Pub Date : 2021-03-01DOI: 10.11591/IJRA.V10I1.PP10-23
Sateesh K. Vavilala, Vinopraba Thirumavalavan
This paper proposes a fractional order controller (FOC) for the level control problem of the coupled tank system, using the desired time domain specifications. The coupled tank system is used in the chemical industries for the storage and mixing of liquids. The FOC is designed analytically using the direct synthesis method. In the direct synthesis method, the Bode's ideal loop transfer function is chosen as the desired transfer function. Bode's loop transfer function has the advantages like robustness to system gain variations, constant phase and very high gain margin. Performance of the proposed controller is compared with the state of the art literature. Simulation results showed that the proposed controller has the least peak overshoot. The robust performance of the proposed controller is also the best. Robust stability of the system with the proposed controller is verified, and the system is found to be robustly stable.
{"title":"Analytical design of the fractional order controller and robustness verification","authors":"Sateesh K. Vavilala, Vinopraba Thirumavalavan","doi":"10.11591/IJRA.V10I1.PP10-23","DOIUrl":"https://doi.org/10.11591/IJRA.V10I1.PP10-23","url":null,"abstract":"This paper proposes a fractional order controller (FOC) for the level control problem of the coupled tank system, using the desired time domain specifications. The coupled tank system is used in the chemical industries for the storage and mixing of liquids. The FOC is designed analytically using the direct synthesis method. In the direct synthesis method, the Bode's ideal loop transfer function is chosen as the desired transfer function. Bode's loop transfer function has the advantages like robustness to system gain variations, constant phase and very high gain margin. Performance of the proposed controller is compared with the state of the art literature. Simulation results showed that the proposed controller has the least peak overshoot. The robust performance of the proposed controller is also the best. Robust stability of the system with the proposed controller is verified, and the system is found to be robustly stable.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"10 1","pages":"10-23"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47343609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJRA.V10I1.PP51-58
I. Hussain, S. Chaudhury
A multiplier circuit is one of the most important functional blocks of many nano-electronic, control and automation applications. In this work, an energy-efficient multiplier is reported based on a 3:2 compressor. The multiplier has been designed in three different parts. In the first part, a partial product (PP) generator is used. In the second part, the partial products are reduced which is termed as PPP (partial product processing). Whereas in the third step final addition is performed. PPs are produced by using AND gates. The PPP is designed in two-phase. In the first phase, the Wallace tree logarithm has been used to reduce the PPs. Whereas, in the second phase the PPs are reduced by using energy-efficient half adder and 3:2 compressor. At last, in the third step, by using a carry-save adder final addition has been computed. The performance analysis of the designed multiplier is evaluated and compared with other multiplier circuits. The multiplier shows performance improvements by 20.55%-46% for the power supply variation from 1.2 V to 0.6 V. All the simulations and analyses have been carried out by using the Synopsys EDA tool.
{"title":"Design of energy-efficient multiplier based on 3:2 compressor","authors":"I. Hussain, S. Chaudhury","doi":"10.11591/IJRA.V10I1.PP51-58","DOIUrl":"https://doi.org/10.11591/IJRA.V10I1.PP51-58","url":null,"abstract":"A multiplier circuit is one of the most important functional blocks of many nano-electronic, control and automation applications. In this work, an energy-efficient multiplier is reported based on a 3:2 compressor. The multiplier has been designed in three different parts. In the first part, a partial product (PP) generator is used. In the second part, the partial products are reduced which is termed as PPP (partial product processing). Whereas in the third step final addition is performed. PPs are produced by using AND gates. The PPP is designed in two-phase. In the first phase, the Wallace tree logarithm has been used to reduce the PPs. Whereas, in the second phase the PPs are reduced by using energy-efficient half adder and 3:2 compressor. At last, in the third step, by using a carry-save adder final addition has been computed. The performance analysis of the designed multiplier is evaluated and compared with other multiplier circuits. The multiplier shows performance improvements by 20.55%-46% for the power supply variation from 1.2 V to 0.6 V. All the simulations and analyses have been carried out by using the Synopsys EDA tool.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"10 1","pages":"51-58"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48040781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJRA.V10I1.PP68-74
Amgad Muneer, Zhan Dairabayev
Wall painting is a repetitive, stressful, and hazardous process that makes it an ideal automation case. In the automotive industry, painting had been automated but not yet for the construction industry. However, there is a strong need for a mobile robot that can move to paint residential interior walls. In this study, we aim to design and implement an automatic painting mobile robot. The conceptual design of the proposed wall painting robot consisting paint mechanism with a spray gun and ultrasonic sensor. The spray gun is attached to a pulley mechanism that has linear motion. The ultrasonic sensor is used to detect the spray gun when it reached a certain limit. The DC motor rotates clockwise and counterclockwise based on the ultrasonic sensor condition made. The experimental results indicate that the robot was able to paint the walls smoothly vertically, and horizontally. The spraying gun structure's speed is at a tolerable speed of 0.07 m/s, which could be increased, but to provide high-quality painting without any gaps, the current speed was selected as the most suitable, without any harm to the working process.
{"title":"Design and implementation of automatic painting mobile robot","authors":"Amgad Muneer, Zhan Dairabayev","doi":"10.11591/IJRA.V10I1.PP68-74","DOIUrl":"https://doi.org/10.11591/IJRA.V10I1.PP68-74","url":null,"abstract":"Wall painting is a repetitive, stressful, and hazardous process that makes it an ideal automation case. In the automotive industry, painting had been automated but not yet for the construction industry. However, there is a strong need for a mobile robot that can move to paint residential interior walls. In this study, we aim to design and implement an automatic painting mobile robot. The conceptual design of the proposed wall painting robot consisting paint mechanism with a spray gun and ultrasonic sensor. The spray gun is attached to a pulley mechanism that has linear motion. The ultrasonic sensor is used to detect the spray gun when it reached a certain limit. The DC motor rotates clockwise and counterclockwise based on the ultrasonic sensor condition made. The experimental results indicate that the robot was able to paint the walls smoothly vertically, and horizontally. The spraying gun structure's speed is at a tolerable speed of 0.07 m/s, which could be increased, but to provide high-quality painting without any gaps, the current speed was selected as the most suitable, without any harm to the working process.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"10 1","pages":"68-74"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43924277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJRA.V10I1.PP59-67
G. Dai, Xu Jiajing, Shujin Li, Li Xiongwei, G. Shi, Shi Weicheng
Finite element method is an efficient numerical calculation method based on information technology, which can be used to solve complex equations in various problems. At present, the finite element method is mainly used to deal with seepage problems in dams, while there is less study on seepage in landfill. In this paper, finite element method is used to analyze the seepage of cut-off wall of a landfill in Jiangsu Province, and the movement of landfill leachate in cut-off wall under different conditions is simulated. The simulation results show that The cut-off wall can effectively slow down the seepage velocity of leachate; Under different conditions, the maximum gradient of the cut-off wall are 18.68 and 13.84 respectively, which conforms to Chinese national standard. Therefore, the design of cut-off wall is safe and reasonable, and filtration erosion will not occur; This simulation method combined with information technology can provide new solutions and ideas for other projects to verify safety and rationality.
{"title":"Finite element analysis on permeability of cut-off wall for landfill","authors":"G. Dai, Xu Jiajing, Shujin Li, Li Xiongwei, G. Shi, Shi Weicheng","doi":"10.11591/IJRA.V10I1.PP59-67","DOIUrl":"https://doi.org/10.11591/IJRA.V10I1.PP59-67","url":null,"abstract":"Finite element method is an efficient numerical calculation method based on information technology, which can be used to solve complex equations in various problems. At present, the finite element method is mainly used to deal with seepage problems in dams, while there is less study on seepage in landfill. In this paper, finite element method is used to analyze the seepage of cut-off wall of a landfill in Jiangsu Province, and the movement of landfill leachate in cut-off wall under different conditions is simulated. The simulation results show that The cut-off wall can effectively slow down the seepage velocity of leachate; Under different conditions, the maximum gradient of the cut-off wall are 18.68 and 13.84 respectively, which conforms to Chinese national standard. Therefore, the design of cut-off wall is safe and reasonable, and filtration erosion will not occur; This simulation method combined with information technology can provide new solutions and ideas for other projects to verify safety and rationality.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"10 1","pages":"59-67"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48142161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Muhammad, Alghamdi Khloud K, Sahel Salma A, Alosaimi Samar O, Alsahaft Mashael E, Alharthi Maram A, Arif Maryam
Forest fire disasters are recently getting lots of attention due to climate change globally. Globally, climate changes are rapidly changing the fire patterns on Earth. Effective fire management requires accurate information about the fire occurrence, its spread, and impact on the environment. Prediction of fire activities in the forest guides the authorities to make optimal, efficient, and sound decisions in fire management. This paper aims to summarize recent trends in the forest fire events prediction, detection, spread rate, and mapping of the burned areas. Furthermore, fire emissions in terms of smoke also put the Earth's public health and ecological system at greater risk.
{"title":"Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review","authors":"A. Muhammad, Alghamdi Khloud K, Sahel Salma A, Alosaimi Samar O, Alsahaft Mashael E, Alharthi Maram A, Arif Maryam","doi":"10.36959/673/372","DOIUrl":"https://doi.org/10.36959/673/372","url":null,"abstract":"Forest fire disasters are recently getting lots of attention due to climate change globally. Globally, climate changes are rapidly changing the fire patterns on Earth. Effective fire management requires accurate information about the fire occurrence, its spread, and impact on the environment. Prediction of fire activities in the forest guides the authorities to make optimal, efficient, and sound decisions in fire management. This paper aims to summarize recent trends in the forest fire events prediction, detection, spread rate, and mapping of the burned areas. Furthermore, fire emissions in terms of smoke also put the Earth's public health and ecological system at greater risk.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41680304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1109/ICRA48506.2021.9561289
Junyi Wang, Yue Qi
{"title":"Camera Relocalization using Deep Point Cloud Generation and Hand-crafted Feature Refinement","authors":"Junyi Wang, Yue Qi","doi":"10.1109/ICRA48506.2021.9561289","DOIUrl":"https://doi.org/10.1109/ICRA48506.2021.9561289","url":null,"abstract":"","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2 1 1","pages":"5891-5897"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79641914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1109/ICRA48506.2021.9560868
E. Paiva, M. Perazzo, R. Cordeiro
{"title":"Constrained Path Planning and Guidance in General Wind Fields","authors":"E. Paiva, M. Perazzo, R. Cordeiro","doi":"10.1109/ICRA48506.2021.9560868","DOIUrl":"https://doi.org/10.1109/ICRA48506.2021.9560868","url":null,"abstract":"","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"11 1","pages":"7526-7532"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76817220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.31875/2409-9694.2020.07.5
E. Carvalho, E. Freire, L. Molina, J. M. Filho
Abstract: This paper proposes a robot path planner based on language measure, μ-planner. Workspace is discretized in a occupancy grid map and we model the system by considering how events, associated to robot’s motions, take it to different cells (discrete positions). The calculated language measure values corresponds to a gradient, which the robot can use reach its destination by choosing events that take it to states with higher measure values. Concepts of Lapace’s equation and harmonic functions are used to prove that our method guarantees both the existence and monotonicity of language measure. The proposed method is simple and computationally inexpensive and guarantees existence of path from any co-accessible state to the destination. Experiments considering different scenarios have been performed to validate and compare μ-planner with similar methods.
{"title":"µ-Planner: A Robot Path Planning Approach Based on Language Measure of Unsupervised Automata","authors":"E. Carvalho, E. Freire, L. Molina, J. M. Filho","doi":"10.31875/2409-9694.2020.07.5","DOIUrl":"https://doi.org/10.31875/2409-9694.2020.07.5","url":null,"abstract":"Abstract: This paper proposes a robot path planner based on language measure, μ-planner. Workspace is discretized in a occupancy grid map and we model the system by considering how events, associated to robot’s motions, take it to different cells (discrete positions). The calculated language measure values corresponds to a gradient, which the robot can use reach its destination by choosing events that take it to states with higher measure values. Concepts of Lapace’s equation and harmonic functions are used to prove that our method guarantees both the existence and monotonicity of language measure. The proposed method is simple and computationally inexpensive and guarantees existence of path from any co-accessible state to the destination. Experiments considering different scenarios have been performed to validate and compare μ-planner with similar methods.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"7 1","pages":"40-49"},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44009201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.11591/IJRA.V9I4.PP251-255
Hitesh Mohapatra
In this paper, an offline drone instrumentalized ambulance (ODIA) mechanism has been discussed. The rapid increase in the urban population directly influences every sector of society. The sectors are maybe food, health care, education, transportation, etc. Normally, it has been observed that when any accidents happen on the urban road or any remote places then, the availability of immediate medical help is very rare. It is not because of the unaware or unavailability of medical facilities rather it happens because of overcrowding on the urban road and geographical odd-isolation of places. Hence, here an ODIA concept has been discussed which uses offline maps and offline first-aid medical videos through which immediate medical help can be made available at the patient end. This model helps to save the life of an accident victim by providing immediate medical attention. The key strength of ODIA is, it is independent of internet service that is why it is more suitable for harsh and hostile environments.
{"title":"Offline drone instrumentalized ambulance for emergency situations","authors":"Hitesh Mohapatra","doi":"10.11591/IJRA.V9I4.PP251-255","DOIUrl":"https://doi.org/10.11591/IJRA.V9I4.PP251-255","url":null,"abstract":"In this paper, an offline drone instrumentalized ambulance (ODIA) mechanism has been discussed. The rapid increase in the urban population directly influences every sector of society. The sectors are maybe food, health care, education, transportation, etc. Normally, it has been observed that when any accidents happen on the urban road or any remote places then, the availability of immediate medical help is very rare. It is not because of the unaware or unavailability of medical facilities rather it happens because of overcrowding on the urban road and geographical odd-isolation of places. Hence, here an ODIA concept has been discussed which uses offline maps and offline first-aid medical videos through which immediate medical help can be made available at the patient end. This model helps to save the life of an accident victim by providing immediate medical attention. The key strength of ODIA is, it is independent of internet service that is why it is more suitable for harsh and hostile environments.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"251-255"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45567501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.11591/IJRA.V9I4.PP244-250
A. Oyelami, Adedayo Akinade, Kingsley Obianefo
This work developed a cost-effective framework for agriculturists to regularly monitor their crops against intruding rodents and other security concerns using modern drone technology through configuration and deployment of an autonomous UAV which also functions as a remotely piloted vehicle. This was done by configuring a quadcopter capable of causing a disturbance when a rodent is observed through an inbuilt alarm system whose sound is amplified to be loud enough to cause the animals to leave the farm area. A framework for real-time image and live video transmission from the farm to a designated remote base station was developed. This was achieved through programming codes that configured the drone to operate an intelligent alarm and object tracking systems which enables a live feed from the UAV using Arduino IDE and Mission Planner for autonomous flight control. The requisite algorithms were developed using the framework of tracking, learning and detection (TLD) in the OpenCV software. The drone movement is equally controlled remotely over a Wi-Fi network using an ESP8266 Wi-Fi module for redirection and controlling of the drone movement to monitor specific locations.
{"title":"Development of a real-time framework for farm monitoring using drone technology","authors":"A. Oyelami, Adedayo Akinade, Kingsley Obianefo","doi":"10.11591/IJRA.V9I4.PP244-250","DOIUrl":"https://doi.org/10.11591/IJRA.V9I4.PP244-250","url":null,"abstract":"This work developed a cost-effective framework for agriculturists to regularly monitor their crops against intruding rodents and other security concerns using modern drone technology through configuration and deployment of an autonomous UAV which also functions as a remotely piloted vehicle. This was done by configuring a quadcopter capable of causing a disturbance when a rodent is observed through an inbuilt alarm system whose sound is amplified to be loud enough to cause the animals to leave the farm area. A framework for real-time image and live video transmission from the farm to a designated remote base station was developed. This was achieved through programming codes that configured the drone to operate an intelligent alarm and object tracking systems which enables a live feed from the UAV using Arduino IDE and Mission Planner for autonomous flight control. The requisite algorithms were developed using the framework of tracking, learning and detection (TLD) in the OpenCV software. The drone movement is equally controlled remotely over a Wi-Fi network using an ESP8266 Wi-Fi module for redirection and controlling of the drone movement to monitor specific locations.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"244-250"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46027147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}