images were captured in confocal microscopy, and subsequently, Sholl analysis was performed for analyzing dendritic spines using neuronal reconstruction software Neurolucida 360. Electrophysiology was performed on hippocampal neurons for functional assessment.</p><p><strong>Results: </strong>Our findings demonstrated that HIV-1 Tat induced expression of microglial NLRP3 and IL1β, and further that these were packaged in microglial exosomes (MDEV) and were also taken up by the neurons. Exposure of rat primary neurons to microglial Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, synaptophysin, excitatory vGLUT1, as well as upregulation of inhibitory proteins- Gephyrin, GAD65, thereby implicating impaired neuronal transmissibility. Our findings also showed that Tat-MDEVs not only caused loss of dendritic spines but also affected numbers of spine sub-types- mushroom and stubby. Synaptodendritic injury further affected functional impairment as evidenced by the decrease in miniature excitatory postsynaptic currents (mEPSCs). To assess the regulatory role of NLRP3 in this process, neurons were also exposed to Tat-MDEVs from NLRP3 silenced microglia. Tat-MDEVs from NLRP3 silenced microglia exerted a protective role on neuronal synaptic proteins, spine density as well as mEPSCs.</p><p><strong>Conclusion: </strong>In summary, our study underscores the role of microglial NLRP3 as an important contributor to Tat-MDEV mediated synaptodendritic injury. While the role of NLRP3 in inflammation is we","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"3 2","pages":"133-149"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10796546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-08-23DOI: 10.20517/evcna.2022.28
John P Nolan, Daniel T Chiu, Joshua A Welsh
This report summarises the presentations and activities of the SELECTBIO Workshop on Rigor and Reproducibility in EV Research and Single EV Analysis held in San Diego, USA, in December 2021. The motivation for the session was the recognition that progress in the extracellular vesicle (EV) field is limited by the availability of rigorous and reproducible EV measurement tools. These tools are absolutely required for EVs to evolve from a research lab curiosity to something that will improve our ability to understand, diagnose, treat, and prevent disease. The program focused on guidelines for EV measurement and characterization as laid out in the recent MISEV2018 and MIFlowCyt-EV publications, their implementation in routine practice, and their continued evolution as new EV measurement technologies are introduced. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.
本报告总结了2021年12月在美国圣地亚哥举行的SELECTBIO关于EV研究和单一EV分析的严谨性和可重复性研讨会的发言和活动。会议的动机是认识到细胞外囊泡(EV)领域的进展受到严格和可重复的EV测量工具的限制。这些工具是EV从研究实验室的好奇心发展为提高我们理解、诊断、治疗和预防疾病的能力所绝对需要的。研讨会重点讨论了最近发表的 MISEV2018 和 MIFlowCyt-EV 中阐述的 EV 测量和表征指南、其在日常实践中的实施情况,以及随着新 EV 测量技术的引入而不断发展的情况。研讨会的结论是,需要更加努力关注分析前问题和分离方法的基准,以加强合作并推进更有效的生物标记物。
{"title":"Rigor and reproducibility: status and challenges for single vesicle analysis.","authors":"John P Nolan, Daniel T Chiu, Joshua A Welsh","doi":"10.20517/evcna.2022.28","DOIUrl":"10.20517/evcna.2022.28","url":null,"abstract":"<p><p>This report summarises the presentations and activities of the SELECTBIO Workshop on Rigor and Reproducibility in EV Research and Single EV Analysis held in San Diego, USA, in December 2021. The motivation for the session was the recognition that progress in the extracellular vesicle (EV) field is limited by the availability of rigorous and reproducible EV measurement tools. These tools are absolutely required for EVs to evolve from a research lab curiosity to something that will improve our ability to understand, diagnose, treat, and prevent disease. The program focused on guidelines for EV measurement and characterization as laid out in the recent MISEV2018 and MIFlowCyt-EV publications, their implementation in routine practice, and their continued evolution as new EV measurement technologies are introduced. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"3 3","pages":"244-248"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9672547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}