首页 > 最新文献

IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium最新文献

英文 中文
Design of a Real Time FPGA-based Three Dimensional Positioning Algorithm. 基于fpga的实时三维定位算法设计。
Pub Date : 2009-11-01 DOI: 10.1109/NSSMIC.2009.5401848
Nathan G Johnson-Williams, Robert S Miyaoka, Xiaoli Li, Tom K Lewellen, Scott Hauck

We report on the implementation and hardware platform of a real time Statistics-Based Processing (SBP) method with depth of interaction processing for continuous miniature crystal element (cMiCE) detectors using a sensor on the entrance surface design. Our group previously reported on a Field Programmable Gate Array (FPGA) SBP implementation that provided a two dimensional (2D) solution of the detector's intrinsic spatial resolution. This new implementation extends that work to take advantage of three dimensional (3D) look up tables to provide a 3D positioning solution that improves intrinsic spatial resolution. Resolution is most improved along the edges of the crystal, an area where the 2D algorithm's performance suffers. The algorithm allows an intrinsic spatial resolution of ~0.90 mm FWHM in X and Y and a resolution of ~1.90 mm FWHM in Z (i.e., the depth of the crystal) based upon DETECT2000 simulation results that include the effects of Compton scatter in the crystal. A pipelined FPGA implementation is able to process events in excess of 220k events per second, which is greater than the maximum expected coincidence rate for an individual detector. In contrast to all detectors being processed at a centralized host, as in the current system, a separate FPGA is available at each detector, thus dividing the computational load. A prototype design has been implemented and tested using a reduced word size due to memory limitations of our commercial prototyping board.

本文报道了一种基于统计的实时处理(SBP)方法的实现和硬件平台,该方法具有深度交互处理,用于连续微型晶体元件(cMiCE)探测器的入口表面设计。我们的团队之前报道了一种现场可编程门阵列(FPGA) SBP实现,该实现提供了探测器固有空间分辨率的二维(2D)解决方案。这个新的实现扩展了这项工作,利用三维(3D)查找表来提供3D定位解决方案,从而提高了固有的空间分辨率。分辨率在晶体边缘得到最大提高,这是二维算法性能受损的区域。基于DETECT2000模拟结果(包括晶体中的康普顿散射效应),该算法在X和Y上的固有空间分辨率为~0.90 mm FWHM,在Z(即晶体深度)上的分辨率为~1.90 mm FWHM。流水线FPGA实现能够以每秒超过220k个事件的速度处理事件,这比单个检测器的最大预期巧合率要高。与在一个集中的主机上处理所有探测器不同,在当前系统中,每个探测器都有一个单独的FPGA,从而划分了计算负载。由于我们的商业原型板的内存限制,原型设计已经实现并使用缩小的字长进行了测试。
{"title":"Design of a Real Time FPGA-based Three Dimensional Positioning Algorithm.","authors":"Nathan G Johnson-Williams,&nbsp;Robert S Miyaoka,&nbsp;Xiaoli Li,&nbsp;Tom K Lewellen,&nbsp;Scott Hauck","doi":"10.1109/NSSMIC.2009.5401848","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5401848","url":null,"abstract":"<p><p>We report on the implementation and hardware platform of a real time Statistics-Based Processing (SBP) method with depth of interaction processing for continuous miniature crystal element (cMiCE) detectors using a sensor on the entrance surface design. Our group previously reported on a Field Programmable Gate Array (FPGA) SBP implementation that provided a two dimensional (2D) solution of the detector's intrinsic spatial resolution. This new implementation extends that work to take advantage of three dimensional (3D) look up tables to provide a 3D positioning solution that improves intrinsic spatial resolution. Resolution is most improved along the edges of the crystal, an area where the 2D algorithm's performance suffers. The algorithm allows an intrinsic spatial resolution of ~0.90 mm FWHM in X and Y and a resolution of ~1.90 mm FWHM in Z (i.e., the depth of the crystal) based upon DETECT2000 simulation results that include the effects of Compton scatter in the crystal. A pipelined FPGA implementation is able to process events in excess of 220k events per second, which is greater than the maximum expected coincidence rate for an individual detector. In contrast to all detectors being processed at a centralized host, as in the current system, a separate FPGA is available at each detector, thus dividing the computational load. A prototype design has been implemented and tested using a reduced word size due to memory limitations of our commercial prototyping board.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"1082-3654"},"PeriodicalIF":0.0,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5401848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29116418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Initial Evaluation of Direct 4D Parametric Reconstruction with Human PET Data. 使用人体 PET 数据进行直接 4D 参数化重建的初步评估。
Pub Date : 2009-11-01 DOI: 10.1109/NSSMIC.2009.5402049
Jianhua Yan, Beata Planeta-Wilson, Jean-Dominique Gallezot, Richard E Carson

Previously, we presented a direct EM method for producing kinetic parameter images from list mode PET data, where the time-activity curve for each voxel is described by a one-tissue compartment model (1T). The initial evaluations were performed with simulations, without motion, randoms, or scatter effects included. By extension of our previous frame-based physics correction methods, a practical direct 4D parametric reconstruction algorithm is now proposed and implemented for human data. Initial evaluations were performed using 3 human subjects with the serotonin transporter tracer [(11)C]AFM. Comparisons with the 2-step approach (frame-based reconstruction followed by voxel-by-voxel parameter estimation) provided encouraging initial results. Regional analysis showed that the 2-step and 4D methods have similar K(1) and V(T) values, but with a consistent difference. Visual analysis showed some noise reduction in 4D. These initial results suggest that direct 4D parametric reconstruction can be performed with real data, and offers the potential for improved accuracy and precision over the 2-step frame method.

在此之前,我们提出了一种直接 EM 方法,用于从列表模式 PET 数据中生成动力学参数图像,其中每个体素的时间-活动曲线由单组织区室模型(1T)描述。最初的评估是在不包含运动、随机或散射效应的情况下模拟进行的。通过扩展我们之前基于帧的物理校正方法,现在提出了一种实用的直接 4D 参数重建算法,并针对人体数据进行了实施。初步评估使用了 3 名人体受试者的血清素转运示踪剂 [(11)C]AFM。与两步法(基于帧的重建,然后逐体素进行参数估计)进行比较后,得出了令人鼓舞的初步结果。区域分析显示,两步法和 4D 法的 K(1) 和 V(T) 值相似,但存在一致的差异。目视分析显示,4D 方法的噪声有所降低。这些初步结果表明,直接四维参数重建可以通过真实数据进行,并有可能比两步框架法提高准确性和精确度。
{"title":"Initial Evaluation of Direct 4D Parametric Reconstruction with Human PET Data.","authors":"Jianhua Yan, Beata Planeta-Wilson, Jean-Dominique Gallezot, Richard E Carson","doi":"10.1109/NSSMIC.2009.5402049","DOIUrl":"10.1109/NSSMIC.2009.5402049","url":null,"abstract":"<p><p>Previously, we presented a direct EM method for producing kinetic parameter images from list mode PET data, where the time-activity curve for each voxel is described by a one-tissue compartment model (1T). The initial evaluations were performed with simulations, without motion, randoms, or scatter effects included. By extension of our previous frame-based physics correction methods, a practical direct 4D parametric reconstruction algorithm is now proposed and implemented for human data. Initial evaluations were performed using 3 human subjects with the serotonin transporter tracer [(11)C]AFM. Comparisons with the 2-step approach (frame-based reconstruction followed by voxel-by-voxel parameter estimation) provided encouraging initial results. Regional analysis showed that the 2-step and 4D methods have similar K(1) and V(T) values, but with a consistent difference. Visual analysis showed some noise reduction in 4D. These initial results suggest that direct 4D parametric reconstruction can be performed with real data, and offers the potential for improved accuracy and precision over the 2-step frame method.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 Oct. 24 2009-Nov. 1 2009","pages":"2503-2506"},"PeriodicalIF":0.0,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030204/pdf/nihms193433.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29635811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Continuous Miniature Crystal Element (cMiCE) Detector Geometries. 新型连续微型晶体元件 (cMiCE) 探测器的几何形状。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5401844
Robert S Miyaoka, Xiaoli Li, Cate Lockhart, Tom K Lewellen

Continuous miniature crystal element (cMiCE) detectors are a potentially lower cost alternative to high resolution discrete crystal designs. We report on the intrinsic spatial resolution performance for two cMiCE PET detector designs with depth of interaction (DOI) positioning capability. The first detector utilizes a 50 mm by 50 mm by 8 mm LYSO crystal coupled to a 64 channel, multi-anode PMT. It provides 4 layers of DOI information. The crystal has beveled edges along two of its sides to improve the detector packing when placed in a ring geometry. The second detector utilizes a 50 mm by 50 mm by 15 mm, rectangular LYSO crystal coupled to a 64 channel, multi-anode PMT. It provides up to 15 layers of DOI information. The average intrinsic X, Y spatial resolution for the 8 mm thick, truncated crystal detector was 1.33 +/- 0.31 mm FWHM (45.6 mm by 46.6 mm useful imaging area). The average DOI resolution was 3.5 +/- 0.22 mm. The average intrinsic X, Y spatial resolution for the 15 mm thick crystal detector was 1.74 +/- 0.35 mm FWHM (44.6 mm by 44.6 mm useful imaging area). In addition, the average DOI spatial resolution for 56 test points spanning a 26.4 mm by 12.2 mm region of the crystal was 4.80 +/- 0.36 mm. We believe the 8 mm thick truncated crystal design is suitable for mouse imaging while the 15 mm thick crystal design is more suited for human organ specific imaging systems (e.g., breast and brain).

连续微型晶体元件(cMiCE)探测器是高分辨率离散晶体设计的潜在低成本替代品。我们报告了两种具有相互作用深度(DOI)定位功能的 cMiCE PET 探测器设计的内在空间分辨率性能。第一个探测器采用 50 毫米 x 50 毫米 x 8 毫米的 LYSO 晶体,与 64 通道多阳极 PMT 相耦合。它提供 4 层 DOI 信息。晶体的两个侧面有斜边,以改善环形几何结构中探测器的封装。第二个探测器采用一个 50 毫米 x 50 毫米 x 15 毫米的矩形 LYSO 晶体,与一个 64 通道多阳极 PMT 相耦合。它可提供多达 15 层的 DOI 信息。厚度为 8 毫米的截断晶体探测器的平均 X、Y 本征空间分辨率为 1.33 +/- 0.31 毫米 FWHM(有效成像面积为 45.6 毫米 x 46.6 毫米)。平均 DOI 分辨率为 3.5 +/- 0.22 毫米。15 毫米厚的晶体探测器的平均 X、Y 本征空间分辨率为 1.74 +/- 0.35 毫米 FWHM(44.6 毫米 x 44.6 毫米有用成像区域)。此外,跨度为 26.4 毫米 x 12.2 毫米的 56 个测试点的平均 DOI 空间分辨率为 4.80 +/- 0.36 毫米。我们认为 8 毫米厚的截断晶体设计适合小鼠成像,而 15 毫米厚的晶体设计更适合人体器官特定成像系统(如乳腺和大脑)。
{"title":"New Continuous Miniature Crystal Element (cMiCE) Detector Geometries.","authors":"Robert S Miyaoka, Xiaoli Li, Cate Lockhart, Tom K Lewellen","doi":"10.1109/NSSMIC.2009.5401844","DOIUrl":"10.1109/NSSMIC.2009.5401844","url":null,"abstract":"<p><p>Continuous miniature crystal element (cMiCE) detectors are a potentially lower cost alternative to high resolution discrete crystal designs. We report on the intrinsic spatial resolution performance for two cMiCE PET detector designs with depth of interaction (DOI) positioning capability. The first detector utilizes a 50 mm by 50 mm by 8 mm LYSO crystal coupled to a 64 channel, multi-anode PMT. It provides 4 layers of DOI information. The crystal has beveled edges along two of its sides to improve the detector packing when placed in a ring geometry. The second detector utilizes a 50 mm by 50 mm by 15 mm, rectangular LYSO crystal coupled to a 64 channel, multi-anode PMT. It provides up to 15 layers of DOI information. The average intrinsic X, Y spatial resolution for the 8 mm thick, truncated crystal detector was 1.33 +/- 0.31 mm FWHM (45.6 mm by 46.6 mm useful imaging area). The average DOI resolution was 3.5 +/- 0.22 mm. The average intrinsic X, Y spatial resolution for the 15 mm thick crystal detector was 1.74 +/- 0.35 mm FWHM (44.6 mm by 44.6 mm useful imaging area). In addition, the average DOI spatial resolution for 56 test points spanning a 26.4 mm by 12.2 mm region of the crystal was 4.80 +/- 0.36 mm. We believe the 8 mm thick truncated crystal design is suitable for mouse imaging while the 15 mm thick crystal design is more suited for human organ specific imaging systems (e.g., breast and brain).</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"3639-3642"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898204/pdf/nihms-207150.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29117549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners. 一个8×8行列求和读出电子为临床前正电子发射断层扫描仪。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5402200
Y C Shih, F W Sun, L R Macdonald, B P Otis, R S Miyaoka, W McDougald, T K Lewellen

This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM.

这项工作提出了一种用于8×8硅光电倍增管阵列的行/列求和读出电子器件。求和电路大大减少了电子通道的数量,这对于追求更高分辨率的正电子发射断层扫描仪是理想的。通过在求和电路中使用退化的共源拓扑,可以实现更多的扇入,因此可以实现电子通道数量的更大减少。时序信号从一个公共阳极检索,这允许使用单个快速采样的模数转换器(ADC)作为时序通道,并为64个空间通道使用更慢、更低功率的ADC。对8×8读出电子器件的一行相加的初步结果显示,在有和没有复用的情况下,FWHM能量分辨率分别为17.8%和18.3%。测量的时序分辨率为2.9ns FWHM。
{"title":"An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners.","authors":"Y C Shih,&nbsp;F W Sun,&nbsp;L R Macdonald,&nbsp;B P Otis,&nbsp;R S Miyaoka,&nbsp;W McDougald,&nbsp;T K Lewellen","doi":"10.1109/NSSMIC.2009.5402200","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5402200","url":null,"abstract":"<p><p>This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"2376-2380"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5402200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29204182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Impact on the Spatial Resolution Performance of a Monolithic Crystal PET Detector Due to Different Sensor Parameters. 不同传感器参数对单晶PET探测器空间分辨率性能的影响。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5401674
Xiaoli Li, Cate Lockhart, Tom K Lewellen, Robert S Miyaoka

The performance characteristics of a monolithic crystal PET detector utilizing a novel sensor on the entrance surface (SES) design is reported. To facilitate this design, we propose to utilize a 2D silicon photomultiplier (SiPM) array device. SiPMs are a form of Geiger-Muller mode avalanche photodiodes (GMAPD) that can provide signal gain similar to a photomultiplier tube (PMT). Since these devices are still under active development, their performance parameters are changing. Using a multi-step simulation process, we investigated how different SiPM parameters affect the performance of a monolithic crystal PET detector. These parameters include gain variability between different channels; gain instability; and dark count noise. The detector simulated was a 49.6 mm by 49.6 mm by 15 mm LYSO crystal detector readout by a 16 by 16 array of 2.8 mm by 2.8 mm SiPM elements. To reduce the number of signal channels that need to be collected, the detector utilizes row-column summing. A statistics based positioning method is used for event positioning and depth of interaction (DOI) decoding. Of the variables investigated, the dark count noise had the largest impact on the intrinsic spatial resolution. Gain differences of 5-10% between detector calibration and detector testing had a modest impact on the intrinsic spatial resolution performance and led to a slight bias in positioning. There was no measurable difference with a gain variability of up to 25% between the individual SiPM channels. Based upon these results we are planning to cool our detectors below room temperature to reduce dark count noise and to actively control the temperature of the SiPMs to reduce drifts in gain over time.

报道了采用新型入口表面传感器设计的单片晶体PET探测器的性能特点。为了方便这种设计,我们建议使用二维硅光电倍增管(SiPM)阵列器件。sipm是盖革-穆勒模式雪崩光电二极管(GMAPD)的一种形式,可以提供类似于光电倍增管(PMT)的信号增益。由于这些设备仍在积极开发中,其性能参数也在不断变化。采用多步仿真方法,研究了不同SiPM参数对单片晶体PET探测器性能的影响。这些参数包括不同信道间的增益可变性;获得不稳定;和黑暗计数噪音。模拟的探测器是一个49.6 mm × 49.6 mm × 15 mm的LYSO晶体探测器,由一个由2.8 mm × 2.8 mm SiPM元件组成的16 × 16阵列读出。为了减少需要采集的信号通道的数量,检测器采用行-列求和。采用基于统计的定位方法进行事件定位和交互深度(DOI)解码。在研究的变量中,暗计数噪声对固有空间分辨率的影响最大。探测器校准和探测器测试之间5-10%的增益差异对固有空间分辨率性能影响不大,导致定位偏差轻微。在单个SiPM通道之间,增益可变性高达25%,没有可测量的差异。基于这些结果,我们计划将探测器冷却到室温以下,以减少暗计数噪声,并主动控制sipm的温度,以减少增益随时间的漂移。
{"title":"Impact on the Spatial Resolution Performance of a Monolithic Crystal PET Detector Due to Different Sensor Parameters.","authors":"Xiaoli Li,&nbsp;Cate Lockhart,&nbsp;Tom K Lewellen,&nbsp;Robert S Miyaoka","doi":"10.1109/NSSMIC.2009.5401674","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5401674","url":null,"abstract":"<p><p>The performance characteristics of a monolithic crystal PET detector utilizing a novel sensor on the entrance surface (SES) design is reported. To facilitate this design, we propose to utilize a 2D silicon photomultiplier (SiPM) array device. SiPMs are a form of Geiger-Muller mode avalanche photodiodes (GMAPD) that can provide signal gain similar to a photomultiplier tube (PMT). Since these devices are still under active development, their performance parameters are changing. Using a multi-step simulation process, we investigated how different SiPM parameters affect the performance of a monolithic crystal PET detector. These parameters include gain variability between different channels; gain instability; and dark count noise. The detector simulated was a 49.6 mm by 49.6 mm by 15 mm LYSO crystal detector readout by a 16 by 16 array of 2.8 mm by 2.8 mm SiPM elements. To reduce the number of signal channels that need to be collected, the detector utilizes row-column summing. A statistics based positioning method is used for event positioning and depth of interaction (DOI) decoding. Of the variables investigated, the dark count noise had the largest impact on the intrinsic spatial resolution. Gain differences of 5-10% between detector calibration and detector testing had a modest impact on the intrinsic spatial resolution performance and led to a slight bias in positioning. There was no measurable difference with a gain variability of up to 25% between the individual SiPM channels. Based upon these results we are planning to cool our detectors below room temperature to reduce dark count noise and to actively control the temperature of the SiPMs to reduce drifts in gain over time.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"3102-3105"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5401674","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29276412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging. 快速成型技术在伽马射线和x射线成像中的新应用。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5401745
Brian W Miller, Jared W Moore, Michael E Gehm, Lars R Furenlid, Harrison H Barrett

Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum.

3D快速原型打印机、3D建模软件和铸造技术的进步使得在伽马射线和x射线成像系统中制造具有成本效益的定制组件成为可能。应用扩展到定制准直器,针孔,校准和分辨率幻影,安装和屏蔽组件以及成像孔径的新制造方法。详细介绍了这些组件的制造过程,特别是3D打印过程,用钨环氧树脂冷铸造,以及铂的失蜡铸造。
{"title":"Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging.","authors":"Brian W Miller,&nbsp;Jared W Moore,&nbsp;Michael E Gehm,&nbsp;Lars R Furenlid,&nbsp;Harrison H Barrett","doi":"10.1109/NSSMIC.2009.5401745","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5401745","url":null,"abstract":"<p><p>Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"3322-3326"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5401745","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30909984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Determining Block Detector Positions for PET Scanners. 确定正电子发射计算机扫描仪的探测器位置。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5401595
Larry Pierce, Robert Miyaoka, Tom Lewellen, Adam Alessio, Paul Kinahan

We present an algorithm for accurate localization of block detectors in a positron emission tomography (PET) scanner. Accurate reconstruction of PET images requires precise knowledge of the physical position and orientation of the detectors. However, in some systems, block detector positioning and orientation can have relatively large tolerances, leading to implicit errors in the coincidence line-of-response (LOR) positioning. To compensate we utilize a rotating point source phantom where the rotational angle of the phantom is used to precisely determine the location of each scintillator crystal within a detector block. The aggregate block positions are then applied to the system model to determine the true location of each LOR. Images reconstructed with the more accurate LOR positioning demonstrate improved image fidelity.

我们提出了一种在正电子发射断层扫描(PET)扫描仪中精确定位块探测器的算法。正电子发射断层扫描图像的精确重建需要精确了解探测器的物理位置和方向。然而,在某些系统中,块探测器的定位和定向可能存在相对较大的公差,从而导致重合响应线(LOR)定位的隐含误差。为了弥补这一缺陷,我们采用了旋转点源模型,利用模型的旋转角度来精确确定探测器块内每个闪烁晶体的位置。然后将探测器块的总位置应用于系统模型,以确定每个 LOR 的真实位置。利用更精确的 LOR 定位重建的图像显示出更高的图像保真度。
{"title":"Determining Block Detector Positions for PET Scanners.","authors":"Larry Pierce, Robert Miyaoka, Tom Lewellen, Adam Alessio, Paul Kinahan","doi":"10.1109/NSSMIC.2009.5401595","DOIUrl":"10.1109/NSSMIC.2009.5401595","url":null,"abstract":"<p><p>We present an algorithm for accurate localization of block detectors in a positron emission tomography (PET) scanner. Accurate reconstruction of PET images requires precise knowledge of the physical position and orientation of the detectors. However, in some systems, block detector positioning and orientation can have relatively large tolerances, leading to implicit errors in the coincidence line-of-response (LOR) positioning. To compensate we utilize a rotating point source phantom where the rotational angle of the phantom is used to precisely determine the location of each scintillator crystal within a detector block. The aggregate block positions are then applied to the system model to determine the true location of each LOR. Images reconstructed with the more accurate LOR positioning demonstrate improved image fidelity.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"2976-2980"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895935/pdf/nihms207151.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29104871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy of Head Motion Compensation for the HRRT: Comparison of Methods. HRRT头部运动补偿的精度:方法比较。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5401706
Xiao Jin, Tim Mulnix, Beata Planeta-Wilson, Jean-Dominique Gallezot, Richard E Carson

Motion correction in PET has become more important as system resolution has improved. The purpose of this study was to evaluate the accuracy of three motion compensation methods, event-by-event motion compensation with list-mode reconstruction (MOLAR), frame-based motion correction, and post-reconstruction image registration. Motion compensated image reconstructions were carried out with simulated HRRT data, using a range of motion information based on human motion data. ROI analyses in high contrast regions were performed to evaluate the accuracy of all the motion compensation methods, with particular attention to within-frame motion.Our study showed that MOLAR with list-mode based motion correction using accurate motion data can reliably correct for all reasonable head motions. Over all motions, the average ROI count was within 0.1±4.2% and 0.7±0.9% of the reference, no-motion value for two different ROIs. The location of the ROI centroid was found to be within 0.7±0.3mm of that of the reference image for the raphe nucleus. Frame-based motion compensation and post-reconstruction image registration were able to correct for small (<5mm), but the ROI intensity begins to deteriorate for medium motions (5-10mm), especially for small brain structures such as the raphe nucleus. For large (>10mm) motions, the average centroid locations of the raphe nucleus ROI had an offset error of 1.5±1.8mm and 1.8±1.8mm for each of the frame-based methods. For each frame-based method, the decrease in the average ROI intensity was 16.9±4.3% and 20.2±9.9% respectively for the raphe nucleus, and was 5.5±2.2% and 7.4±0.2% for putamen. Based on these data, we conclude that event-by-event based motion correction works accurately for all reasonable motions, whereas frame-based motion correction is accurate only when the within-frame motion is less than 10mm.

随着系统分辨率的提高,PET中的运动校正变得越来越重要。本研究的目的是评估三种运动补偿方法的准确性,即基于列表模式重建的逐事件运动补偿(MOLAR),基于帧的运动校正和重建后的图像配准。利用基于人体运动数据的一系列运动信息,利用模拟HRRT数据进行运动补偿图像重建。在高对比度区域进行ROI分析,以评估所有运动补偿方法的准确性,特别关注帧内运动。我们的研究表明,使用精确的运动数据进行基于列表模式的运动校正的臼齿可以可靠地校正所有合理的头部运动。在所有运动中,两种不同ROI的平均ROI计数在参考无运动值的0.1±4.2%和0.7±0.9%之间。ROI质心位置与中缝核参考图像的距离在0.7±0.3mm以内。基于帧的运动补偿和重建后图像配准能够校正较小(10mm)的运动,中缝核ROI的平均质心位置偏移误差分别为1.5±1.8mm和1.8±1.8mm。两种方法对中缝核的平均ROI强度分别降低16.9±4.3%和20.2±9.9%,对壳核的平均ROI强度分别降低5.5±2.2%和7.4±0.2%。基于这些数据,我们得出结论,基于事件的运动校正对所有合理的运动都是准确的,而基于帧的运动校正只有在帧内运动小于10mm时才准确。
{"title":"Accuracy of Head Motion Compensation for the HRRT: Comparison of Methods.","authors":"Xiao Jin,&nbsp;Tim Mulnix,&nbsp;Beata Planeta-Wilson,&nbsp;Jean-Dominique Gallezot,&nbsp;Richard E Carson","doi":"10.1109/NSSMIC.2009.5401706","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5401706","url":null,"abstract":"<p><p>Motion correction in PET has become more important as system resolution has improved. The purpose of this study was to evaluate the accuracy of three motion compensation methods, event-by-event motion compensation with list-mode reconstruction (MOLAR), frame-based motion correction, and post-reconstruction image registration. Motion compensated image reconstructions were carried out with simulated HRRT data, using a range of motion information based on human motion data. ROI analyses in high contrast regions were performed to evaluate the accuracy of all the motion compensation methods, with particular attention to within-frame motion.Our study showed that MOLAR with list-mode based motion correction using accurate motion data can reliably correct for all reasonable head motions. Over all motions, the average ROI count was within 0.1±4.2% and 0.7±0.9% of the reference, no-motion value for two different ROIs. The location of the ROI centroid was found to be within 0.7±0.3mm of that of the reference image for the raphe nucleus. Frame-based motion compensation and post-reconstruction image registration were able to correct for small (<5mm), but the ROI intensity begins to deteriorate for medium motions (5-10mm), especially for small brain structures such as the raphe nucleus. For large (>10mm) motions, the average centroid locations of the raphe nucleus ROI had an offset error of 1.5±1.8mm and 1.8±1.8mm for each of the frame-based methods. For each frame-based method, the decrease in the average ROI intensity was 16.9±4.3% and 20.2±9.9% respectively for the raphe nucleus, and was 5.5±2.2% and 7.4±0.2% for putamen. Based on these data, we conclude that event-by-event based motion correction works accurately for all reasonable motions, whereas frame-based motion correction is accurate only when the within-frame motion is less than 10mm.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"3199-3202"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5401706","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29105302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography. 基于fpga的正电子发射断层成像脉冲参数发现。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5401602
Michael Haselman, Scott Hauck, Thomas K Lewellen, Robert S Miyaoka

Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

现代现场可编程门阵列(fpga)能够执行复杂的数字信号处理算法,时钟速率远高于100MHz。再加上FPGA的低成本和易用性,使其成为正电子发射断层扫描(PET)扫描仪数据采集系统的理想技术。华盛顿大学正在生产一系列高分辨率的小动物PET扫描仪,这些扫描仪利用fpga作为前端电子设备的核心。对于这些下一代扫描仪,通常在专用电路或脱机中执行的功能正在迁移到FPGA上。这不仅可以简化电子器件,而且可以利用现代fpga的特性来增加显著的信号处理能力,以产生更高分辨率的图像。在本文中,我们报告了如何利用FPGA的可重构特性来自校准自身以确定某些脉冲处理步骤所需的脉冲参数。具体来说,我们展示了FPGA如何基于实际脉冲数据而不是模型生成参考脉冲。我们还报告了如何通过FPGA自动确定光电探测器脉冲的其他属性(基线,脉冲长度,平均脉冲能量和事件触发器)。
{"title":"FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.","authors":"Michael Haselman,&nbsp;Scott Hauck,&nbsp;Thomas K Lewellen,&nbsp;Robert S Miyaoka","doi":"10.1109/NSSMIC.2009.5401602","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5401602","url":null,"abstract":"<p><p>Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"2956-2961"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5401602","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29103158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Maximum Likelihood Event Estimation and List-mode Image Reconstruction on GPU Hardware. GPU硬件上的最大似然事件估计和列表模式图像重建。
Pub Date : 2009-10-24 DOI: 10.1109/NSSMIC.2009.5402392
Luca Caucci, Lars R Furenlid, Harrison H Barrett
The scintillation detectors commonly used in SPECT and PET imaging and in Compton cameras require estimation of the position and energy of each gamma ray interaction. Ideally, this process would yield images with no spatial distortion and the best possible spatial resolution. In addition, especially for Compton cameras, the computation must yield the best possible estimate of the energy of each interacting gamma ray. These goals can be achieved by use of maximum-likelihood (ML) estimation of the event parameters, but in the past the search for an ML estimate has not been computationally feasible. Now, however, graphics processing units (GPUs) make it possible to produce optimal, real-time estimates of position and energy, even from scintillation cameras with a large number of photodetectors. In addition, the mathematical properties of ML estimates make them very attractive for use as list entries in list-mode ML image reconstruction. This two-step ML process — using ML estimation once to get the list data and again to reconstruct the object — allows accurate modeling of the detector blur and, potentially, considerable improvement in reconstructed spatial resolution.
通常用于SPECT和PET成像和康普顿相机的闪烁探测器需要估计每个伽马射线相互作用的位置和能量。理想情况下,这个过程将产生没有空间失真和最佳空间分辨率的图像。此外,特别是对于康普顿照相机,计算必须产生每一个相互作用的伽马射线的能量的最佳估计。这些目标可以通过使用事件参数的最大似然(ML)估计来实现,但在过去,搜索ML估计在计算上是不可行的。然而,现在,图形处理单元(gpu)使产生最佳的、实时的位置和能量估计成为可能,甚至可以从带有大量光电探测器的闪烁相机中得到。此外,机器学习估计的数学特性使它们非常适合用作列表模式机器学习图像重建中的列表条目。这个两步机器学习过程——使用机器学习估计一次获得列表数据,然后再次重建对象——允许对检测器模糊进行精确建模,并且可能大大提高重建的空间分辨率。
{"title":"Maximum Likelihood Event Estimation and List-mode Image Reconstruction on GPU Hardware.","authors":"Luca Caucci,&nbsp;Lars R Furenlid,&nbsp;Harrison H Barrett","doi":"10.1109/NSSMIC.2009.5402392","DOIUrl":"https://doi.org/10.1109/NSSMIC.2009.5402392","url":null,"abstract":"The scintillation detectors commonly used in SPECT and PET imaging and in Compton cameras require estimation of the position and energy of each gamma ray interaction. Ideally, this process would yield images with no spatial distortion and the best possible spatial resolution. In addition, especially for Compton cameras, the computation must yield the best possible estimate of the energy of each interacting gamma ray. These goals can be achieved by use of maximum-likelihood (ML) estimation of the event parameters, but in the past the search for an ML estimate has not been computationally feasible. Now, however, graphics processing units (GPUs) make it possible to produce optimal, real-time estimates of position and energy, even from scintillation cameras with a large number of photodetectors. In addition, the mathematical properties of ML estimates make them very attractive for use as list entries in list-mode ML image reconstruction. This two-step ML process — using ML estimation once to get the list data and again to reconstruct the object — allows accurate modeling of the detector blur and, potentially, considerable improvement in reconstructed spatial resolution.","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"4072"},"PeriodicalIF":0.0,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5402392","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29636264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
期刊
IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1