Background: To respond to the need to establish infodemic management functions at the national public health institute in Germany (Robert Koch Institute, RKI), we explored and assessed available data sources, developed a social listening and integrated analysis framework, and defined when infodemic management functions should be activated during emergencies.
Objective: We aimed to establish a framework for social listening and integrated analysis for public health in the German context using international examples and technical guidance documents for infodemic management.
Methods: This study completed the following objectives: identified (potentially) available data sources for social listening and integrated analysis; assessed these data sources for their suitability and usefulness for integrated analysis in addition to an assessment of their risk using the RKI's standardized data protection requirements; developed a framework and workflow to combine social listening and integrated analysis to report back actionable infodemic insights for public health communications by the RKI and stakeholders; and defined criteria for activating integrated analysis structures in the context of a specific health event or health emergency.
Results: We included and classified 38% (16/42) of the identified and assessed data sources for social listening and integrated analysis at the RKI into 3 categories: social media and web-based listening data, RKI-specific data, and infodemic insights. Most data sources can be analyzed weekly to detect current trends and narratives and to inform a timely response by reporting insights that include a risk assessment and scalar judgments of different narratives and themes.
Conclusions: This study identified, assessed, and prioritized a wide range of data sources for social listening and integrated analysis to report actionable infodemic insights, ensuring a valuable first step in establishing and operationalizing infodemic management at the RKI. This case study also serves as a roadmap for others. Ultimately, once operational, these activities will inform better and targeted public health communication at the RKI and beyond.
Background: Patient perspectives are central to the US Food and Drug Administration's benefit-risk decision-making process in the evaluation of medical products. Traditional channels of communication may not be feasible for all patients and consumers. Social media websites have increasingly been recognized by researchers as a means to gain insights into patients' views about treatment and diagnostic options, the health care system, and their experiences living with their conditions. Consideration of multiple patient perspective data sources offers the Food and Drug Administration the opportunity to capture diverse patient voices and experiences with chronic pain.
Objective: This pilot study explores posts from a web-based patient platform to gain insights into the key challenges and barriers to treatment faced by patients with chronic pain and their caregivers.
Methods: This research compiles and analyzes unstructured patient data to draw out the key themes. To extract relevant posts for this study, predefined keywords were identified. Harvested posts were published between January 1, 2017, and October 22, 2019, and had to include #ChronicPain and at least one other relevant disease tag, a relevant chronic pain management tag, or a chronic pain management tag for a treatment or activity specific to chronic pain.
Results: The most common topics discussed among persons living with chronic pain were related to disease burden, the need for support, advocacy, and proper diagnosis. Patients' discussions focused on the negative impact chronic pain had on their emotions, playing sports, or exercising, work and school, sleep, social life, and other activities of daily life. The 2 most frequently discussed treatments were opioids or narcotics and devices such as transcutaneous electrical nerve stimulation machines and spinal cord stimulators.
Conclusions: Social listening data may provide valuable insights into patients' and caregivers' perspectives, preferences, and unmet needs, especially when conditions may be highly stigmatized.
Background: Antivaccination views pervade online social media, fueling distrust in scientific expertise and increasing the number of vaccine-hesitant individuals. Although previous studies focused on specific countries, the COVID-19 pandemic has brought the vaccination discourse worldwide, underpinning the need to tackle low-credible information flows on a global scale to design effective countermeasures.
Objective: This study aimed to quantify cross-border misinformation flows among users exposed to antivaccination (no-vax) content and the effects of content moderation on vaccine-related misinformation.
Methods: We collected 316 million vaccine-related Twitter (Twitter, Inc) messages in 18 languages from October 2019 to March 2021. We geolocated users in 28 different countries and reconstructed a retweet network and cosharing network for each country. We identified communities of users exposed to no-vax content by detecting communities in the retweet network via hierarchical clustering and manual annotation. We collected a list of low-credibility domains and quantified the interactions and misinformation flows among no-vax communities of different countries.
Results: The findings showed that during the pandemic, no-vax communities became more central in the country-specific debates and their cross-border connections strengthened, revealing a global Twitter antivaccination network. US users are central in this network, whereas Russian users also became net exporters of misinformation during vaccination rollout. Interestingly, we found that Twitter's content moderation efforts, in particular the suspension of users following the January 6 US Capitol attack, had a worldwide impact in reducing the spread of misinformation about vaccines.
Conclusions: These findings may help public health institutions and social media platforms mitigate the spread of health-related, low-credibility information by revealing vulnerable web-based communities.
Background: COVID-19 severity is amplified among individuals with obesity, which may have influenced mainstream media coverage of the disease by both improving understanding of the condition and increasing weight-related stigma.
Objective: We aimed to measure obesity-related conversations on Facebook and Instagram around key dates during the first year of the COVID-19 pandemic.
Methods: Public Facebook and Instagram posts were extracted for 29-day windows in 2020 around January 28 (the first US COVID-19 case), March 11 (when COVID-19 was declared a global pandemic), May 19 (when obesity and COVID-19 were linked in mainstream media), and October 2 (when former US president Trump contracted COVID-19 and obesity was mentioned most frequently in the mainstream media). Trends in daily posts and corresponding interactions were evaluated using interrupted time series. The 10 most frequent obesity-related topics on each platform were also examined.
Results: On Facebook, there was a temporary increase in 2020 in obesity-related posts and interactions on May 19 (posts +405, 95% CI 166 to 645; interactions +294,930, 95% CI 125,986 to 463,874) and October 2 (posts +639, 95% CI 359 to 883; interactions +182,814, 95% CI 160,524 to 205,105). On Instagram, there were temporary increases in 2020 only in interactions on May 19 (+226,017, 95% CI 107,323 to 344,708) and October 2 (+156,974, 95% CI 89,757 to 224,192). Similar trends were not observed in controls. Five of the most frequent topics overlapped (COVID-19, bariatric surgery, weight loss stories, pediatric obesity, and sleep); additional topics specific to each platform included diet fads, food groups, and clickbait.
Conclusions: Social media conversations surged in response to obesity-related public health news. Conversations contained both clinical and commercial content of possibly dubious accuracy. Our findings support the idea that major public health announcements may coincide with the spread of health-related content (truthful or otherwise) on social media.
Background: Social media has transformed the way health messages are communicated. This has created new challenges and ethical considerations while providing a platform to share nutrition information for communities to connect and for information to spread. However, research exploring the web-based diet communities of popular diets is limited.
Objective: This study aims to characterize the web-based discourse of popular diets, describe information dissemination, identify influential voices, and explore interactions between community networks and themes of mental health.
Methods: This exploratory study used Twitter social media posts for an online social network analysis. Popular diet keywords were systematically developed, and data were collected and analyzed using the NodeXL metrics tool (Social Media Research Foundation) to determine the key network metrics (vertices, edges, cluster algorithms, graph visualization, centrality measures, text analysis, and time-series analytics).
Results: The vegan and ketogenic diets had the largest networks, whereas the zone diet had the smallest network. In total, 31.2% (54/173) of the top users endorsed the corresponding diet, and 11% (19/173) claimed a health or science education, which included 1.2% (2/173) of dietitians. Complete fragmentation and hub and spoke messaging were the dominant network structures. In total, 69% (11/16) of the networks interacted, where the ketogenic diet was mentioned most, with depression and anxiety and eating disorder words most prominent in the "zone diet" network and the least prominent in the "soy-free," "vegan," "dairy-free," and "gluten-free" diet networks.
Conclusions: Social media activity reflects diet trends and provides a platform for nutrition information to spread through resharing. A longitudinal exploration of popular diet networks is needed to further understand the impact social media can have on dietary choices. Social media training is vital, and nutrition professionals must work together as a community to actively reshare evidence-based posts on the web.
Background: The proliferation of e-cigarette content on YouTube is concerning because of its possible effect on youth use behaviors. YouTube has a personalized search and recommendation algorithm that derives attributes from a user's profile, such as age and sex. However, little is known about whether e-cigarette content is shown differently based on user characteristics.
Objective: The aim of this study was to understand the influence of age and sex attributes of user profiles on e-cigarette-related YouTube search results.
Methods: We created 16 fictitious YouTube profiles with ages of 16 and 24 years, sex (female and male), and ethnicity/race to search for 18 e-cigarette-related search terms. We used unsupervised (k-means clustering and classification) and supervised (graph convolutional network) machine learning and network analysis to characterize the variation in the search results of each profile. We further examined whether user attributes may play a role in e-cigarette-related content exposure by using networks and degree centrality.
Results: We analyzed 4201 nonduplicate videos. Our k-means clustering suggested that the videos could be clustered into 3 categories. The graph convolutional network achieved high accuracy (0.72). Videos were classified based on content into 4 categories: product review (49.3%), health information (15.1%), instruction (26.9%), and other (8.5%). Underage users were exposed mostly to instructional videos (37.5%), with some indication that more female 16-year-old profiles were exposed to this content, while young adult age groups (24 years) were exposed mostly to product review videos (39.2%).
Conclusions: Our results indicate that demographic attributes factor into YouTube's algorithmic systems in the context of e-cigarette-related queries on YouTube. Specifically, differences in the age and sex attributes of user profiles do result in variance in both the videos presented in YouTube search results as well as in the types of these videos. We find that underage profiles were exposed to e-cigarette content despite YouTube's age-restriction policy that ostensibly prohibits certain e-cigarette content. Greater enforcement of policies to restrict youth access to e-cigarette content is needed.