Background: The worldwide effects of the COVID-19 pandemic have been profound, and the Arab world has not been exempt from its wide-ranging consequences. Within this context, social media platforms such as Twitter have become essential for sharing information and expressing public opinions during this global crisis. Careful investigation of Arabic tweets related to COVID-19 can provide invaluable insights into the common topics and underlying sentiments that shape discussions about the COVID-19 pandemic.
Objective: This study aimed to understand the concerns and feelings of Twitter users in Arabic-speaking countries about the COVID-19 pandemic. This was accomplished through analyzing the themes and sentiments that were expressed in Arabic tweets about the COVID-19 pandemic.
Methods: In this study, 1 million Arabic tweets about COVID-19 posted between March 1 and March 31, 2020, were analyzed. Machine learning techniques, such as topic modeling and sentiment analysis, were applied to understand the main topics and emotions that were expressed in these tweets.
Results: The analysis of Arabic tweets revealed several prominent topics related to COVID-19. The analysis identified and grouped 16 different conversation topics that were organized into eight themes: (1) preventive measures and safety, (2) medical and health care aspects, (3) government and social measures, (4) impact and numbers, (5) vaccine development and research, (6) COVID-19 and religious practices, (7) global impact of COVID-19 on sports and countries, and (8) COVID-19 and national efforts. Across all the topics identified, the prevailing sentiments regarding the spread of COVID-19 were primarily centered around anger, followed by disgust, joy, and anticipation. Notably, when conversations revolved around new COVID-19 cases and fatalities, public tweets revealed a notably heightened sense of anger in comparison to other subjects.
Conclusions: The study offers valuable insights into the topics and emotions expressed in Arabic tweets related to COVID-19. It demonstrates the significance of social media platforms, particularly Twitter, in capturing the Arabic-speaking community's concerns and sentiments during the COVID-19 pandemic. The findings contribute to a deeper understanding of the prevailing discourse, enabling stakeholders to tailor effective communication strategies and address specific public concerns. This study underscores the importance of monitoring social media conversations in Arabic to support public health efforts and crisis management during the COVID-19 pandemic.
Background: YouTube is an increasingly used platform for medical information. However, the reliability and validity of health-related information on celiac disease (CD) on YouTube have not been determined.
Objective: This study aimed to analyze the reliability and validity of CD-related YouTube videos.
Methods: On November 15, 2023, a search was performed on YouTube using the keyword "celiac disease." This search resulted in a selection of videos, which were then reviewed by 2 separate evaluators for content, origin, and specific features. The evaluators assessed the reliability and quality of these videos using a modified DISCERN (mDISCERN) score, the Journal of the American Medical Association (JAMA) benchmark criteria score, the usefulness score, video power index (VPI), and the Global Quality Scale (GQS) score.
Results: In the analysis of 120 initially screened CD videos, 85 met the criteria for inclusion in the study after certain videos were excluded based on predefined criteria. While the duration of the videos uploaded by health care professionals was significantly longer than the other group (P=.009), it was concluded that the median scores for mDISCERN (4, IQR 4-5 vs 2, IQR 2-3; P<.001), GQS (4, IQR 4-5 vs 3, IQR 2-3; P<.001), JAMA (4, IQR 3-4 vs 2, IQR 2-3; P<.001), and usefulness (8, IQR 7-9 vs 6, IQR 3-6; P<.001) of the videos from this group were significantly higher than those from non-health care professionals. Video interaction parameters, including the median number of views, views per day, likes, dislikes, comments, and VPI, demonstrated no significant difference between the 2 groups.
Conclusions: This study showed that YouTube videos about CD vary significantly in reliability and quality depending on their source. Increasing the production of reliable videos by health care professionals may help to improve patient education and make YouTube a more reliable resource.
Background: Patients with cancer increasingly use the internet to seek health information. However, thus far, research treats web-based health information seeking (WHIS) behavior in a rather dichotomous manner (ie, approaching or avoiding) and fails to capture the dynamic nature and evolving motivations that patients experience when engaging in WHIS throughout their disease trajectory. Insights can be used to support effective patient-provider communication about WHIS and can lead to better designed web-based health platforms.
Objective: This study explored patterns of motivations and emotions behind the web-based information seeking of patients with cancer at various stages of their disease trajectory, as well as the cognitive and emotional responses evoked by WHIS via a scenario-based, think-aloud approach.
Methods: In total, 15 analog patients were recruited, representing patients with cancer, survivors, and informal caregivers. Imagining themselves in 3 scenarios-prediagnosis phase (5/15, 33%), treatment phase (5/15, 33%), and survivor phase (5/15, 33%)-patients were asked to search for web-based health information while being prompted to verbalize their thoughts. In total, 2 researchers independently coded the sessions, categorizing the codes into broader themes to comprehend analog patients' experiences during WHIS.
Results: Overarching motives for WHIS included reducing uncertainty, seeking reassurance, and gaining empowerment. At the beginning of the disease trajectory, patients mainly showed cognitive needs, whereas this shifted more toward affective needs in the subsequent disease stages. Analog patients' WHIS approaches varied from exploratory to focused or a combination of both. They adapted their search strategy when faced with challenging cognitive or emotional content. WHIS triggered diverse emotions, fluctuating throughout the search. Complex, confrontational, and unexpected information mainly induced negative emotions.
Conclusions: This study provides valuable insights into the motivations of patients with cancer underlying WHIS and the emotions experienced at various stages of the disease trajectory. Understanding patients' search patterns is pivotal in optimizing web-based health platforms to cater to specific needs. In addition, these findings can guide clinicians in accommodating patients' specific needs and directing patients toward reliable sources of web-based health information.
Background: During the COVID-19 pandemic, social media platforms have been a venue for the exchange of messages, including those related to fake news. There are also accounts programmed to disseminate and amplify specific messages, which can affect individual decision-making and present new challenges for public health.
Objective: This study aimed to analyze how social bots use hashtags compared to human users on topics related to misinformation during the outbreak of the COVID-19 pandemic.
Methods: We selected posts on specific topics related to infodemics such as vaccines, hydroxychloroquine, military, conspiracy, laboratory, Bill Gates, 5G, and UV. We built a network based on the co-occurrence of hashtags and classified the posts based on their source. Using network analysis and community detection algorithms, we identified hashtags that tend to appear together in messages. For each topic, we extracted the most relevant subtopic communities, which are groups of interconnected hashtags.
Results: The distribution of bots and nonbots in each of these communities was uneven, with some sets of hashtags being more common among accounts classified as bots or nonbots. Hashtags related to the Trump and QAnon social movements were common among bots, and specific hashtags with anti-Asian sentiments were also identified. In the subcommunities most populated by bots in the case of vaccines, the group of hashtags including #billgates, #pandemic, and #china was among the most common.
Conclusions: The use of certain hashtags varies depending on the source, and some hashtags are used for different purposes. Understanding these patterns may help address the spread of health misinformation on social media networks.
Misinformation represents an evolutionary paradox: despite its harmful impact on society, it persists and evolves, thriving in the information-rich environment of the digital age. This paradox challenges the conventional expectation that detrimental entities should diminish over time. The persistence of misinformation, despite advancements in fact-checking and verification tools, suggests that it possesses adaptive qualities that enable it to survive and propagate. This paper explores how misinformation, as a blend of truth and fiction, continues to resonate with audiences. The role of narratives in human history, particularly in the evolution of Homo narrans, underscores the enduring influence of storytelling on cultural and social cohesion. Despite the increasing ability of individuals to verify the accuracy of sources, misinformation remains a significant challenge, often spreading rapidly through digital platforms. Current behavioral research tends to treat misinformation as completely irrational, static, finite entities that can be definitively debunked, overlooking their dynamic and evolving nature. This approach limits our understanding of the behavioral and societal factors driving the transformation of misinformation over time. The persistence of misinformation can be attributed to several factors, including its role in fostering social cohesion, its perceived short-term benefits, and its use in strategic deception. Techniques such as extrapolation, intrapolation, deformation, cherry-picking, and fabrication contribute to the production and spread of misinformation. Understanding these processes and the evolutionary advantages they confer is crucial for developing effective strategies to counter misinformation. By promoting transparency, critical thinking, and accurate information, society can begin to address the root causes of misinformation and create a more resilient information environment.
Background: Understanding advocacy strategies is essential to improving dementia awareness, reducing stigma, supporting cognitive health promotion, and influencing policy to support people living with dementia. However, there is a dearth of evidence-based research on advocacy strategies used to support dementia awareness.
Objective: This study aimed to use posts from X (formerly known as Twitter) to understand dementia advocacy strategies during World Alzheimer's Awareness Month in September 2022.
Methods: Posts were scraped from X during World Alzheimer's Awareness Month from September 1, 2022, to September 30, 2022. After applying filters, 1981 relevant posts were analyzed using thematic analysis, and measures were taken to support trustworthiness and rigor.
Results: Our study revealed a variety of advocacy strategies, including sharing the voices of lived experience, targeting ethnic and cultural groups, myth-busting strategies, and political lobbying. Although a range of strategies were identified, further research is needed to examine advocacy strategies within different countries and political contexts. Furthermore, the impact of specific strategies on stigma reduction, cognitive health promotion, and policy change needs to be scientifically evaluated.
Conclusions: Our study offers valuable insight into strategies to bolster dementia advocacy and awareness campaigns to support people living with dementia. Findings from our research may provide critical insight for policymakers, organizations, and health professionals working to reduce dementia-related stigma and increase the uptake of risk-reduction activities to support the promotion of cognitive health.
Background: Spontaneous pharmacovigilance reporting systems are the main data source for signal detection for vaccines. However, there is a large time lag between the occurrence of an adverse event (AE) and the availability for analysis. With global mass COVID-19 vaccination campaigns, social media, and web content, there is an opportunity for real-time, faster monitoring of AEs potentially related to COVID-19 vaccine use. Our work aims to detect AEs from social media to augment those from spontaneous reporting systems.
Objective: This study aims to monitor AEs shared in social media and online support groups using medical context-aware natural language processing language models.
Methods: We developed a language model-based web app to analyze social media, patient blogs, and forums (from 190 countries in 61 languages) around COVID-19 vaccine-related keywords. Following machine translation to English, lay language safety terms (ie, AEs) were observed using the PubmedBERT-based named-entity recognition model (precision=0.76 and recall=0.82) and mapped to Medical Dictionary for Regulatory Activities (MedDRA) terms using knowledge graphs (MedDRA terminology is an internationally used set of terms relating to medical conditions, medicines, and medical devices that are developed and registered under the auspices of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use). Weekly and cumulative aggregated AE counts, proportions, and ratios were displayed via visual analytics, such as word clouds.
Results: Most AEs were identified in 2021, with fewer in 2022. AEs observed using the web app were consistent with AEs communicated by health authorities shortly before or within the same period.
Conclusions: Monitoring the web and social media provides opportunities to observe AEs that may be related to the use of COVID-19 vaccines. The presented analysis demonstrates the ability to use web content and social media as a data source that could contribute to the early observation of AEs and enhance postmarketing surveillance. It could help to adjust signal detection strategies and communication with external stakeholders, contributing to increased confidence in vaccine safety monitoring.

