首页 > 最新文献

JCIS open最新文献

英文 中文
Chasing fractals: The forgotten conundrum of colloidal aggregates 追逐分形:被遗忘的胶体聚集难题
Q3 Materials Science Pub Date : 2024-03-08 DOI: 10.1016/j.jciso.2024.100107
Robert Botet
{"title":"Chasing fractals: The forgotten conundrum of colloidal aggregates","authors":"Robert Botet","doi":"10.1016/j.jciso.2024.100107","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100107","url":null,"abstract":"","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000060/pdfft?md5=63e2f48168a0f745df2f5ae94a9d4748&pid=1-s2.0-S2666934X24000060-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-amorphous system of Bifonazole for improved in-vitro permeation and antifungal activity 改善体外渗透性和抗真菌活性的联苯苄唑共晶体系
Q3 Materials Science Pub Date : 2024-02-24 DOI: 10.1016/j.jciso.2024.100108
Devanshi S. Shah , Sharda Gurram , Vitthal N. Gadlawar , Durgesh K. Jha , Siddhi P. Kamble , Purnima D. Amin

Bifonazole (BF), belonging to the newer class of antifungal drugs, is being widely explored for topical administration for fungal infections. It has proven to have better efficiency than other older drugs. However, it's low solubility poses a challenge in the formulation and, therefore, in the drug product's efficacy. Intending to harness the benefits of the drug, the objective of the current study was to prepare a supersaturated system of the drug with a coformer. A co-amorphous system (CAS) of BF and citric acid (CA) was prepared using solvent evaporation to achieve better permeation and antimicrobial efficacy after topical application. The prepared system was evaluated for its solid-state properties by DSC, XRD, and FTIR. The theoretical values of the glass transition temperature, as calculated by the Gordon-Taylor equation, correlated well with the observations of the thermal analysis. The prepared system was dispersed in propylene glycol to perform in-vitro permeation studies wherein enhanced permeation properties were noted. The CAS showed better antifungal properties against A. niger owing to better release and solubility of the drug. Thus, It was concluded that a co-amorphous system of BF is a promising formulation strategy for topical drug delivery.

联苯苄唑(Bifonazole,BF)属于较新的抗真菌药物,目前正被广泛用于治疗真菌感染的局部用药。事实证明,它比其他老药更有效。然而,它的低溶解度给配方带来了挑战,从而影响了药物产品的疗效。为了利用该药物的优点,本研究的目的是制备一种该药物与共形物的过饱和体系。利用溶剂蒸发法制备了一种 BF 和柠檬酸(CA)的共形体系(CAS),以便在局部应用后获得更好的渗透性和抗菌功效。通过 DSC、XRD 和 FTIR 对制备的体系进行了固态性质评估。根据戈登-泰勒方程计算得出的玻璃化转变温度理论值与热分析的观测结果十分吻合。将制备好的体系分散在丙二醇中进行体外渗透研究,结果表明其渗透性能有所提高。由于药物的释放和溶解性更好,CAS 对黑僵菌具有更好的抗真菌性能。因此,结论是 BF 的共晶体系是一种很有前景的局部给药配方策略。
{"title":"Co-amorphous system of Bifonazole for improved in-vitro permeation and antifungal activity","authors":"Devanshi S. Shah ,&nbsp;Sharda Gurram ,&nbsp;Vitthal N. Gadlawar ,&nbsp;Durgesh K. Jha ,&nbsp;Siddhi P. Kamble ,&nbsp;Purnima D. Amin","doi":"10.1016/j.jciso.2024.100108","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100108","url":null,"abstract":"<div><p>Bifonazole (BF), belonging to the newer class of antifungal drugs, is being widely explored for topical administration for fungal infections. It has proven to have better efficiency than other older drugs. However, it's low solubility poses a challenge in the formulation and, therefore, in the drug product's efficacy. Intending to harness the benefits of the drug, the objective of the current study was to prepare a supersaturated system of the drug with a coformer. A co-amorphous system (CAS) of BF and citric acid (CA) was prepared using solvent evaporation to achieve better permeation and antimicrobial efficacy after topical application. The prepared system was evaluated for its solid-state properties by DSC, XRD, and FTIR. The theoretical values of the glass transition temperature, as calculated by the Gordon-Taylor equation, correlated well with the observations of the thermal analysis. The prepared system was dispersed in propylene glycol to perform in-vitro permeation studies wherein enhanced permeation properties were noted. The CAS showed better antifungal properties against A. niger owing to better release and solubility of the drug. Thus, It was concluded that a co-amorphous system of BF is a promising formulation strategy for topical drug delivery.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000072/pdfft?md5=e5c1d9a95772bce9be433d3b537f403e&pid=1-s2.0-S2666934X24000072-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained release of acyclovir from alginate-gellan gum and alginate-xanthan gum microbeads 藻酸盐-结冷胶和藻酸盐-黄原胶微珠持续释放阿昔洛韦
Q3 Materials Science Pub Date : 2024-02-12 DOI: 10.1016/j.jciso.2024.100106
Sudipta Das , Arnab Samanta , Sawan Das , Amit Kumar Nayak

In the current research, acyclovir-loaded microbeads were formulated via ionotropic gelation using sodium alginate-gellan gum and sodium alginate-xanthan gum. In the preparation of these acyclovir-loaded microbeads, aluminium chloride and barium chloride were used as cross-linking agents. All these ionotropically-gelled acyclovir-loaded alginate-gellan gum microbeads and alginate-xanthan gum microbeads exhibited good percent yields (85.07 ± 1.58 to 92.17 ± 3.02%) and drug entrapment efficiencies (74.09 ± 1.38 to 95.16 ± 3.37%). Acyclovir-loaded alginate-gellan gum microbeads exhibited comparatively smaller average particle sizes (0.54 ± 0.02 to 0.71 ± 0.03 mm) than those of acyclovir-loaded alginate-xanthan gum microbeads (0.60 ± 0.02 to 0.82 ± 0.04 mm). Acyclovir-loaded alginate-xanthan gum microbeads exhibited comparatively higher swelling than that of acyclovir-loaded alginate-gellan gum microbeads. A sustained pattern of acyclovir release over 240 min was noticed by these microbeads. Surface morphology analysis of the best microbeads formulation (on the basis of sustained acyclovir release data) was done by scanning electron microscopy (SEM). These kinds of ionotropically-gelled alginate-based microbeads might be advantageous to facilitate enhanced patient compliances with minimal dosing frequency and enhanced oral bioavailability.

在目前的研究中,使用海藻酸钠-结冷胶和海藻酸钠-黄原胶,通过离子凝胶法配制了阿昔洛韦负载微珠。在制备这些阿昔洛韦微珠时,使用了氯化铝和氯化钡作为交联剂。所有这些离子胶化的阿昔洛韦负载海藻酸盐-结冷胶微珠和海藻酸盐-黄原胶微珠都表现出良好的产率(85.07 ± 1.58 至 92.17 ± 3.02%)和药物包埋效率(74.09 ± 1.38 至 95.16 ± 3.37%)。与负载阿昔洛韦的海藻酸-黄原胶微珠(0.60 ± 0.02 至 0.82 ± 0.04 mm)相比,负载阿昔洛韦的海藻酸-黄原胶微珠的平均粒径较小(0.54 ± 0.02 至 0.71 ± 0.03 mm)。与负载阿昔洛韦的海藻酸盐-黄原胶微珠相比,负载阿昔洛韦的海藻酸盐-结冷胶微珠表现出更高的膨胀率。这些微珠在 240 分钟内持续释放阿昔洛韦。利用扫描电子显微镜(SEM)对最佳微珠配方(根据阿昔洛韦的持续释放数据)进行了表面形态分析。这些基于藻酸盐的离子态胶化微珠可能有助于提高患者的依从性,减少给药次数,提高口服生物利用度。
{"title":"Sustained release of acyclovir from alginate-gellan gum and alginate-xanthan gum microbeads","authors":"Sudipta Das ,&nbsp;Arnab Samanta ,&nbsp;Sawan Das ,&nbsp;Amit Kumar Nayak","doi":"10.1016/j.jciso.2024.100106","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100106","url":null,"abstract":"<div><p>In the current research, acyclovir-loaded microbeads were formulated via ionotropic gelation using sodium alginate-gellan gum and sodium alginate-xanthan gum. In the preparation of these acyclovir-loaded microbeads, aluminium chloride and barium chloride were used as cross-linking agents. All these ionotropically-gelled acyclovir-loaded alginate-gellan gum microbeads and alginate-xanthan gum microbeads exhibited good percent yields (85.07 ± 1.58 to 92.17 ± 3.02%) and drug entrapment efficiencies (74.09 ± 1.38 to 95.16 ± 3.37%). Acyclovir-loaded alginate-gellan gum microbeads exhibited comparatively smaller average particle sizes (0.54 ± 0.02 to 0.71 ± 0.03 mm) than those of acyclovir-loaded alginate-xanthan gum microbeads (0.60 ± 0.02 to 0.82 ± 0.04 mm). Acyclovir-loaded alginate-xanthan gum microbeads exhibited comparatively higher swelling than that of acyclovir-loaded alginate-gellan gum microbeads. A sustained pattern of acyclovir release over 240 min was noticed by these microbeads. Surface morphology analysis of the best microbeads formulation (on the basis of sustained acyclovir release data) was done by scanning electron microscopy (SEM). These kinds of ionotropically-gelled alginate-based microbeads might be advantageous to facilitate enhanced patient compliances with minimal dosing frequency and enhanced oral bioavailability.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000059/pdfft?md5=e099090f47f9871527ed8cb5b5e885c8&pid=1-s2.0-S2666934X24000059-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thoughts on specific ion effects 关于特定离子效应的思考
Q3 Materials Science Pub Date : 2024-02-11 DOI: 10.1016/j.jciso.2024.100104
Epameinondas Leontidis
{"title":"Thoughts on specific ion effects","authors":"Epameinondas Leontidis","doi":"10.1016/j.jciso.2024.100104","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100104","url":null,"abstract":"","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000035/pdfft?md5=f39aadee07b533e0b92ac42141df6579&pid=1-s2.0-S2666934X24000035-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139737793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New solution of the non-linear Poisson-Boltzmann differential equation for solid particle dispersions in dissymmetrical electrolytes 不对称电解质中固体颗粒分散的非线性泊松-波尔兹曼微分方程的新解
Q3 Materials Science Pub Date : 2024-02-09 DOI: 10.1016/j.jciso.2024.100103
Tayssir Hamieh

A new mathematical solution to the non-linear Poisson-Boltzmann differential equation for solid-liquid dispersions in presence of different dissymmetrical electrolytes was given. The analytical expressions of the surface and charge density of solid particles were given. The variations of electrostatic potential ψ (x) and charge density σ (x) of dispersed particles against the distance x were obtained. For colloidal particles in presence of E(m-n) electrolytes with mn with m3,n3 and for E(2–3) and E(3-2) electrolytes, the mean electrostatic potential as a function of the distance was numerically integrated by Mathematica program version 13.

The experimental study of silica suspensions in presence with the following electrolytes NaCl, Na2SO4, CaCl2, Na3PO4, AlCl3, Al2(SO4)3, Ca3(PO4)2, Na4P2O7 and Na5P3O10 led to confirm the theoretical predictions obtained from the analytical solution of Poisson-Boltzmann equation. The results obtained allowed to determine the surface potential as a function of pH of the suspension and the electrostatic potential versus the distance x. The variations of the dissociation coefficient of silica surfaces were determined. An important effect of the anion and cation valences of the dissymmetrical electrolytes on the surface charge density and potential was highlighted.

对存在不同不对称电解质的固液分散体的非线性泊松-波尔兹曼微分方程给出了新的数学解决方案。给出了固体颗粒表面和电荷密度的解析表达式。得到了分散粒子的静电势 ψ (x) 和电荷密度 σ (x) 随距离 x 的变化。对于存在 E(m-n)电解质(m≠n,m≥3,n≥3)以及 E(2-3)和 E(3-2)电解质的胶体粒子,用 Mathematica 程序第 13 版对平均静电势随距离的变化进行了数值积分。通过对存在以下电解质的二氧化硅悬浮液进行实验研究:NaCl、Na2SO4、CaCl2、Na3PO4、AlCl3、Al2(SO4)3、Ca3(PO4)2、Na4P2O7 和 Na5P3O10。根据所获得的结果,可以确定表面电位与悬浮液 pH 值的函数关系,以及静电电位与距离 x 的关系。不对称电解质的阴阳离子价对表面电荷密度和电势的重要影响得到了强调。
{"title":"New solution of the non-linear Poisson-Boltzmann differential equation for solid particle dispersions in dissymmetrical electrolytes","authors":"Tayssir Hamieh","doi":"10.1016/j.jciso.2024.100103","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100103","url":null,"abstract":"<div><p>A new mathematical solution to the non-linear Poisson-Boltzmann differential equation for solid-liquid dispersions in presence of different dissymmetrical electrolytes was given. The analytical expressions of the surface and charge density of solid particles were given. The variations of electrostatic potential <em>ψ</em> (<em>x</em>) and charge density <em>σ</em> (<em>x</em>) of dispersed particles against the distance <em>x</em> were obtained. For colloidal particles in presence of E(m-n) electrolytes with <span><math><mrow><mi>m</mi><mo>≠</mo><mi>n</mi></mrow></math></span> with <span><math><mrow><mi>m</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and for E(2–3) and E(3-2) electrolytes, the mean electrostatic potential as a function of the distance was numerically integrated by Mathematica program version 13.</p><p>The experimental study of silica suspensions in presence with the following electrolytes <span><math><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>2</mn></msub><msub><mrow><mi>S</mi><mi>O</mi></mrow><mn>4</mn></msub></mrow></math></span>, <span><math><mrow><mi>C</mi><mi>a</mi><msub><mrow><mi>C</mi><mi>l</mi></mrow><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>3</mn></msub><msub><mrow><mi>P</mi><mi>O</mi></mrow><mn>4</mn></msub></mrow></math></span>, <span><math><mrow><mi>A</mi><mi>l</mi><msub><mrow><mi>C</mi><mi>l</mi></mrow><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>A</mi><mi>l</mi></mrow><mn>2</mn></msub><msub><mrow><mo>(</mo><msub><mrow><mi>S</mi><mi>O</mi></mrow><mn>4</mn></msub><mo>)</mo></mrow><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi><mi>a</mi></mrow><mn>3</mn></msub><msub><mrow><mo>(</mo><msub><mrow><mi>P</mi><mi>O</mi></mrow><mn>4</mn></msub><mo>)</mo></mrow><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>4</mn></msub><msub><mrow><msub><mi>P</mi><mn>2</mn></msub><mi>O</mi></mrow><mn>7</mn></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>5</mn></msub><msub><mrow><msub><mi>P</mi><mn>3</mn></msub><mi>O</mi></mrow><mn>10</mn></msub></mrow></math></span> led to confirm the theoretical predictions obtained from the analytical solution of Poisson-Boltzmann equation. The results obtained allowed to determine the surface potential as a function of pH of the suspension and the electrostatic potential versus the distance x. The variations of the dissociation coefficient of silica surfaces were determined. An important effect of the anion and cation valences of the dissymmetrical electrolytes on the surface charge density and potential was highlighted.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000023/pdfft?md5=2a145a52f361443b6d440aa34e67306f&pid=1-s2.0-S2666934X24000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139737792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions of α-Tocopherol in F127/lignin microemulsions: A DFT and semi-empirical study α-生育酚在 F127/木质素微乳液中的相互作用:DFT 和半经验研究
Q3 Materials Science Pub Date : 2024-02-07 DOI: 10.1016/j.jciso.2024.100105
Pouya Karimi , Abbas Rahdar , Francesco Baino

Tocopherols are fat soluble substances with antioxidant properties. The α-Tocopherol (T) is the major form of Tocopherols and can decrease the risk of cancer. F127-based and Lignin-based oil-in-water microemulsions seem to increase the bioavailability of T and cause better release of this therapeutic agent. Thus, T-loaded microemulsions were designed by means of density functional theory (DFT) and semi-empirical methods. Atoms in molecules (AIM), natural bond orbital (NBO) analyses, localized molecular orbital energy decomposition analysis (LMO-EDA), and density of states plots were employed to explore the effective factors on the strength of the interactions between surfactants and T. Results indicate that F127-T complexes are more stable than Lignin-T ones. Furthermore, the stable release of T in microemulsions is due to the electrostatic interactions between surfactants and T. Formation of hydrogen bond (HB) interactions between surfactants and T stabilizes the microemulsion system. These interplays are suggested to take part in the better function of T in microemulsions compared to free T. The semi-empirical study reveals that the heats of formation (ΔHf values) of the F127-T complexes are less negative than those for the Lignin-T ones.

生育酚是具有抗氧化特性的脂溶性物质。α-生育酚(T)是生育酚的主要形式,可以降低癌症风险。基于 F127 和木质素的水包油微乳剂似乎能提高生育酚的生物利用率,并能更好地释放这种治疗剂。因此,我们采用密度泛函理论(DFT)和半经验方法设计了载 T 的微乳剂。结果表明,F127-T 复合物比木质素-T 复合物更稳定。此外,T 在微乳液中的稳定释放是由于表面活性剂和 T 之间的静电作用。半经验研究表明,F127-T 复合物的形成热(ΔHf 值)比木质素-T 复合物的负值小。
{"title":"Interactions of α-Tocopherol in F127/lignin microemulsions: A DFT and semi-empirical study","authors":"Pouya Karimi ,&nbsp;Abbas Rahdar ,&nbsp;Francesco Baino","doi":"10.1016/j.jciso.2024.100105","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100105","url":null,"abstract":"<div><p>Tocopherols are fat soluble substances with antioxidant properties. The α-Tocopherol (T) is the major form of Tocopherols and can decrease the risk of cancer. F127-based and Lignin-based oil-in-water microemulsions seem to increase the bioavailability of T and cause better release of this therapeutic agent. Thus, T-loaded microemulsions were designed by means of density functional theory (DFT) and semi-empirical methods. Atoms in molecules (AIM), natural bond orbital (NBO) analyses, localized molecular orbital energy decomposition analysis (LMO-EDA), and density of states plots were employed to explore the effective factors on the strength of the interactions between surfactants and T. Results indicate that F127-T complexes are more stable than Lignin-T ones. Furthermore, the stable release of T in microemulsions is due to the electrostatic interactions between surfactants and T. Formation of hydrogen bond (HB) interactions between surfactants and T stabilizes the microemulsion system. These interplays are suggested to take part in the better function of T in microemulsions compared to free T. The semi-empirical study reveals that the heats of formation (ΔH<sub>f</sub> values) of the F127-T complexes are less negative than those for the Lignin-T ones.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000047/pdfft?md5=fb7a0d042622fb2e7d83843e91b410dd&pid=1-s2.0-S2666934X24000047-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced photocatalytic degradation of organic pollutants in water using copper oxide (CuO) nanosheets for environmental application 利用纳米氧化铜 (CuO) 增强光催化降解水中有机污染物的环境应用
Q3 Materials Science Pub Date : 2024-01-07 DOI: 10.1016/j.jciso.2024.100102
Suresh Chandra Baral , P. Maneesha , Sayak Datta , Kailash Dukiya , Dilip Sasmal , Koyal Suman Samantaray , BR Vaishnavi Krupa , Arup Dasgupta , Somaditya Sen

Rapid, inexpensive, and low-power/solar light-driven photocatalytic degradation of organic pollutants to deal with annually produced trillion tons of synthetic dye wastewater to prevent water scarcity issues, ecotoxicological risks, and human health has always been challenging. To overcome this limitation, the present study synthesized earth-abundant, inexpensive copper oxide nanosheets using a simple single-step hydrothermal route. The structural, physicochemical, and functional properties of the nanosheets have been characterized using several characterization techniques. The photocatalytic activity was studied for two commonly industrially used organic dyes, Methylene Blue (MB) and Rhodamine B (RhB). The importance of this work is the usage of a cheap commercially available Phillips UV light (11 W) as well as direct sunlight. With several optimized conditions, almost complete degradation of both dyes was achieved within 35 minutes under low-power UV light and within 70 minutes by the direct illumination of natural sunlight. The enhanced photocatalytic performance can be correlated to the synergetic effect of a higher charge transfer mechanism, good catalytic ‘active surface area’ availability (13.2 m2/g), and several optimized parameters that affect the reaction efficacy. Additionally, five repeated uses of nanosheets without sacrificing performance confirmed their stability and sustainability as a promising candidate for large-scale industrial textile wastewater remedies.

如何以快速、廉价、低功耗/太阳光驱动的光催化降解有机污染物来处理每年产生的数万亿吨合成染料废水,以防止水资源短缺问题、生态毒理学风险和人类健康问题,一直是一项挑战。为了克服这一限制,本研究采用简单的单步水热法合成了富含地球资源、价格低廉的纳米氧化铜片。研究采用多种表征技术对纳米片的结构、理化和功能特性进行了表征。研究了两种常用工业有机染料--亚甲基蓝(MB)和罗丹明 B(RhB)的光催化活性。这项工作的重要性在于使用了廉价的市售菲利普斯紫外线灯(11 W)以及直射阳光。在几种优化条件下,两种染料在低功率紫外光下 35 分钟内几乎完全降解,在自然阳光直射下 70 分钟内几乎完全降解。光催化性能的提高与较高的电荷转移机制、良好的催化 "活性表面积"(13.2 平方米/克)以及影响反应效率的几个优化参数的协同效应有关。此外,在不影响性能的情况下,五次重复使用纳米片证实了其稳定性和可持续性,有望成为大规模工业纺织废水处理的候选材料。
{"title":"Enhanced photocatalytic degradation of organic pollutants in water using copper oxide (CuO) nanosheets for environmental application","authors":"Suresh Chandra Baral ,&nbsp;P. Maneesha ,&nbsp;Sayak Datta ,&nbsp;Kailash Dukiya ,&nbsp;Dilip Sasmal ,&nbsp;Koyal Suman Samantaray ,&nbsp;BR Vaishnavi Krupa ,&nbsp;Arup Dasgupta ,&nbsp;Somaditya Sen","doi":"10.1016/j.jciso.2024.100102","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100102","url":null,"abstract":"<div><p>Rapid, inexpensive, and low-power/solar light-driven photocatalytic degradation of organic pollutants to deal with annually produced trillion tons of synthetic dye wastewater to prevent water scarcity issues, ecotoxicological risks, and human health has always been challenging. To overcome this limitation, the present study synthesized earth-abundant, inexpensive copper oxide nanosheets using a simple single-step hydrothermal route. The structural, physicochemical, and functional properties of the nanosheets have been characterized using several characterization techniques. The photocatalytic activity was studied for two commonly industrially used organic dyes, Methylene Blue (MB) and Rhodamine B (RhB). The importance of this work is the usage of a cheap commercially available Phillips UV light (11 W) as well as direct sunlight. With several optimized conditions, almost complete degradation of both dyes was achieved within 35 minutes under low-power UV light and within 70 minutes by the direct illumination of natural sunlight. The enhanced photocatalytic performance can be correlated to the synergetic effect of a higher charge transfer mechanism, good catalytic ‘active surface area’ availability (13.2 m<sup>2</sup>/g), and several optimized parameters that affect the reaction efficacy. Additionally, five repeated uses of nanosheets without sacrificing performance confirmed their stability and sustainability as a promising candidate for large-scale industrial textile wastewater remedies.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000011/pdfft?md5=d3dfdabf0547c1641c3a1bc4f682b02a&pid=1-s2.0-S2666934X24000011-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of concern: “Recent advances on graphene polymeric bionanoarchitectures for biomedicals” [JCISO 9 (2023) 100070] 表达关切:"用于生物医学的石墨烯聚合物仿生纳米结构的最新进展" [JCISO 9 (2023) 100070]
Q3 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.jciso.2024.100111
Christopher Igwe Idumah
{"title":"Expression of concern: “Recent advances on graphene polymeric bionanoarchitectures for biomedicals” [JCISO 9 (2023) 100070]","authors":"Christopher Igwe Idumah","doi":"10.1016/j.jciso.2024.100111","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100111","url":null,"abstract":"","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000102/pdfft?md5=57379a0d4150c3c411499f6676a86446&pid=1-s2.0-S2666934X24000102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of concern: “Emerging advancements in xerogel polymeric bionanoarchitectures and applications” [JCISO 9 (2023) 100073] 表达关切:"气凝胶聚合物仿生结构和应用的新进展"[监委会第 9 (2023) 100073 号决议]
Q3 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.jciso.2024.100114
Christopher Igwe Idumah
{"title":"Expression of concern: “Emerging advancements in xerogel polymeric bionanoarchitectures and applications” [JCISO 9 (2023) 100073]","authors":"Christopher Igwe Idumah","doi":"10.1016/j.jciso.2024.100114","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100114","url":null,"abstract":"","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X2400014X/pdfft?md5=42aede0fcb8db25f9da030f694ca205e&pid=1-s2.0-S2666934X2400014X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaporative phase separation in polymer microdroplets with confinement and internal flow 具有封闭性和内部流动性的聚合物微滴中的蒸发相分离
Q3 Materials Science Pub Date : 2023-12-16 DOI: 10.1016/j.jciso.2023.100101
Mukesh Kumar, Maheshwar Gopu, Senthan Pugalneelam Parameswaran, Prerak Joshi, Dileep Mampallil

Evaporation can drive initially homogeneous multiphase liquid systems out of equilibrium to induce liquid-liquid phase separation (LLPS). Here, we demonstrate evaporative LLPS in microfluidic-generated emulsion microdroplets of polymer mixtures. The evaporation produces distinct polymer phases within the microdroplets. Phase separation occurs even with polymer combinations that do not form distinct phases in sessile droplet evaporation. We attribute this aspect to evaporation-driven solutal Marangoni flows and the interface capture accumulating the nuclei at the apex where the evaporation rate is the maximum. A fast coalescence and growth of the accumulated polymer nuclei occurs inside the droplets, unlike the capillary-flow-induced spread-out of the nuclei along the contact line in sessile drops. Our method of evaporation of the droplet cluster may facilitate studying LLPS in volume-limited environments and have implications for understanding LLPS in biological systems.

蒸发可使最初均相的多相液体系统失去平衡,从而诱发液-液相分离(LLPS)。在这里,我们展示了微流体产生的聚合物混合物乳液微滴中的蒸发 LLPS。蒸发在微液滴中产生了不同的聚合物相。即使是在无柄液滴蒸发过程中不会形成不同相的聚合物组合,也会发生相分离。我们将这方面的原因归结为蒸发驱动的溶质马兰戈尼流和界面捕获,在蒸发速率最大的顶点积累晶核。累积的聚合物晶核在液滴内部快速凝聚和生长,这与无柄液滴中由毛细管流引起的晶核沿接触线扩散不同。我们的液滴团蒸发方法可能有助于在体积受限的环境中研究 LLPS,并对了解生物系统中的 LLPS 有一定意义。
{"title":"Evaporative phase separation in polymer microdroplets with confinement and internal flow","authors":"Mukesh Kumar,&nbsp;Maheshwar Gopu,&nbsp;Senthan Pugalneelam Parameswaran,&nbsp;Prerak Joshi,&nbsp;Dileep Mampallil","doi":"10.1016/j.jciso.2023.100101","DOIUrl":"https://doi.org/10.1016/j.jciso.2023.100101","url":null,"abstract":"<div><p>Evaporation can drive initially homogeneous multiphase liquid systems out of equilibrium to induce liquid-liquid phase separation (LLPS). Here, we demonstrate evaporative LLPS in microfluidic-generated emulsion microdroplets of polymer mixtures. The evaporation produces distinct polymer phases within the microdroplets. Phase separation occurs even with polymer combinations that do not form distinct phases in sessile droplet evaporation. We attribute this aspect to evaporation-driven solutal Marangoni flows and the interface capture accumulating the nuclei at the apex where the evaporation rate is the maximum. A fast coalescence and growth of the accumulated polymer nuclei occurs inside the droplets, unlike the capillary-flow-induced spread-out of the nuclei along the contact line in sessile drops. Our method of evaporation of the droplet cluster may facilitate studying LLPS in volume-limited environments and have implications for understanding LLPS in biological systems.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X23000284/pdfft?md5=860700b5f5120db38d1265d7471e917e&pid=1-s2.0-S2666934X23000284-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JCIS open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1