首页 > 最新文献

Advances in Polymer Technology最新文献

英文 中文
Thermo-Responsive Shape Memory Thermoplastic Elastomer Based on Natural Rubber and Ethylene Octene Copolymer Blends 基于天然橡胶和乙烯辛烯共聚物共混物的热响应形状记忆热塑性弹性体
4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-10-30 DOI: 10.1155/2023/7276854
Ekwipoo Kalkornsurapranee, Adisak Keereerak, Nussana Lehman, Akarapong Tuljittraporn, Jobish Johns, Nattapon Uthaipan
The shape memory (SM) polymers with superior SM properties were successfully fabricated based on melt blending of natural rubber (NR) and ethylene octene copolymer (EOC) at various crystallinity of EOC phase. The differential scanning calorimetry analysis, mechanical properties, temperature scanning stress relaxation, and shape memory properties were studied. Results revealed that the mechanical and thermal properties of the prepared NR/EOC blends improved as a function of amount of ethylene fraction in the EOC phase. The ethylene segment of EOC in the NR/EOC blend is triggered as a stimulus-sensitive domain. The shape memory properties in terms of shape fixity and shape recovery efficiencies of the blends tended to increase with the increasing of crystalline segments in the blends. The shape memory properties of the prepared blends substantially exceed the best performance (close to 100%) by blending the NR/EOC at 50/50 parts by weight, having 62%–80% of ethylene content in the EOC phase, which corresponds to approximately 3°–16° of crystallinity of EOC phase in the blends.
将天然橡胶(NR)与乙烯辛烯共聚物(EOC)在不同的EOC相结晶度下熔融共混,成功制备了具有优异形状记忆性能的形状记忆聚合物(SM)。研究了其差示扫描量热分析、力学性能、温度扫描应力松弛和形状记忆性能。结果表明,制备的NR/EOC共混物的力学性能和热性能随着EOC相中乙烯组分含量的增加而改善。在NR/EOC共混体系中,EOC的乙烯段被激发为一个刺激敏感域。随着共混物中晶段的增加,共混物的形状记忆性能(形状固定性和形状恢复效率)有增加的趋势。当NR/EOC按50/50的重量比例共混时,所制备的共混物的形状记忆性能大大超过了最佳性能(接近100%),EOC相的乙烯含量为62%-80%,这相当于共混物中EOC相的结晶度约为3°-16°。
{"title":"Thermo-Responsive Shape Memory Thermoplastic Elastomer Based on Natural Rubber and Ethylene Octene Copolymer Blends","authors":"Ekwipoo Kalkornsurapranee, Adisak Keereerak, Nussana Lehman, Akarapong Tuljittraporn, Jobish Johns, Nattapon Uthaipan","doi":"10.1155/2023/7276854","DOIUrl":"https://doi.org/10.1155/2023/7276854","url":null,"abstract":"The shape memory (SM) polymers with superior SM properties were successfully fabricated based on melt blending of natural rubber (NR) and ethylene octene copolymer (EOC) at various crystallinity of EOC phase. The differential scanning calorimetry analysis, mechanical properties, temperature scanning stress relaxation, and shape memory properties were studied. Results revealed that the mechanical and thermal properties of the prepared NR/EOC blends improved as a function of amount of ethylene fraction in the EOC phase. The ethylene segment of EOC in the NR/EOC blend is triggered as a stimulus-sensitive domain. The shape memory properties in terms of shape fixity and shape recovery efficiencies of the blends tended to increase with the increasing of crystalline segments in the blends. The shape memory properties of the prepared blends substantially exceed the best performance (close to 100%) by blending the NR/EOC at 50/50 parts by weight, having 62%–80% of ethylene content in the EOC phase, which corresponds to approximately 3°–16° of crystallinity of EOC phase in the blends.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136018835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Chiral Epoxy Resins and the Optically Active Cured Products 手性环氧树脂的制备及其光活性固化产物
4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-10-14 DOI: 10.1155/2023/6612220
Xinyuan Tang, Ming Hu, Xiaoran Liu, Yanyun Li, Junying Zhang, Jue Cheng
Chirality is one of the most common and significant phenomenon in nature, and epoxy resin is one of the most widely used and researched thermosetting resins, however the influences of chiral carbon in epoxy group on the performances of the cured epoxy resins have ever been hardly studied, therefore it is crucial and meaningful to explore the structure–function relationship of chirality and performance of epoxy resins. Herein, from the analysis of synthesis mechanism, the different chiral configuration with high percent enantiomeric excess (>99%) and racemic bisphenol A epoxy resins were simply prepared by controlling the chirality of epichlorohydrin. The apparent activation energy of the curing process with D230 was calculated by Kissinger method and Flynn–Wall–Ozawa method, respectively, and both results indicate that chirality have no effect on the curing reaction. We found that the secondary structure of epoxy monomer is untouched by its chirality, and they are all right helix structure. For this reason, the thermal stability, glass transition temperature, and thermomechanical properties of diverse chiral epoxy resins cured by D230 have no significant difference. Nevertheless, it was found that the optical rotation activity of chiral epoxy resins can be partially maintained after curing reaction, it manifests the cured products of chiral epoxy resins possesses the possibility of application in the field of polarized materials.
手性是自然界中最常见、最重要的现象之一,环氧树脂是应用最广泛、研究最广泛的热固性树脂之一,但环氧基中手性碳对固化环氧树脂性能的影响研究很少,因此探究手性与环氧树脂性能的结构-功能关系是至关重要和有意义的。本文从合成机理分析出发,通过控制环氧氯丙烷的手性,简单地制备了不同手性构型的高对映体过量率(>99%)和外消旋双酚A环氧树脂。采用Kissinger法和Flynn-Wall-Ozawa法分别计算了D230固化过程的表观活化能,结果表明手性对固化反应没有影响。结果表明,环氧单体的二级结构不受手性影响,均为正确的螺旋结构。因此,D230固化的不同手性环氧树脂的热稳定性、玻璃化转变温度和热机械性能没有显著差异。然而,我们发现手性环氧树脂的旋光活性在固化反应后仍能部分保持,这说明手性环氧树脂的固化产物在极化材料领域具有应用的可能性。
{"title":"Preparation of Chiral Epoxy Resins and the Optically Active Cured Products","authors":"Xinyuan Tang, Ming Hu, Xiaoran Liu, Yanyun Li, Junying Zhang, Jue Cheng","doi":"10.1155/2023/6612220","DOIUrl":"https://doi.org/10.1155/2023/6612220","url":null,"abstract":"Chirality is one of the most common and significant phenomenon in nature, and epoxy resin is one of the most widely used and researched thermosetting resins, however the influences of chiral carbon in epoxy group on the performances of the cured epoxy resins have ever been hardly studied, therefore it is crucial and meaningful to explore the structure–function relationship of chirality and performance of epoxy resins. Herein, from the analysis of synthesis mechanism, the different chiral configuration with high percent enantiomeric excess (>99%) and racemic bisphenol A epoxy resins were simply prepared by controlling the chirality of epichlorohydrin. The apparent activation energy of the curing process with D230 was calculated by Kissinger method and Flynn–Wall–Ozawa method, respectively, and both results indicate that chirality have no effect on the curing reaction. We found that the secondary structure of epoxy monomer is untouched by its chirality, and they are all right helix structure. For this reason, the thermal stability, glass transition temperature, and thermomechanical properties of diverse chiral epoxy resins cured by D230 have no significant difference. Nevertheless, it was found that the optical rotation activity of chiral epoxy resins can be partially maintained after curing reaction, it manifests the cured products of chiral epoxy resins possesses the possibility of application in the field of polarized materials.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135766168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Graphene Oxide Reinforced Biocomposite: Recycling of Postconsumed Footwear Leather 氧化石墨烯增强生物复合材料的制备:废弃鞋履皮革的回收
4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-09-28 DOI: 10.1155/2023/3996687
Rashedul Islam, Md Ashikur Rahaman Noyon, Thuhin Kumar Dey, Mamun Jamal, Rajasekar Rathanasamy, Moganapriya Chinnasamy, Md. Elias Uddin
The increasing concerns about solid waste disposal have led to the development of innovative strategies for repurposing waste materials. This paper describes a simple solution casting process for recycling postconsumed footwear leather fiber (PCF) into a biocomposite film reinforced with graphene oxide (GO) and polyvinylpyrrolidone (PVP). PVP was utilized as a compatibilizer to strengthen the interfacial bonding of GO and leather fiber via π–π interactions. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were used to examine the material dispersibility bonding between GO and PCF, structural properties, thermal properties, and surface morphology of the biocomposite films, respectively. Compared to pure PCF film, the oxygen transmission rate of the prepared biocomposite films is elevated by 64% as well as the biodegradability rate is intensified up to 60%. In addition, the film’s tensile strengths are raised by 216%, while their elongation at break is increased by 164.64% as compared with PCF. The versatility of these eco-friendly and biodegradable composite films extends to its possible applications in packaging and interior design. The outcomes of the research reveal the viability of manufacturing affordable and sustainable biocomposites through the utilization of waste leather from consumed footwear.
对固体废物处理的日益关注已导致制定重新利用废物材料的创新战略。本文介绍了一种简单的溶液铸造工艺,将消耗后的鞋类皮革纤维(PCF)回收成氧化石墨烯(GO)和聚乙烯吡罗烷酮(PVP)增强的生物复合膜。PVP作为相容剂,通过π -π相互作用增强氧化石墨烯与皮革纤维的界面键合。利用紫外-可见光谱、傅里叶变换红外光谱、x射线衍射、热重分析和扫描电镜等技术分别考察了氧化石墨烯与PCF之间的材料分散性、键合性能、结构性能、热性能和表面形貌。与纯PCF膜相比,制备的生物复合膜的透氧率提高了64%,生物降解率提高了60%。与PCF相比,薄膜的抗拉强度提高了216%,断裂伸长率提高了164.64%。这些生态友好和可生物降解的复合薄膜的多功能性延伸到其在包装和室内设计中的可能应用。研究结果表明,通过利用消费鞋类的废皮革,制造价格合理且可持续的生物复合材料是可行的。
{"title":"Fabrication of Graphene Oxide Reinforced Biocomposite: Recycling of Postconsumed Footwear Leather","authors":"Rashedul Islam, Md Ashikur Rahaman Noyon, Thuhin Kumar Dey, Mamun Jamal, Rajasekar Rathanasamy, Moganapriya Chinnasamy, Md. Elias Uddin","doi":"10.1155/2023/3996687","DOIUrl":"https://doi.org/10.1155/2023/3996687","url":null,"abstract":"The increasing concerns about solid waste disposal have led to the development of innovative strategies for repurposing waste materials. This paper describes a simple solution casting process for recycling postconsumed footwear leather fiber (PCF) into a biocomposite film reinforced with graphene oxide (GO) and polyvinylpyrrolidone (PVP). PVP was utilized as a compatibilizer to strengthen the interfacial bonding of GO and leather fiber via π–π interactions. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were used to examine the material dispersibility bonding between GO and PCF, structural properties, thermal properties, and surface morphology of the biocomposite films, respectively. Compared to pure PCF film, the oxygen transmission rate of the prepared biocomposite films is elevated by 64% as well as the biodegradability rate is intensified up to 60%. In addition, the film’s tensile strengths are raised by 216%, while their elongation at break is increased by 164.64% as compared with PCF. The versatility of these eco-friendly and biodegradable composite films extends to its possible applications in packaging and interior design. The outcomes of the research reveal the viability of manufacturing affordable and sustainable biocomposites through the utilization of waste leather from consumed footwear.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135385829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of Plastic Waste-Based Polyionic Liquid toward the Dehydration of Crude Oil Emulsions 废塑料基多离子液体对原油乳状液脱水性能的研究
4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-09-26 DOI: 10.1155/2023/3740956
Mahmood M. S. Abdullah, Hamad A. Al-Lohedan, Mohd Sajid Ali
Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Due to the large production and use of this plastic, its waste represents one of the most critical environmental problems. The purpose of this study is to convert PET waste into a valuable material. The consumed PET was transformed into a precursor to synthesize a polyionic liquid (PIL) that was used for dehydrating crude oil emulsions. To do so, the consumed PET was converted to bis(2-hydroxyethyl) terephthalate (BHET). First, BHET and tetraethylene glycol were reacted separately with thionyl chloride, obtaining the corresponding alkyl halides, bis(2-chloroethyl) terephthalate, BCET, and TEC, respectively. Next, the obtained alkyl halides, BCET and TEC, were reacted with 1,5-pentanediamine, yielding a polymer (BTP). Finally, BTP was reacted with acetic acid to produce the corresponding PIL (BTP–PIL). The structure and thermal stability of BTP–PIL were characterized using nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The dehydration performance of PIL and the original polymer was investigated using the bottle test method, including several factors such as demulsifier dose, brine content, temperature, and settling time. Results indicated that PIL achieved high performance in dehydrating crude oil emulsions.
聚对苯二甲酸乙二醇酯(PET)是世界上使用最广泛的塑料之一。由于这种塑料的大量生产和使用,其废物代表了最严重的环境问题之一。本研究的目的是将PET废弃物转化为有价值的材料。将消耗的PET转化为前驱体,合成用于原油乳化脱水的聚离子液体(PIL)。为此,消耗的PET被转化为双(2-羟乙基)对苯二甲酸乙二醇酯(BHET)。首先,将BHET和四乙二醇分别与亚硫酰氯反应,分别得到相应的烷基卤化物、对苯二甲酸二氯乙酯、BCET和TEC。接下来,得到的烷基卤化物BCET和TEC与1,5-戊二胺反应,得到聚合物(BTP)。最后,BTP与乙酸反应生成相应的PIL (BTP - PIL)。利用核磁共振波谱和热重分析对BTP-PIL的结构和热稳定性进行了表征。采用瓶法考察破乳剂用量、卤水含量、温度、沉降时间等因素对PIL和原聚合物脱水性能的影响。结果表明,PIL对原油乳状液的脱水效果良好。
{"title":"Performance of Plastic Waste-Based Polyionic Liquid toward the Dehydration of Crude Oil Emulsions","authors":"Mahmood M. S. Abdullah, Hamad A. Al-Lohedan, Mohd Sajid Ali","doi":"10.1155/2023/3740956","DOIUrl":"https://doi.org/10.1155/2023/3740956","url":null,"abstract":"Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Due to the large production and use of this plastic, its waste represents one of the most critical environmental problems. The purpose of this study is to convert PET waste into a valuable material. The consumed PET was transformed into a precursor to synthesize a polyionic liquid (PIL) that was used for dehydrating crude oil emulsions. To do so, the consumed PET was converted to bis(2-hydroxyethyl) terephthalate (BHET). First, BHET and tetraethylene glycol were reacted separately with thionyl chloride, obtaining the corresponding alkyl halides, bis(2-chloroethyl) terephthalate, BCET, and TEC, respectively. Next, the obtained alkyl halides, BCET and TEC, were reacted with 1,5-pentanediamine, yielding a polymer (BTP). Finally, BTP was reacted with acetic acid to produce the corresponding PIL (BTP–PIL). The structure and thermal stability of BTP–PIL were characterized using nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The dehydration performance of PIL and the original polymer was investigated using the bottle test method, including several factors such as demulsifier dose, brine content, temperature, and settling time. Results indicated that PIL achieved high performance in dehydrating crude oil emulsions.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134885101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review of Ultrahigh Molecular Weight Polyethylene Fibers for Applications Based on Their Different Preparation Techniques 基于不同制备工艺的超高分子量聚乙烯纤维应用综述
4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-09-19 DOI: 10.1155/2023/6656692
Omar Faruk, Yang Yang, Jiangliang Zhang, Junxin Yu, Jiaojiao Lv, Weichao Lv, Yueying Du, Jindan Wu, Dongming Qi
Ultrahigh molecular weight polyethylene (UHMWPE) fiber is widely recognized for its exceptional properties, including high strength-to-weight ratio, toughness, and chemical resistance, making it a preferred material for reinforcement in various applications. However, its low melting point, surface inertness, and weak adhesion to polymer matrices have limited its potential use in some fields. Researchers have addressed these shortcomings by focusing on surface modifications through physical treatment or chemical coating, thereby enhancing the versatility of materials in numerous UHMWPE fiber composites. By improving the tribological and interfacial properties of UHMWPE, various applications can be explored, including prosthetic joints, energy-absorbing road safety systems, microelectromechanical system devices, and protective materials for defense and personal thermal management. This review provides a comprehensive overview of the remarkable performance of UHMWPE and its composites, providing insights into its wide array of applications.
超高分子量聚乙烯(UHMWPE)纤维因其优异的性能而被广泛认可,包括高强度重量比,韧性和耐化学性,使其成为各种应用中增强的首选材料。然而,它的熔点低、表面惰性和与聚合物基体的附着力弱,限制了它在某些领域的潜在应用。研究人员通过物理处理或化学涂层的表面改性来解决这些缺点,从而提高了许多超高分子量聚乙烯纤维复合材料的多功能性。通过提高超高分子量聚乙烯的摩擦学和界面性能,可以探索各种应用,包括假肢关节、吸能道路安全系统、微机电系统设备、防御和个人热管理防护材料。本文综述了超高分子量聚乙烯及其复合材料的卓越性能,并对其广泛的应用提供了见解。
{"title":"A Comprehensive Review of Ultrahigh Molecular Weight Polyethylene Fibers for Applications Based on Their Different Preparation Techniques","authors":"Omar Faruk, Yang Yang, Jiangliang Zhang, Junxin Yu, Jiaojiao Lv, Weichao Lv, Yueying Du, Jindan Wu, Dongming Qi","doi":"10.1155/2023/6656692","DOIUrl":"https://doi.org/10.1155/2023/6656692","url":null,"abstract":"Ultrahigh molecular weight polyethylene (UHMWPE) fiber is widely recognized for its exceptional properties, including high strength-to-weight ratio, toughness, and chemical resistance, making it a preferred material for reinforcement in various applications. However, its low melting point, surface inertness, and weak adhesion to polymer matrices have limited its potential use in some fields. Researchers have addressed these shortcomings by focusing on surface modifications through physical treatment or chemical coating, thereby enhancing the versatility of materials in numerous UHMWPE fiber composites. By improving the tribological and interfacial properties of UHMWPE, various applications can be explored, including prosthetic joints, energy-absorbing road safety systems, microelectromechanical system devices, and protective materials for defense and personal thermal management. This review provides a comprehensive overview of the remarkable performance of UHMWPE and its composites, providing insights into its wide array of applications.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135063340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical Characteristics of Chitosan–Alginate Scaffold Containing Atorvastatin 含阿托伐他汀壳聚糖-海藻酸盐支架的理化特性研究
IF 3.1 4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-08-30 DOI: 10.1155/2023/9452164
Hananeh Hamedfar, Tayebeh Zivari-Ghader, A. Akbarzadeh, S. Davaran
In addition to being a lipid-lowering medication, atorvastatin (ATV) is an anti-inflammatory agent. When there is a bone defect or inflammation of adjacent tissues, it aids in bone repair. This study aimed to develop a chitosan–alginate (CS/ALG)–tripolyphosphate (TPP)–ATV hybrid hydrogel as a drug delivery system, using a tissue engineering scaffold for the first time. For this purpose, a CS/ALG hydrogel crosslinked with TPP was developed. The delivery profile of ATV and its physicochemical properties such as particle size and hydrogel swelling percentage were determined. The structure and morphology of the hydrogels were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy. As a result, an alginate–chitosan hydrogel with a TPP crosslinker was prepared. The results revealed that drug loading was nearly complete, and the first hour revealed a 25% explosive release. The drug was gradually released over 10 hr at approximately 35%. The amount of crosslinker used significantly influenced the encapsulation gain and release profiles. Owing to its high porosity and swelling, the CS/ALG hydrogel crosslinked with PPT is an ideal scaffold for loading drugs, macromolecules, and cells.
阿托伐他汀(ATV)除了是一种降脂药物外,还是一种抗炎药。当出现骨缺损或相邻组织炎症时,它有助于骨修复。本研究旨在首次使用组织工程支架开发壳聚糖-海藻酸盐(CS/ALG)-三聚磷酸酯(TPP)-ATV混合水凝胶作为药物递送系统。为此,开发了一种与TPP交联的CS/ALG水凝胶。测定了ATV的递送特性及其物理化学性质,如粒径和水凝胶溶胀率。利用傅立叶变换红外光谱和扫描电子显微镜分析了水凝胶的结构和形态。结果,制备了具有TPP交联剂的藻酸盐-壳聚糖水凝胶。结果显示,药物装载几乎完成,第一个小时就有25%的爆炸性释放。药物在10年后逐渐释放 hr,约35%。所用交联剂的量显著影响包封增益和释放曲线。由于其高孔隙率和高溶胀性,与PPT交联的CS/ALG水凝胶是装载药物、大分子和细胞的理想支架。
{"title":"Physicochemical Characteristics of Chitosan–Alginate Scaffold Containing Atorvastatin","authors":"Hananeh Hamedfar, Tayebeh Zivari-Ghader, A. Akbarzadeh, S. Davaran","doi":"10.1155/2023/9452164","DOIUrl":"https://doi.org/10.1155/2023/9452164","url":null,"abstract":"In addition to being a lipid-lowering medication, atorvastatin (ATV) is an anti-inflammatory agent. When there is a bone defect or inflammation of adjacent tissues, it aids in bone repair. This study aimed to develop a chitosan–alginate (CS/ALG)–tripolyphosphate (TPP)–ATV hybrid hydrogel as a drug delivery system, using a tissue engineering scaffold for the first time. For this purpose, a CS/ALG hydrogel crosslinked with TPP was developed. The delivery profile of ATV and its physicochemical properties such as particle size and hydrogel swelling percentage were determined. The structure and morphology of the hydrogels were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy. As a result, an alginate–chitosan hydrogel with a TPP crosslinker was prepared. The results revealed that drug loading was nearly complete, and the first hour revealed a 25% explosive release. The drug was gradually released over 10 hr at approximately 35%. The amount of crosslinker used significantly influenced the encapsulation gain and release profiles. Owing to its high porosity and swelling, the CS/ALG hydrogel crosslinked with PPT is an ideal scaffold for loading drugs, macromolecules, and cells.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49078186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the Curing Kinetics of NBR-Based Rubber Compounds for Additive Manufacturing of Rod Seals 为增材制造杆密封件定制nbr基橡胶化合物的固化动力学
IF 3.1 4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-08-22 DOI: 10.1155/2023/7343194
Lion Sundermann, Sebastian Leineweber, B. Klie, Heike Wittek, T. Ebel, B. Reitz, Kathrin Ottink, Matthias Graf, Tobias Lankenau, L. Overmeyer, U. Giese
The additive manufacturing (AM) of elastomeric parts based on high-viscosity reinforced rubbers has increasingly become a topic of scientific research in recent years. In addition to the viscosity, which is several decades higher during processing than the viscosities of thermoplastics, the flowability of the compound after the printing process and the necessary chemical crosslinking of the printed component play a decisive role in producing an elastic, high-quality, and geometrically stable part. After the first technological achievements using the so-called additive manufacturing of elastomers (AME) process, the knowledge gained has to be transferred first to concrete industrial parts. Therefore, in this study, the cure kinetics of a conventional rubber compound are tailored to match the specific requirements for scorch safety in the additive manufacturing of an industrial 2-component rod seal based on an acrylonitrile butadiene rubber O-ring in combination with a thermoplastic polyurethane as the base body. Experimental tests on a test rig for rod seals demonstrate the functionality of this additively manufactured 2-component rod seal.
近年来,以高粘度增强橡胶为基础的弹性体零件增材制造日益成为科学研究的课题。除了在加工过程中比热塑性塑料的粘度高几十年的粘度外,打印过程后化合物的流动性和打印组件的必要化学交联对于生产具有弹性,高质量和几何稳定的部件起着决定性作用。在使用所谓的弹性体增材制造(AME)工艺取得第一批技术成果后,所获得的知识必须首先转移到具体的工业部件上。因此,在本研究中,对传统橡胶化合物的固化动力学进行了定制,以满足基于丙烯腈丁二烯橡胶o型圈与热塑性聚氨酯作为基体的工业双组份杆密封增材制造中对烧焦安全性的特定要求。在杆密封试验台上进行的实验测试证明了这种增材制造的双组分杆密封的功能。
{"title":"Tailoring the Curing Kinetics of NBR-Based Rubber Compounds for Additive Manufacturing of Rod Seals","authors":"Lion Sundermann, Sebastian Leineweber, B. Klie, Heike Wittek, T. Ebel, B. Reitz, Kathrin Ottink, Matthias Graf, Tobias Lankenau, L. Overmeyer, U. Giese","doi":"10.1155/2023/7343194","DOIUrl":"https://doi.org/10.1155/2023/7343194","url":null,"abstract":"The additive manufacturing (AM) of elastomeric parts based on high-viscosity reinforced rubbers has increasingly become a topic of scientific research in recent years. In addition to the viscosity, which is several decades higher during processing than the viscosities of thermoplastics, the flowability of the compound after the printing process and the necessary chemical crosslinking of the printed component play a decisive role in producing an elastic, high-quality, and geometrically stable part. After the first technological achievements using the so-called additive manufacturing of elastomers (AME) process, the knowledge gained has to be transferred first to concrete industrial parts. Therefore, in this study, the cure kinetics of a conventional rubber compound are tailored to match the specific requirements for scorch safety in the additive manufacturing of an industrial 2-component rod seal based on an acrylonitrile butadiene rubber O-ring in combination with a thermoplastic polyurethane as the base body. Experimental tests on a test rig for rod seals demonstrate the functionality of this additively manufactured 2-component rod seal.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44489409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fabrication and Characterization of Partial Bio-nano-silica Inclusion in Fibre-Reinforced Concrete for High-performance Applications 高性能纤维增强混凝土中部分生物纳米二氧化硅包体的制备与表征
IF 3.1 4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-08-10 DOI: 10.1155/2023/4379941
D. Vivek, C. Aravind, S. Gokulkumar, M. Aravindh, Yalew Asres
Ultra-high-performance fibre-reinforced concrete (UHPFRC) is a specialized type of concrete (to create a very dense matrix) that is used for both new construction and renovation projects in order to improve the lifespan of structures. Researchers analyse and evaluate only the microstructure, porosity, and fresh and hardened concrete properties of UHPFRC but limited their exploration on the reduction of the mechanical properties of UHPFRC due to the presence of metallic particles and micro-fractures that occur during the generation of hydrogen. Hence, the present study aims to eliminate the existing problem by hybridization approach (mixing of bio-nano-silica (nS) and polypropylene) with different percentages to further improve the strength properties of UHPFRC. The result showed that the compressive strength is increased by 15.5% compared to traditional concrete due to the filling ratio of nS in the pores of the concrete; in addition, the fibre’s surface and roughness also contributed to the strength enhancement.
超高性能纤维混凝土(UHPFRC)是一种特殊类型的混凝土(以形成非常致密的基质),用于新建和翻新项目,以提高结构的使用寿命。研究人员仅分析和评估UHPFRC的微观结构、孔隙率以及新拌和硬化混凝土性能,但由于氢生成过程中存在金属颗粒和微裂纹,他们对降低UHPFRC力学性能的探索受到限制。因此,本研究旨在通过不同百分比的杂交方法(将生物纳米二氧化硅(nS)和聚丙烯混合)来消除现有问题,以进一步提高UHPFRC的强度性能。结果表明,由于nS在混凝土孔隙中的填充比例,混凝土的抗压强度比传统混凝土提高了15.5%;此外,纤维的表面和粗糙度也有助于强度的提高。
{"title":"Fabrication and Characterization of Partial Bio-nano-silica Inclusion in Fibre-Reinforced Concrete for High-performance Applications","authors":"D. Vivek, C. Aravind, S. Gokulkumar, M. Aravindh, Yalew Asres","doi":"10.1155/2023/4379941","DOIUrl":"https://doi.org/10.1155/2023/4379941","url":null,"abstract":"Ultra-high-performance fibre-reinforced concrete (UHPFRC) is a specialized type of concrete (to create a very dense matrix) that is used for both new construction and renovation projects in order to improve the lifespan of structures. Researchers analyse and evaluate only the microstructure, porosity, and fresh and hardened concrete properties of UHPFRC but limited their exploration on the reduction of the mechanical properties of UHPFRC due to the presence of metallic particles and micro-fractures that occur during the generation of hydrogen. Hence, the present study aims to eliminate the existing problem by hybridization approach (mixing of bio-nano-silica (nS) and polypropylene) with different percentages to further improve the strength properties of UHPFRC. The result showed that the compressive strength is increased by 15.5% compared to traditional concrete due to the filling ratio of nS in the pores of the concrete; in addition, the fibre’s surface and roughness also contributed to the strength enhancement.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46452582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Interlocking Approaches to the Prediction of Mechanical and Tribological Behavior of Natural Fiber-Reinforced Polymer Hybrid Nanocomposites or Automotive Applications 预测天然纤维增强聚合物杂化纳米复合材料力学和摩擦学行为的机械联锁方法或汽车应用
IF 3.1 4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-08-02 DOI: 10.1155/2023/6685060
R. Venkatesh, P. S. Santhosh Kumar, A. Senthilkumar, J. P. Krishna, P. Chandramohan, V. Aneesh, Avinash Malladi, C. Priya, Elangomathavan Ramaraj
Polymer matrix composites synthesized with biodegradable natural fiber obtain a predominant structure with specific properties at a low-processing cost. The unique characteristics of polymer matrix composites were magnetized in automotive parts like top roof, panel, and seat frame applications. American Society for Testing and Materials (ASTM) G99 analyzed the wear characteristics of synthesized composites through a pin-on-disc wear tester with an EN32 steel disc. The epoxy hybrid composites have been synthesized via a conventional casting process assisted with a mechanical interlock technique to obtain a predominant structure with specific properties at a low-processing cost. The advanced composite contained different jute weights (50, 25, 50, and 75 g) and coconut coir (50, 70, 45, and 20 g) hybridized with graphite particles. ASTM D2240, D638, and D790 standards evaluated the fabricated composite hardness, tensile, and flexural strength. The Sample 4 hybrid composite found maximum hardness, tensile, and flexural strength of 27.41 ± 0.99 Hv, 51.69 ± 1.01MPa, and 55.94 ± 0.78 MPa, respectively. Sample 4 offered good wear resistance of their volumetric wear rate of 0.043 cm3 on 40 N average load at 0.25 m/s sliding speed. It is increased by 12% compared to Sample 1 at 40 N applied load on 2.5 m/s sliding speed.
以可生物降解的天然纤维为原料合成的聚合物基复合材料以较低的加工成本获得了具有特定性能的主要结构。聚合物基复合材料的独特特性被磁化在汽车零件中,如车顶、面板和座椅骨架应用。美国材料试验协会(ASTM)G99通过带有EN32钢盘的销盘式磨损试验机分析了合成复合材料的磨损特性。环氧杂化复合材料是通过传统的铸造工艺合成的,并辅以机械互锁技术,以低加工成本获得具有特定性能的主要结构。先进的复合材料含有不同的黄麻重量(50、25、50和75 g) 椰子椰壳(50、70、45和20 g) 与石墨颗粒杂交。ASTM D2240、D638和D790标准评估了制造的复合材料的硬度、拉伸强度和弯曲强度。样品4混合复合材料的最大硬度、拉伸强度和弯曲强度为27.41 ± 0.99 Hv,51.69 ± 1.01MPa和55.94 ± 0.78 MPa。样品4具有良好的耐磨性,其体积磨损率为0.043 cm3,40 N 0.25时的平均载荷 m/s滑动速度。与40时的样品1相比,它增加了12% N施加在2.5上的荷载 m/s滑动速度。
{"title":"Mechanical Interlocking Approaches to the Prediction of Mechanical and Tribological Behavior of Natural Fiber-Reinforced Polymer Hybrid Nanocomposites or Automotive Applications","authors":"R. Venkatesh, P. S. Santhosh Kumar, A. Senthilkumar, J. P. Krishna, P. Chandramohan, V. Aneesh, Avinash Malladi, C. Priya, Elangomathavan Ramaraj","doi":"10.1155/2023/6685060","DOIUrl":"https://doi.org/10.1155/2023/6685060","url":null,"abstract":"Polymer matrix composites synthesized with biodegradable natural fiber obtain a predominant structure with specific properties at a low-processing cost. The unique characteristics of polymer matrix composites were magnetized in automotive parts like top roof, panel, and seat frame applications. American Society for Testing and Materials (ASTM) G99 analyzed the wear characteristics of synthesized composites through a pin-on-disc wear tester with an EN32 steel disc. The epoxy hybrid composites have been synthesized via a conventional casting process assisted with a mechanical interlock technique to obtain a predominant structure with specific properties at a low-processing cost. The advanced composite contained different jute weights (50, 25, 50, and 75 g) and coconut coir (50, 70, 45, and 20 g) hybridized with graphite particles. ASTM D2240, D638, and D790 standards evaluated the fabricated composite hardness, tensile, and flexural strength. The Sample 4 hybrid composite found maximum hardness, tensile, and flexural strength of 27.41 ± 0.99 Hv, 51.69 ± 1.01MPa, and 55.94 ± 0.78 MPa, respectively. Sample 4 offered good wear resistance of their volumetric wear rate of 0.043 cm3 on 40 N average load at 0.25 m/s sliding speed. It is increased by 12% compared to Sample 1 at 40 N applied load on 2.5 m/s sliding speed.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45897263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Intrinsically Noncombustible Thermosets from Sulfur-Containing Epoxy Resin and Benzoxazines: Evaluation of Thermal and Mechanical Properties 由含硫环氧树脂和苯并恶嗪制成的本质不燃热固性材料:热学和机械性能的评价
IF 3.1 4区 工程技术 Q2 Chemical Engineering Pub Date : 2023-08-02 DOI: 10.1155/2023/1686001
Yanchen Lyu, Haibo Fan, L. Qiu
Benzoxazine (BZ)-epoxy copolymers exhibit favorable mechanical properties, but their thermal and flame-retardant characteristics are impaired at high epoxy fractions. Here, we report a new type of sulfur-containing epoxy resin (EPS), which we synthesized using 4,4’-thiobisphenol (TBP) instead of bisphenol A (BA) and then blended with three sulfur-containing BZs (TBP-a, TBP-fa, and TBP-tma). The polymerization behavior of the resins was analyzed using Fourier transform infrared spectroscopy and differential scanning calorimetry for determining the optimal curing procedure. This analysis revealed that the oxazine and epoxy rings undergo ring-opening and cross-linking reactions at the same time and that double-substituted structures originating from the furan and thiophene rings appeared during the curing process. Thermogravimetric analysis showed that the addition of EPS increased the initial decomposition temperature by hindering the formation of double-substituted structures. The char yield at 800°C decreased owing to the unstable C–O–C–C–O groups derived from the ring-opening of EPS. To prepare the self-extinguishing copolymers with a char yield of 24%, a smaller quantity of BZ was needed for the EPS-based blends than for the BA-based ones. The heat release capacities—measured using micro-combustion calorimetry—of all copolymers except TBP-a/EPS were less than 300 J/g·K, demonstrating that the presence of thioether bonds and double-substituted structures resulted in excellent flame retardancy. The TBP-fa/EPS copolymer also exhibited excellent flame retardancy in cone calorimeter measurement. Finally, the glass transition temperature of the TBP-fa/EPS copolymer at a ratio of 5 : 5 (w/w) reached as high as 289°C. A TBP-fa/EPS copolymer with an epoxy content of 70% had nearly the same storage modulus (2,206 MPa) at 50°C as poly(BA-a) and thus similar mechanical properties. In summary, BZ-epoxy copolymers prepared from sulfur-containing epoxy combine the advantages of the constituent components and extend their areas of application.
苯并恶嗪(BZ)-环氧树脂共聚物表现出良好的力学性能,但在环氧树脂含量较高时,其热性能和阻燃性能受损。本文报道了一种新型的含硫环氧树脂(EPS),它是用4,4’-硫代双酚(TBP)代替双酚a(BA)合成的,然后与三种含硫BZ(TBP-a、TBP-fa和TBP-tma)共混。使用傅立叶变换红外光谱和差示扫描量热法分析了树脂的聚合行为,以确定最佳固化程序。该分析表明,恶嗪环和环氧环同时发生开环和交联反应,并且在固化过程中出现了源自呋喃环和噻吩环的双取代结构。热重分析表明,EPS的加入阻碍了双取代结构的形成,从而提高了初始分解温度。由于EPS的开环产生了不稳定的C–O–C–O基团,800°C下的焦炭产率降低。为了制备炭产率为24%的自熄性共聚物,EPS基共混物需要比BA基共混物更少的BZ。除TBP-a/EPS外,所有共聚物的热释放能力(使用微燃烧量热法测量)均小于300 J/g·K,表明硫醚键和双取代结构的存在导致了优异的阻燃性。TBP-fa/EPS共聚物在锥形量热计测量中也表现出优异的阻燃性。最后,比例为5的TBP-fa/EPS共聚物的玻璃化转变温度 : 5(w/w)达到289°C。环氧树脂含量为70%的TBP-fa/EPS共聚物具有几乎相同的储能模量(2206 MPa),因此具有类似的机械性能。总之,以含硫环氧树脂为原料制备的BZ-环氧树脂共聚物结合了组成成分的优点,扩大了其应用领域。
{"title":"Intrinsically Noncombustible Thermosets from Sulfur-Containing Epoxy Resin and Benzoxazines: Evaluation of Thermal and Mechanical Properties","authors":"Yanchen Lyu, Haibo Fan, L. Qiu","doi":"10.1155/2023/1686001","DOIUrl":"https://doi.org/10.1155/2023/1686001","url":null,"abstract":"Benzoxazine (BZ)-epoxy copolymers exhibit favorable mechanical properties, but their thermal and flame-retardant characteristics are impaired at high epoxy fractions. Here, we report a new type of sulfur-containing epoxy resin (EPS), which we synthesized using 4,4’-thiobisphenol (TBP) instead of bisphenol A (BA) and then blended with three sulfur-containing BZs (TBP-a, TBP-fa, and TBP-tma). The polymerization behavior of the resins was analyzed using Fourier transform infrared spectroscopy and differential scanning calorimetry for determining the optimal curing procedure. This analysis revealed that the oxazine and epoxy rings undergo ring-opening and cross-linking reactions at the same time and that double-substituted structures originating from the furan and thiophene rings appeared during the curing process. Thermogravimetric analysis showed that the addition of EPS increased the initial decomposition temperature by hindering the formation of double-substituted structures. The char yield at 800°C decreased owing to the unstable C–O–C–C–O groups derived from the ring-opening of EPS. To prepare the self-extinguishing copolymers with a char yield of 24%, a smaller quantity of BZ was needed for the EPS-based blends than for the BA-based ones. The heat release capacities—measured using micro-combustion calorimetry—of all copolymers except TBP-a/EPS were less than 300 J/g·K, demonstrating that the presence of thioether bonds and double-substituted structures resulted in excellent flame retardancy. The TBP-fa/EPS copolymer also exhibited excellent flame retardancy in cone calorimeter measurement. Finally, the glass transition temperature of the TBP-fa/EPS copolymer at a ratio of 5 : 5 (w/w) reached as high as 289°C. A TBP-fa/EPS copolymer with an epoxy content of 70% had nearly the same storage modulus (2,206 MPa) at 50°C as poly(BA-a) and thus similar mechanical properties. In summary, BZ-epoxy copolymers prepared from sulfur-containing epoxy combine the advantages of the constituent components and extend their areas of application.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46177684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Polymer Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1