Claudia Chambers, Broc Chitwood, Charles J. Smith, Yubin Miao
Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.
{"title":"Elevating theranostics: The emergence and promise of radiopharmaceutical cell-targeting heterodimers in human cancers","authors":"Claudia Chambers, Broc Chitwood, Charles J. Smith, Yubin Miao","doi":"10.1002/ird3.62","DOIUrl":"https://doi.org/10.1002/ird3.62","url":null,"abstract":"<p>Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 2","pages":"128-155"},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.62","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeliu Du, Chuanqiang Lan, Lin Shen, Zhifeng Tian, Hongfei Hu, Jie Mei, Ye Feng, Mengqian Zhai, Junchao Yu, Kan Liu, Jiansong Ji, Chenying Lu
Radiation-induced heart disease (RIHD) is a heterogeneous, delayed, and potentially fatal adverse reaction to radiation that can damage all structures of the heart, including the pericardium, myocardium, coronary arteries, valves, and conduction system, leading to a series of diseases. Acute and chronic disease processes play a role in the development of RIHD, the onset times of which range from months to decades. However, the clinical manifestations of RIHD are usually insidious, overlap with several other diseases, and lack specificity. Cardiovascular imaging is essential for early diagnosis, follow-up, and outcome assessment in patients with RIHD. This review first describes the pathogenesis and clinical manifestations of RIHD before providing an overview of the practical approaches and research advances in multimodal cardiovascular imaging in patients with RIHD, including echocardiography, cardiac magnetic resonance (CMR) and nuclear medicine, and cardiac computed tomography (CT). Then, the value of new cardiac imaging assessments for the early diagnosis of RIHD is described, particularly with relation to speckle-tracking echocardiography, extracellular volume fraction assessment as a quantitative CMR technique, CMR myocardial strain assessment, positron emission tomography-CT myocardial perfusion imaging, CT-ECV, and CT strain assessment, amongst others. In addition, the advantages and disadvantages of each screening technique are compared with the aim of better guiding the follow-up and diagnosis of subclinical RIHD and preventing cardiovascular events.
{"title":"Advances in multimodality imaging and the application of new cardiac imaging technologies for radiation-induced heart disease","authors":"Zeliu Du, Chuanqiang Lan, Lin Shen, Zhifeng Tian, Hongfei Hu, Jie Mei, Ye Feng, Mengqian Zhai, Junchao Yu, Kan Liu, Jiansong Ji, Chenying Lu","doi":"10.1002/ird3.72","DOIUrl":"10.1002/ird3.72","url":null,"abstract":"<p>Radiation-induced heart disease (RIHD) is a heterogeneous, delayed, and potentially fatal adverse reaction to radiation that can damage all structures of the heart, including the pericardium, myocardium, coronary arteries, valves, and conduction system, leading to a series of diseases. Acute and chronic disease processes play a role in the development of RIHD, the onset times of which range from months to decades. However, the clinical manifestations of RIHD are usually insidious, overlap with several other diseases, and lack specificity. Cardiovascular imaging is essential for early diagnosis, follow-up, and outcome assessment in patients with RIHD. This review first describes the pathogenesis and clinical manifestations of RIHD before providing an overview of the practical approaches and research advances in multimodal cardiovascular imaging in patients with RIHD, including echocardiography, cardiac magnetic resonance (CMR) and nuclear medicine, and cardiac computed tomography (CT). Then, the value of new cardiac imaging assessments for the early diagnosis of RIHD is described, particularly with relation to speckle-tracking echocardiography, extracellular volume fraction assessment as a quantitative CMR technique, CMR myocardial strain assessment, positron emission tomography-CT myocardial perfusion imaging, CT-ECV, and CT strain assessment, amongst others. In addition, the advantages and disadvantages of each screening technique are compared with the aim of better guiding the follow-up and diagnosis of subclinical RIHD and preventing cardiovascular events.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 3","pages":"285-304"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.72","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The integration of technology in medicine, particularly in the field of radiology, has led to significant advancements in patient care and diagnosis. While this digital transformation of healthcare has brought many benefits, it has also exposed radiological systems and sensitive patient data to unprecedented cybersecurity threats. This article aims to highlight the current cyberattack landscape, trends, and benefits of ethical hacking, which could be employed to identify vulnerabilities and improve cybersecurity defenses.
Global cyberattacks have been exponentially increasing on an annual basis. Focusing on the global healthcare sector, the number of attacks had alarmingly increased by 69% within the space of a year (from 2021 to 2022) [1]. Up to 250 million individuals have been affected by healthcare data breaches from 2005 to 2019, of which, 157 million individuals have been affected in the last 5 years [2]. The financial impact has also been significant. According to an IBM report, the average cost of a single healthcare data breach affecting an average of 26,000 records would cost up to $15 million [2]. The breach of Anthem, a medical insurance company in the USA in 2015, exposed the medical records of 78 million individuals and resulted in a $115 million settlement [3].
In Australia, 22% of businesses have experienced a cybersecurity attack in FY2021/2022, and the number of attacks has doubled since FY2019/2020 [4]. A total of 16% of the cyberattacks were scams/fraud, 5% were malicious software, and 3% were related to unauthorized access [4]. In FY2021/2022, these attacks were associated with 18% service downtime and 17% loss of staff productivity [4]. Notable events in Australian healthcare that occurred within the past year (2022) include the Australian Red Cross from a cyberattack on the International Committee of Red Cross servers, CTARS client case management system for vulnerable children, Medlab Pathology attack impacting almost 230,000 individuals, Medibank attack impacting 9.7 million customers and private hospital provider, Mater [1]. The impacts of cyberattacks on healthcare systems include the breach of sensitive patient data, disruption of services, electronic system downtime, cancellation of scheduled medical appointments, and ambulance diversions.
Within radiology, Picture Archiving and Communication Systems (PACS) and Radiology Information Systems (RIS) are used to help streamline the process of retrieving, storing, and sharing of medical images that are saved in the Digital Imaging and Communications in Medicine (DICOM) format (international communication standard). Breach of these systems can result in the theft of sensitive patient data/diagnoses and an increased risk of identity theft and ransom. Manipulation of medical images is also an emerging concern, which could result in dire consequences in
{"title":"Mitigating cybersecurity risks in radiology—is it time to unmask vulnerabilities and fortify cyber defenses with ethical hacking?","authors":"Reuben Schmidt, Lincoln J. Lim","doi":"10.1002/ird3.71","DOIUrl":"10.1002/ird3.71","url":null,"abstract":"<p>The integration of technology in medicine, particularly in the field of radiology, has led to significant advancements in patient care and diagnosis. While this digital transformation of healthcare has brought many benefits, it has also exposed radiological systems and sensitive patient data to unprecedented cybersecurity threats. This article aims to highlight the current cyberattack landscape, trends, and benefits of ethical hacking, which could be employed to identify vulnerabilities and improve cybersecurity defenses.</p><p>Global cyberattacks have been exponentially increasing on an annual basis. Focusing on the global healthcare sector, the number of attacks had alarmingly increased by 69% within the space of a year (from 2021 to 2022) [<span>1</span>]. Up to 250 million individuals have been affected by healthcare data breaches from 2005 to 2019, of which, 157 million individuals have been affected in the last 5 years [<span>2</span>]. The financial impact has also been significant. According to an IBM report, the average cost of a single healthcare data breach affecting an average of 26,000 records would cost up to $15 million [<span>2</span>]. The breach of Anthem, a medical insurance company in the USA in 2015, exposed the medical records of 78 million individuals and resulted in a $115 million settlement [<span>3</span>].</p><p>In Australia, 22% of businesses have experienced a cybersecurity attack in FY2021/2022, and the number of attacks has doubled since FY2019/2020 [<span>4</span>]. A total of 16% of the cyberattacks were scams/fraud, 5% were malicious software, and 3% were related to unauthorized access [<span>4</span>]. In FY2021/2022, these attacks were associated with 18% service downtime and 17% loss of staff productivity [<span>4</span>]. Notable events in Australian healthcare that occurred within the past year (2022) include the Australian Red Cross from a cyberattack on the International Committee of Red Cross servers, CTARS client case management system for vulnerable children, Medlab Pathology attack impacting almost 230,000 individuals, Medibank attack impacting 9.7 million customers and private hospital provider, Mater [<span>1</span>]. The impacts of cyberattacks on healthcare systems include the breach of sensitive patient data, disruption of services, electronic system downtime, cancellation of scheduled medical appointments, and ambulance diversions.</p><p>Within radiology, Picture Archiving and Communication Systems (PACS) and Radiology Information Systems (RIS) are used to help streamline the process of retrieving, storing, and sharing of medical images that are saved in the Digital Imaging and Communications in Medicine (DICOM) format (international communication standard). Breach of these systems can result in the theft of sensitive patient data/diagnoses and an increased risk of identity theft and ransom. Manipulation of medical images is also an emerging concern, which could result in dire consequences in ","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 2","pages":"216-219"},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.71","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140367763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in-depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO-related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO-A and MAO-B, including radiolabeled probes, fluorescent probes, and a 19F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.
单胺氧化酶(MAOs)是一类主要存在于线粒体外膜的黄素酶,在维持中枢神经系统中单胺神经递质的平衡方面发挥着至关重要的作用。此外,MAOs 的表达还与外周器官的功能有关。MAOs 的功能障碍与多种疾病有关,如神经退行性疾病、心力衰竭、代谢紊乱和癌症。单胺氧化酶有两种同工酶,即单胺氧化酶 A(MAO-A)和单胺氧化酶 B(MAO-B)。因此,开发可靠、特异的方法检测这两种同工酶,对于深入了解它们在生物系统中的功能,进一步促进 MAO 相关疾病的临床诊断和治疗具有重要意义。本综述主要关注用于 MAO-A 和 MAO-B 特异性成像的小分子探针的研究进展,包括放射性标记探针、荧光探针和 19F 磁共振成像探针。此外,还介绍了这些探针在检测细胞、组织、动物模型和患者体内 MAO 表达水平方面的应用。最后,还强调了开发新型 MAO 成像探针所面临的挑战和前景。
{"title":"Small molecule probes for the specific imaging of monoamine oxidase A and monoamine oxidase B","authors":"Yi Fang, Zhengping Chen, Min Yang","doi":"10.1002/ird3.70","DOIUrl":"10.1002/ird3.70","url":null,"abstract":"<p>Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in-depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO-related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO-A and MAO-B, including radiolabeled probes, fluorescent probes, and a <sup>19</sup>F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 2","pages":"191-215"},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.70","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140373933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guo J, Du M, Chen Z, Chen X, Yuan Z. A review of biomodified or biomimetic polymer dots for targeted fluorescent imaging and disease treatments. iRADIOLOGY. 2023; 1(3): 209–224. https://doi.org/10.1002/ird3.26
In “CONFLICT OF INTEREST STATEMENT” section, the text “The authors declare no conflicts of interest.” was incorrect. This should have read: “The authors declare no conflicts of interest. If authors are from the editorial board of iRADIOLOGY, they will be excluded from the peer-review process and all editorial decisions related to the publication of this article.”
We apologize for this error.
Guo J, Du M, Chen Z, Chen X, Yuan Z. A review of biomodified or biomimetic polymer dots for targeted fluorescent imaging and disease treatments. iRADIOLOGY.2023; 1(3):209-224。https://doi.org/10.1002/ird3.26In "利益冲突声明 "部分,"作者声明无利益冲突 "有误。应改为"作者声明无利益冲突。如果作者来自《iRADIOLOGY》编辑部,他们将被排除在同行评审过程和所有与本文发表相关的编辑决策之外。"我们对这一错误表示歉意。
{"title":"Correction to “A review of biomodified or biomimetic polymer dots for targeted fluorescent imaging and disease treatments”","authors":"","doi":"10.1002/ird3.67","DOIUrl":"10.1002/ird3.67","url":null,"abstract":"<p>Guo J, Du M, Chen Z, Chen X, Yuan Z. A review of biomodified or biomimetic polymer dots for targeted fluorescent imaging and disease treatments. <i>iRADIOLOGY</i>. 2023; 1(3): 209–224. https://doi.org/10.1002/ird3.26</p><p>In “<b>CONFLICT OF INTEREST STATEMENT</b>” section, the text “The authors declare no conflicts of interest.” was incorrect. This should have read: “The authors declare no conflicts of interest. If authors are from the editorial board of <i>iRADIOLOGY</i>, they will be excluded from the peer-review process and all editorial decisions related to the publication of this article.”</p><p>We apologize for this error.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 2","pages":"225"},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.67","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}