Retinal surgeons are required to manipulate multiple surgical instruments in a confined intraocular space, while the instruments are constrained at the small incisions made on the sclera. Furthermore, physiological hand tremor can affect the precision of the instrument motion. The Steady-Hand Eye Robot (SHER), developed in our previous study, enables tremor-free tool manipulation by employing a cooperative control scheme whereby the surgeon and robot can co-manipulate the surgical instruments. Although SHER enables precise and tremor-free manipulation of surgical tools, its straight and rigid structure imposes certain limitations, as it can only approach a target on the retina from one direction. As a result, the instrument could potentially collide with the eye lens when attempting to access the anterior portion of the retina. In addition, it can be difficult to approach a target on the retina from a suitable direction when accessing its anterior portion for procedures such as vein cannulation or membrane peeling. Snake-like robots offer greater dexterity and allow access to a target on the retina from suitable directions, depending on the clinical task at hand. In this study, we present an integrated, high-dexterity, cooperative robotic assistant for intraocular micromanipulation. This robotic assistant comprises an improved integrated robotic intraocular snake (I2RIS) with a user interface (a tactile switch or joystick unit) for the manipulation of the snake-like distal end and the SHER, with a detachable end-effector to which the I2RIS can be attached. The integrated system was evaluated through a set of experiments wherein subjects were requested to touch or insert into randomly-assigned targets. The results indicate that the high-dexterity robotic assistant can touch or insert the tip into the same target from multiple directions, with no significant increase in task completion time for either user interface.
Steerable needles that are able to follow curvilinear trajectories and steer around anatomical obstacles are a promising solution for many interventional procedures. In the lung, these needles can be deployed from the tip of a conventional bronchoscope to reach lung lesions for diagnosis. The reach of such a device depends on several design parameters including the bronchoscope diameter, the angle of the piercing device relative to the medial axis of the airway, and the needle's minimum radius of curvature while steering. Assessing the effect of these parameters on the overall system's clinical utility is important in informing future design choices and understanding the capabilities and limitations of the system. In this paper, we analyze the effect of various settings for these three robot parameters on the percentage of the lung that the robot can reach. We combine Monte Carlo random sampling of piercing configurations with a Rapidly-exploring Random Trees based steerable needle motion planner in simulated human lung environments to asymptotically accurately estimate the volume of sites in the lung reachable by the robot. We highlight the importance of each parameter on the overall system's reachable workspace in an effort to motivate future device innovation and highlight design trade-offs.
Autonomous robotic suturing has the potential to improve surgery outcomes by leveraging accuracy, repeatability, and consistency compared to manual operations. However, achieving full autonomy in complex surgical environments is not practical and human supervision is required to guarantee safety. In this paper, we develop a confidence-based supervised autonomous suturing method to perform robotic suturing tasks via both Smart Tissue Autonomous Robot (STAR) and surgeon collaboratively with the highest possible degree of autonomy. Via the proposed method, STAR performs autonomous suturing when highly confident and otherwise asks the operator for possible assistance in suture positioning adjustments. We evaluate the accuracy of our proposed control method via robotic suturing tests on synthetic vaginal cuff tissues and compare them to the results of vaginal cuff closures performed by an experienced surgeon. Our test results indicate that by using the proposed confidence-based method, STAR can predict the success of pure autonomous suture placement with an accuracy of 94.74%. Moreover, via an additional 25% human intervention, STAR can achieve a 98.1% suture placement accuracy compared to an 85.4% accuracy of completely autonomous robotic suturing. Finally, our experiment results indicate that STAR using the proposed method achieves 1.6 times better consistency in suture spacing and 1.8 times better consistency in suture bite sizes than the manual results.

