首页 > 最新文献

IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation最新文献

英文 中文
Steam turbine controllers design based on soft-computing techniques 基于软计算技术的汽轮机控制器设计
Nasir Ahmed Alawaad
Steam turbine is viewed as a standout among hotspots for control age in the most recent decades, its elements examination end up being dynamically more basic. For this investigation, the model chose is of turbine speed control framework. The purpose behind this is that model is regularly experienced in refineries in a type of steam turbine that utilization hydraulic governor to control the speed of the turbine. To suit plan prerequisites, a mathematical model for the turbine was determined in light of transfer function and state space definition. There are two sorts of controllers for steam turbines which are traditional and modern controllers. Internal mode control with proportional integral derivative (IMC-PID) and linear quadratic controller (LQR) are classical type. Fuzzy logic controller (FLC) and intelligent optimization techniques like, ant colony algorithm (ACOA) and genetic algorithm (GA) are modern type. The proposed work centers on classical verses modern controllers. Results got demonstrate that embracing such a controller (GA) improves the design requirements and transient stability. The system control was actualized in simulation utilizing MATLAB/Simulink.
在最近几十年中,汽轮机被视为控制时代的热点之一,其元件检查最终变得更加基本。在本研究中,所选择的模型是涡轮机速度控制框架。这背后的目的是,炼油厂经常使用一种利用液压调速器控制汽轮机速度的汽轮机模型。为了满足计划的前提条件,根据传递函数和状态空间的定义,确定了涡轮机的数学模型。汽轮机的控制器有两种,即传统控制器和现代控制器。比例积分微分内模控制(IMC-PID)和线性二次型控制器(LQR)是经典型。模糊逻辑控制器(FLC)和智能优化技术如蚁群算法(ACOA)和遗传算法(GA)是现代型的。拟议的工作以古典控制器和现代控制器为中心。结果表明,采用这种控制器可以提高设计要求和暂态稳定性。利用MATLAB/Simulink对系统进行了仿真控制。
{"title":"Steam turbine controllers design based on soft-computing techniques","authors":"Nasir Ahmed Alawaad","doi":"10.11591/IJRA.V9I4.PP281-291","DOIUrl":"https://doi.org/10.11591/IJRA.V9I4.PP281-291","url":null,"abstract":"Steam turbine is viewed as a standout among hotspots for control age in the most recent decades, its elements examination end up being dynamically more basic. For this investigation, the model chose is of turbine speed control framework. The purpose behind this is that model is regularly experienced in refineries in a type of steam turbine that utilization hydraulic governor to control the speed of the turbine. To suit plan prerequisites, a mathematical model for the turbine was determined in light of transfer function and state space definition. There are two sorts of controllers for steam turbines which are traditional and modern controllers. Internal mode control with proportional integral derivative (IMC-PID) and linear quadratic controller (LQR) are classical type. Fuzzy logic controller (FLC) and intelligent optimization techniques like, ant colony algorithm (ACOA) and genetic algorithm (GA) are modern type. The proposed work centers on classical verses modern controllers. Results got demonstrate that embracing such a controller (GA) improves the design requirements and transient stability. The system control was actualized in simulation utilizing MATLAB/Simulink.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43321878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The algorithm of adaptive control for active suspension systems using pole assign and cascade design method 基于极点分配和串级设计的主动悬架系统自适应控制算法
Chi Nguyen Van
This paper presents the active suspension system (ASS) control method using the adaptive cascade control scheme. The control scheme is implemented by two control loops, the inner control loop and outer control loop are designed respectively. The inner control loop uses the pole assignment method in order to move the poles of the original system to desired poles respect to the required performance of the suspension system. To design the controller in the inner loop, the model without the noise caused by the road profile and velocity of the car is used. The outer control loop then designed with an adaptive mechanism calculates the active control force to compensate for the vibrations caused by the road profile and velocity of the car. The control force is determined by the error between states of the reference model and states of suspension systems, the reference model is the model of closed-loop with inner control loop without the noise. The simulation results implemented by using the practice date of the road profile show that the capability of oscillation decrease for ASS is quite efficient.
本文提出了一种采用自适应串级控制方案的主动悬架系统(ASS)控制方法。控制方案由两个控制回路实现,分别设计了内部控制回路和外部控制回路。内部控制回路使用极点分配方法,以便相对于悬架系统的所需性能将原始系统的极点移动到所需极点。为了在内环中设计控制器,使用了没有由道路轮廓和车辆速度引起的噪声的模型。然后,设计有自适应机构的外部控制回路计算主动控制力,以补偿由道路轮廓和汽车速度引起的振动。控制力由参考模型的状态与悬架系统的状态之间的误差决定,参考模型是具有无噪声的内部控制回路的闭环模型。利用道路剖面的实际数据进行的仿真结果表明,ASS的减振能力是相当有效的。
{"title":"The algorithm of adaptive control for active suspension systems using pole assign and cascade design method","authors":"Chi Nguyen Van","doi":"10.11591/IJRA.V9I4.PP271-280","DOIUrl":"https://doi.org/10.11591/IJRA.V9I4.PP271-280","url":null,"abstract":"This paper presents the active suspension system (ASS) control method using the adaptive cascade control scheme. The control scheme is implemented by two control loops, the inner control loop and outer control loop are designed respectively. The inner control loop uses the pole assignment method in order to move the poles of the original system to desired poles respect to the required performance of the suspension system. To design the controller in the inner loop, the model without the noise caused by the road profile and velocity of the car is used. The outer control loop then designed with an adaptive mechanism calculates the active control force to compensate for the vibrations caused by the road profile and velocity of the car. The control force is determined by the error between states of the reference model and states of suspension systems, the reference model is the model of closed-loop with inner control loop without the noise. The simulation results implemented by using the practice date of the road profile show that the capability of oscillation decrease for ASS is quite efficient.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45391682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Task Planning for Transportation of Multiple Objects by Dual Robots Using Cloud Computing 基于云计算的双机器人多目标运输任务规划
A. Kar
In this paper, the application of cloud computing in the field of robotics is described. Dual robots are assigned the job of picking up objects lying on the floor and to keep them in the given spaces. In the co-operative environment both the robots try to follow their route of shortest path till such situations arise when either the object or the space has been exhausted. Then the robot searches for the next nearest object or space or the remaining object or space and act accordingly.
本文介绍了云计算在机器人领域的应用。双机器人的任务是捡起躺在地板上的物体,并将它们保持在给定的空间内。在合作环境中,两个机器人都试图遵循自己的最短路径,直到物体或空间耗尽的情况出现。然后,机器人搜索下一个最近的物体或空间或剩余的物体或空间,并采取相应的行动。
{"title":"Task Planning for Transportation of Multiple Objects by Dual Robots Using Cloud Computing","authors":"A. Kar","doi":"10.36959/673/368","DOIUrl":"https://doi.org/10.36959/673/368","url":null,"abstract":"In this paper, the application of cloud computing in the field of robotics is described. Dual robots are assigned the job of picking up objects lying on the floor and to keep them in the given spaces. In the co-operative environment both the robots try to follow their route of shortest path till such situations arise when either the object or the space has been exhausted. Then the robot searches for the next nearest object or space or the remaining object or space and act accordingly.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81175453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Future of Robots in a Super-Aged Society 超级老龄社会中机器人的未来
A. Szczepura, T. Nomura, D. Wild
It is estimated that the world population aged 65+ will triple from 6.9% to 20% by 2050 [1].
据估计,到2050年,世界65岁以上人口将增加两倍,从6.9%增加到20%[1]。
{"title":"The Future of Robots in a Super-Aged Society","authors":"A. Szczepura, T. Nomura, D. Wild","doi":"10.17352/ara.000005","DOIUrl":"https://doi.org/10.17352/ara.000005","url":null,"abstract":"It is estimated that the world population aged 65+ will triple from 6.9% to 20% by 2050 [1].","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49462420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coronavirus Pandemic and Future Possibilities in Robotics Research 冠状病毒大流行和机器人研究的未来可能性
Niku Dr. Saeed
{"title":"Coronavirus Pandemic and Future Possibilities in Robotics Research","authors":"Niku Dr. Saeed","doi":"10.36959/673/367","DOIUrl":"https://doi.org/10.36959/673/367","url":null,"abstract":"","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42485104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Networks Identification and Control of Mobile Robot Using Adaptive Neuro Fuzzy Inference System 基于自适应神经模糊推理系统的移动机器人神经网络辨识与控制
A. Abougarair
This paper developed and investigates the performance of intelligent algorithms in order to stabilize the robot when it is tracking to the desired reference. One type of robot is a Two Wheeled Balancing Mobile Robot (TWBMR) that requires control for both balancing and maneuvering. Combination artificial intelligence, Neural Networks (NNs) and Fuzzy Logic Control (FLC) have been recognized as the main tools to improve the performance of coupling nonlinear robot system without using any mathematical model. The input-output data of TWBMR generated from closed loop control system is used to develop a neural network model. In this study, neural networks model can be trained offline and then transferred into a process where an adaptive online learning is carried out using Adaptive Network Based Fuzzy Inference System (ANFIS) to improve the system performance. The simulation results verify that the considered identification and control strategies can achieve favorable control performance. The ANFIS control design approach does not require an accurate model of the plant as classical controller. In addition, high-level knowledge of the system is not needed to build a set of rules as a fuzzy controller.
本文开发并研究了智能算法的性能,以使机器人在跟踪到期望参考点时保持稳定。一种类型的机器人是两轮平衡移动机器人(TWBMR),它需要平衡和机动控制。人工智能(ai)、神经网络(nn)和模糊逻辑控制(FLC)的结合已被认为是在不使用任何数学模型的情况下提高耦合非线性机器人系统性能的主要工具。利用TWBMR闭环控制系统产生的输入输出数据建立神经网络模型。在本研究中,神经网络模型可以离线训练,然后转移到一个过程中,使用基于自适应网络的模糊推理系统(ANFIS)进行自适应在线学习,以提高系统性能。仿真结果验证了所考虑的识别和控制策略能够获得良好的控制性能。ANFIS控制设计方法不像经典控制器那样需要精确的被控对象模型。此外,构建一组规则作为模糊控制器并不需要系统的高级知识。
{"title":"Neural Networks Identification and Control of Mobile Robot Using Adaptive Neuro Fuzzy Inference System","authors":"A. Abougarair","doi":"10.11591/IJRA.V9I4.PP%P","DOIUrl":"https://doi.org/10.11591/IJRA.V9I4.PP%P","url":null,"abstract":"This paper developed and investigates the performance of intelligent algorithms in order to stabilize the robot when it is tracking to the desired reference. One type of robot is a Two Wheeled Balancing Mobile Robot (TWBMR) that requires control for both balancing and maneuvering. Combination artificial intelligence, Neural Networks (NNs) and Fuzzy Logic Control (FLC) have been recognized as the main tools to improve the performance of coupling nonlinear robot system without using any mathematical model. The input-output data of TWBMR generated from closed loop control system is used to develop a neural network model. In this study, neural networks model can be trained offline and then transferred into a process where an adaptive online learning is carried out using Adaptive Network Based Fuzzy Inference System (ANFIS) to improve the system performance. The simulation results verify that the considered identification and control strategies can achieve favorable control performance. The ANFIS control design approach does not require an accurate model of the plant as classical controller. In addition, high-level knowledge of the system is not needed to build a set of rules as a fuzzy controller.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47107710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi Objective Function and Optimal Design of BAM Using MATLAB 基于MATLAB的BAM多目标函数及优化设计
Roopsandeep Bammidi, N. Teja, S. Babu, P. S. R. Reddy, N. Akhil, O. Prakashini
From past decades, the different types of mechanisms in mobile robots have been created so far which includes legged, treaded-tyre and wheeled type robots. Among these types, the wheeled type is easiest to control while the treaded-tyre type offers improved flexibility. Legged locomotion, though not widely used for industrial purposes, has growing implications mainly due to its ease of maneuvering in rough terrains. The Walking motion is obtained through various mechanisms. Most obvious of these is the crank and rocker mechanism, which gives a walking style characteristic of human being. The present research work uses a different type of mechanism for driving a biped that is most distinguished by its ease of operation that produces a type of ‘walk’ similar to that of two legged mammals. In this research initially, a multi-objective optimization is carried out for the optimal design of the mechanism. This research involves a simulation of a simple Biped model using Crank-Rocker mechanism. The design of the biped robot is done by considering two important objective parameters stride and lift, a multi objective function must be created and optimization is done by using MATLAB Programming.
从过去的几十年里,移动机器人的不同类型的机构已经被创造出来,包括腿式、胎式和轮式机器人。在这些类型中,轮式最容易控制,而胎面轮胎类型提供了更好的灵活性。腿式运动,虽然没有广泛用于工业目的,越来越多的影响主要是由于其易于操作在崎岖的地形。行走运动是通过各种机构来实现的。其中最明显的是曲柄摇杆机构,它赋予了人的行走方式特征。目前的研究工作使用了一种不同的机制来驱动两足动物,这种机制最显著的特点是易于操作,可以产生一种类似于两条腿的哺乳动物的“行走”方式。本研究首先对机构进行了多目标优化设计。本研究采用曲柄摇杆机构对一个简单的两足动物模型进行仿真。双足机器人的设计主要考虑步幅和升力两个重要的目标参数,需要建立多目标函数并利用MATLAB编程进行优化。
{"title":"A Multi Objective Function and Optimal Design of BAM Using MATLAB","authors":"Roopsandeep Bammidi, N. Teja, S. Babu, P. S. R. Reddy, N. Akhil, O. Prakashini","doi":"10.11591/IJRA.V9I3.PP%P","DOIUrl":"https://doi.org/10.11591/IJRA.V9I3.PP%P","url":null,"abstract":"From past decades, the different types of mechanisms in mobile robots have been created so far which includes legged, treaded-tyre and wheeled type robots. Among these types, the wheeled type is easiest to control while the treaded-tyre type offers improved flexibility. Legged locomotion, though not widely used for industrial purposes, has growing implications mainly due to its ease of maneuvering in rough terrains. The Walking motion is obtained through various mechanisms. Most obvious of these is the crank and rocker mechanism, which gives a walking style characteristic of human being. The present research work uses a different type of mechanism for driving a biped that is most distinguished by its ease of operation that produces a type of ‘walk’ similar to that of two legged mammals. In this research initially, a multi-objective optimization is carried out for the optimal design of the mechanism. This research involves a simulation of a simple Biped model using Crank-Rocker mechanism. The design of the biped robot is done by considering two important objective parameters stride and lift, a multi objective function must be created and optimization is done by using MATLAB Programming.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91397973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prototype development of tethered underwater robot for underwater vessel anchor release 水下船舶锚解系留式水下机器人样机研制
E. Joseph, Georgewill Oyengiye Moses
Tethered underwater robot (TUR) for underwater vessel anchor release is presented. In off-shore oil and gas enviromnment, there has been series of reported cases on stuck vessel anchors after mooring operations and divers are sent to release these anchors for the vessels to be in motion. The use of divers to perform such function is very risky because of human limitation and some divers have been reported dead on the process due to high pressure underwater or being attacked by underwater wide animals. This has caused very serious panic to the vessel owners and hence, this work is aimed to develop TUR that would be used by the vessel operators instead of divers to release the stuck anchor without loss. The underwater robot system comprises of three basic sections namely graphical user control interface (GUCI) that would be installed in the operator’s laptop, the WiFi LAN router for network connection, and TUR system hardware and software. Each of these sections was strictly designed. Various high-level programming languages were employed to design the GUCI and code the interface buttons, robot controller program codes etc. The implementation carried out and the prototype system tested in the University of Port Harcourt’s swimming pool of 6m depth for validation. The robot performed extremely good in swimming and release of constructed anchor underwater.
提出了一种用于水下船舶锚固释放的系留式水下机器人。在海上油气环境中,曾发生过一系列系泊作业后船舶锚被卡住的报道,潜水员被派去释放这些锚,以便船舶运动。由于人类的限制,使用潜水员执行这项功能是非常危险的,据报道,一些潜水员因水下高压或被水下野生动物袭击而死亡。这给船东造成了非常严重的恐慌,因此,这项工作的目的是开发TUR,供船舶操作员而不是潜水员使用,以在不造成损失的情况下释放被卡住的锚。水下机器人系统包括三个基本部分,即安装在操作员笔记本电脑上的图形用户控制界面(GUCI),用于网络连接的WiFi LAN路由器,以及TUR系统硬件和软件。每一部分都是经过严格设计的。采用多种高级编程语言对GUCI进行设计,并对接口按钮、机器人控制器程序代码等进行编码。原型系统在哈科特港大学6米深的游泳池中进行了测试,以进行验证。该机器人在水下游泳和放锚方面表现优异。
{"title":"Prototype development of tethered underwater robot for underwater vessel anchor release","authors":"E. Joseph, Georgewill Oyengiye Moses","doi":"10.11591/IJRA.V9I3.PP196-210","DOIUrl":"https://doi.org/10.11591/IJRA.V9I3.PP196-210","url":null,"abstract":"Tethered underwater robot (TUR) for underwater vessel anchor release is presented. In off-shore oil and gas enviromnment, there has been series of reported cases on stuck vessel anchors after mooring operations and divers are sent to release these anchors for the vessels to be in motion. The use of divers to perform such function is very risky because of human limitation and some divers have been reported dead on the process due to high pressure underwater or being attacked by underwater wide animals. This has caused very serious panic to the vessel owners and hence, this work is aimed to develop TUR that would be used by the vessel operators instead of divers to release the stuck anchor without loss. The underwater robot system comprises of three basic sections namely graphical user control interface (GUCI) that would be installed in the operator’s laptop, the WiFi LAN router for network connection, and TUR system hardware and software. Each of these sections was strictly designed. Various high-level programming languages were employed to design the GUCI and code the interface buttons, robot controller program codes etc. The implementation carried out and the prototype system tested in the University of Port Harcourt’s swimming pool of 6m depth for validation. The robot performed extremely good in swimming and release of constructed anchor underwater.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46204750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Improvement of an automated CAN packaging system based on modeling and analysis approach through robot simulation tools 基于建模分析方法的自动化CAN封装系统的改进
Khongsak Srasrisom, P. Srinoi, S. Chaijit, F. Wiwatwongwana
The application of robot simulation tools for modelling, analysis and improvement of existing industrial manufacturing cells is presented with reference to the development and implementation of the Digital Factory concept.  A real case study of aerosol can packaging and palletizing cell scenario in the metal can manufacturing industry for containing food and products is used as a reference in this paper.  For studying manual aerosol can packaging and palletizing conditions of the worker, a detailed Time and Motion analysis of workers is carried out.  On the basis of cycle time analysis results, an alternative to the manual operation, a more sophisticated automated packaging and palletizing system is suggested.  A proposed system which uses a robotic manipulator including automated production machine and devices are also developed and tested.  The viability of the suggested system is checked through simulation and cycle time analysis.   A Fuzzy Logic software, MATLAB is employed in order to analyse the actual system’s behaviour in terms of productivity, and utilization of the available facilities. The 3D simulation software, DELMIA V6 is additionally employed to perform a detailed design phase of the manufacturing cell.   From the simulation results, this gives a rough approximation that the production of one robotized manipulator, and automated packaging and palletizing cell is equal to the production of about 4.3 manual packaging and palletizing cells. These results have shown the need for change to automation in the aerosol can packaging and palletizing system.
参考数字工厂概念的开发和实施,介绍了机器人仿真工具在建模、分析和改进现有工业制造单元方面的应用。本文以金属罐制造业中用于盛装食品和产品的气溶胶罐包装和码垛单元场景的实际案例研究为参考。为了研究工人的手动气溶胶罐包装和码垛条件,对工人进行了详细的时间和运动分析。根据循环时间分析结果,提出了一种替代手动操作的更复杂的自动包装和码垛系统。还开发并测试了一种使用机器人操作器的系统,该系统包括自动生产机器和设备。通过仿真和循环时间分析来检查所建议的系统的可行性。使用模糊逻辑软件MATLAB来分析实际系统在生产力和可用设施利用率方面的行为。3D仿真软件DELMIA V6还用于执行制造单元的详细设计阶段。从模拟结果来看,这给出了一个粗略的近似值,即一个机器人操作器和自动包装和码垛单元的产量相当于大约4.3个手动包装和码堆垛单元的产量。这些结果表明,需要改变气溶胶罐包装和码垛系统的自动化。
{"title":"Improvement of an automated CAN packaging system based on modeling and analysis approach through robot simulation tools","authors":"Khongsak Srasrisom, P. Srinoi, S. Chaijit, F. Wiwatwongwana","doi":"10.11591/IJRA.V9I3.PP178-189","DOIUrl":"https://doi.org/10.11591/IJRA.V9I3.PP178-189","url":null,"abstract":"The application of robot simulation tools for modelling, analysis and improvement of existing industrial manufacturing cells is presented with reference to the development and implementation of the Digital Factory concept.  A real case study of aerosol can packaging and palletizing cell scenario in the metal can manufacturing industry for containing food and products is used as a reference in this paper.  For studying manual aerosol can packaging and palletizing conditions of the worker, a detailed Time and Motion analysis of workers is carried out.  On the basis of cycle time analysis results, an alternative to the manual operation, a more sophisticated automated packaging and palletizing system is suggested.  A proposed system which uses a robotic manipulator including automated production machine and devices are also developed and tested.  The viability of the suggested system is checked through simulation and cycle time analysis.   A Fuzzy Logic software, MATLAB is employed in order to analyse the actual system’s behaviour in terms of productivity, and utilization of the available facilities. The 3D simulation software, DELMIA V6 is additionally employed to perform a detailed design phase of the manufacturing cell.   From the simulation results, this gives a rough approximation that the production of one robotized manipulator, and automated packaging and palletizing cell is equal to the production of about 4.3 manual packaging and palletizing cells. These results have shown the need for change to automation in the aerosol can packaging and palletizing system.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46911727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust control and optimized parallel control double loop design for mobile robot 移动机器人鲁棒控制与优化并联控制双环设计
A. Abougarair, Ali S. Elmolihi
Robots have been used in many applications in the past few decades. Moreover, due to high nonlinearity behavior of these systems, an optimal and robust control design approaches have been considered to stabilize and improve their performance and robustness. The uncertainties of the time delay on the output states of the mobile robot system have a significant influence on the system nominal performance. As a result, the work becomes here to address the influence of these uncertainties on the robot system performance. In order to achieve this objective, the nonlinear controller via sliding mode control (SMC) is designed by selecting a suitable sliding surface dynamics in which the considered robot displacement and tilt angle are sliding on. The lyapunov function is considered here to accomplish the design of the sliding control signals for robot stabilization. Furthermore, the stability of the considered system is guaranteed due to convergence of the lyapunov functions into zero when the state trajectories tend to desired set points. In addition, we consider the trajectory tracking and stabilization of TWBMR system using parallel double loop PID controllers whose controllers gains are tuning via Linear Quadratic Regulator (LQR) approach.  Finally, to demonstrate the effectiveness of SMC and PID-LQR design methods, the comparison is carried out when the nominal and uncertain conditions.
在过去的几十年里,机器人在许多应用中得到了应用。此外,由于这些系统的高度非线性特性,为了稳定和提高系统的性能和鲁棒性,需要考虑一种最优鲁棒控制设计方法。时滞对移动机器人系统输出状态的不确定性对系统标称性能有很大影响。因此,这里的工作就变成了解决这些不确定性对机器人系统性能的影响。为了实现这一目标,在考虑机器人位移和倾斜角度的情况下,选择合适的滑动面动力学,设计了基于滑模控制的非线性控制器。本文采用李雅普诺夫函数来实现机器人稳定的滑动控制信号设计。此外,当状态轨迹趋向于期望的设定点时,由于lyapunov函数收敛于零,所考虑的系统的稳定性得到了保证。此外,我们还考虑了采用并联双环PID控制器的TWBMR系统的轨迹跟踪和稳定,该控制器的增益通过线性二次调节器(LQR)方法进行整定。最后,为了证明SMC和PID-LQR设计方法的有效性,在标称条件和不确定条件下进行了比较。
{"title":"Robust control and optimized parallel control double loop design for mobile robot","authors":"A. Abougarair, Ali S. Elmolihi","doi":"10.11591/IJRA.V9I3.PP160-170","DOIUrl":"https://doi.org/10.11591/IJRA.V9I3.PP160-170","url":null,"abstract":"Robots have been used in many applications in the past few decades. Moreover, due to high nonlinearity behavior of these systems, an optimal and robust control design approaches have been considered to stabilize and improve their performance and robustness. The uncertainties of the time delay on the output states of the mobile robot system have a significant influence on the system nominal performance. As a result, the work becomes here to address the influence of these uncertainties on the robot system performance. In order to achieve this objective, the nonlinear controller via sliding mode control (SMC) is designed by selecting a suitable sliding surface dynamics in which the considered robot displacement and tilt angle are sliding on. The lyapunov function is considered here to accomplish the design of the sliding control signals for robot stabilization. Furthermore, the stability of the considered system is guaranteed due to convergence of the lyapunov functions into zero when the state trajectories tend to desired set points. In addition, we consider the trajectory tracking and stabilization of TWBMR system using parallel double loop PID controllers whose controllers gains are tuning via Linear Quadratic Regulator (LQR) approach.  Finally, to demonstrate the effectiveness of SMC and PID-LQR design methods, the comparison is carried out when the nominal and uncertain conditions.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41381350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
期刊
IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1