Aysha Mann, Peshala Thibbotuwawa Gamage, B. Kakavand, Amirtahà Taebi
Cardiac time intervals (CTIs) are important parameters for evaluating cardiac function and can be measured noninvasively through electrocardiography (ECG) and seismocardiography (SCG). SCG signals exhibit distinct spectrotemporal characteristics when acquired from various locations on the chest. Thus, this study aimed to explore how SCG measurement location affects the estimation of SCG-based CTIs. ECG and SCG signals were acquired from 14 healthy adults, with three accelerometers placed on the top, middle, and bottom of the sternum. A custom-built algorithm was developed to estimate heart rates (HRs) from ECG (HRECG) and SCG (HRSCG) signals. Moreover, SCG fiducial points and CTIs, including aortic valve opening and closure, R-R interval, preejection period, left ventricular ejection time, and electromechanical systole, were estimated from the SCG signals at different sternal locations. The average and correlation coefficient (R2) of the CTIs and HRs derived from all three locations were compared, along with the analysis of mean differences for the CTIs and their corresponding sensor locations. The results indicated strong correlations between HRECG and HRSCG, with average R2 values of 0.9930, 0.9968, and 0.9790 for the top, middle, and bottom sternal locations, respectively. Additionally, the study demonstrated that SCG-based CTIs varied depending on the SCG measurement locations. In conclusion, these findings underscore the importance of establishing consistent protocols for reporting CTIs based on SCG. Furthermore, they call for further investigation to compare estimated CTIs with gold-standard methods like echocardiography to identify the best SCG measurement location for accurate CTI estimations.
{"title":"Exploring the Impact of Sensor Location On Seismocardiography-Derived Cardiac Time Intervals","authors":"Aysha Mann, Peshala Thibbotuwawa Gamage, B. Kakavand, Amirtahà Taebi","doi":"10.1115/1.4063203","DOIUrl":"https://doi.org/10.1115/1.4063203","url":null,"abstract":"\u0000 Cardiac time intervals (CTIs) are important parameters for evaluating cardiac function and can be measured noninvasively through electrocardiography (ECG) and seismocardiography (SCG). SCG signals exhibit distinct spectrotemporal characteristics when acquired from various locations on the chest. Thus, this study aimed to explore how SCG measurement location affects the estimation of SCG-based CTIs. ECG and SCG signals were acquired from 14 healthy adults, with three accelerometers placed on the top, middle, and bottom of the sternum. A custom-built algorithm was developed to estimate heart rates (HRs) from ECG (HRECG) and SCG (HRSCG) signals. Moreover, SCG fiducial points and CTIs, including aortic valve opening and closure, R-R interval, preejection period, left ventricular ejection time, and electromechanical systole, were estimated from the SCG signals at different sternal locations. The average and correlation coefficient (R2) of the CTIs and HRs derived from all three locations were compared, along with the analysis of mean differences for the CTIs and their corresponding sensor locations. The results indicated strong correlations between HRECG and HRSCG, with average R2 values of 0.9930, 0.9968, and 0.9790 for the top, middle, and bottom sternal locations, respectively. Additionally, the study demonstrated that SCG-based CTIs varied depending on the SCG measurement locations. In conclusion, these findings underscore the importance of establishing consistent protocols for reporting CTIs based on SCG. Furthermore, they call for further investigation to compare estimated CTIs with gold-standard methods like echocardiography to identify the best SCG measurement location for accurate CTI estimations.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78502667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Active needles obtain more significant tip deflection and improved accuracy over passive needles for percutaneous procedures. However, their ability to navigate through tissues to reach targets depends upon the actuation mechanism, the tip shape, and the surface geometry of the shaft. In this study, we investigate the benefits of changing the surface geometry of the active needle shaft in a) needle tip deflection and b) trajectory tracking during tissue insertion. The modifications in passive needle surface geometry have been proven to reduce friction force, tissue displacement, and tissue damage. This study incorporates the effect of modifying the regular smooth cannula with a mosquito proboscis-inspired design in the active needles. The changes in insertion force, tip deflection, and trajectory tracking control during insertion into a prostate-mimicking phantom are measured. Results show that insertion force is reduced by up to 10.67% in passive bevel-tip needles. In active needles, tip deflection increased by 12.91% at 150mm when the cannula is modified. The bioinspired cannula improved trajectory tracking error in the active needle by 39.00% while utilizing up to 17.65% lower control duty cycle. Improving tip deflection and tracking control would lead to better patient outcomes and reduced risk of complications during percutaneous procedures.
{"title":"Steering Control Improvement of Active Surgical Needle using Mosquito Proboscis-Inspired Cannula","authors":"Sharada Acharya, Doyoung Kim, P. Hutapea","doi":"10.1115/1.4063200","DOIUrl":"https://doi.org/10.1115/1.4063200","url":null,"abstract":"\u0000 Active needles obtain more significant tip deflection and improved accuracy over passive needles for percutaneous procedures. However, their ability to navigate through tissues to reach targets depends upon the actuation mechanism, the tip shape, and the surface geometry of the shaft. In this study, we investigate the benefits of changing the surface geometry of the active needle shaft in a) needle tip deflection and b) trajectory tracking during tissue insertion. The modifications in passive needle surface geometry have been proven to reduce friction force, tissue displacement, and tissue damage. This study incorporates the effect of modifying the regular smooth cannula with a mosquito proboscis-inspired design in the active needles. The changes in insertion force, tip deflection, and trajectory tracking control during insertion into a prostate-mimicking phantom are measured. Results show that insertion force is reduced by up to 10.67% in passive bevel-tip needles. In active needles, tip deflection increased by 12.91% at 150mm when the cannula is modified. The bioinspired cannula improved trajectory tracking error in the active needle by 39.00% while utilizing up to 17.65% lower control duty cycle. Improving tip deflection and tracking control would lead to better patient outcomes and reduced risk of complications during percutaneous procedures.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77371372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aorta is the largest artery in an animal body and is an important organ in the pulsatile flow regulation from the left ventricle. The mechanical and structural characteristics of the aortic media, which are primarily composed of smooth muscle cell layers (SMLs) and elastic laminae (ELs), have profound effects on the physiology and pathophysiology of the aorta. However, many aspects of the aortic tissue remain unknown due to the inherent layered wall structure and the regionally varying residual stresses. This study aimed to computationally represent EL buckling in the aortic medial ring at the unloaded state and reproduce the transmural variation in residual stresses and EL waviness across the vascular wall. A multiobjective optimization technique was applied to a series of simulations with the "unit" structure to obtain an idealized stress distribution throughout the aortic wall thickness. Hence, an appropriate boundary condition given to an initial reference configuration of the aortic ring was successfully identified. As a result, the average "idealized" residual stresses of SML and EL were on the order of 20 and -80 kPa, respectively, while EL waviness was ~1.01 in the unloaded state. Further, it was verified that the ring model with a radial cut will open spontaneously when the inner and outer layers of the medial wall are subjected to relative compressive and tensile residual stresses, respectively, in the unloaded state.
{"title":"Computational Modeling of an Aortic Medial Ring: Effect of Residual Stresses On a Mechanical Behavior of the Aortic Ring","authors":"A. Tamura, K. Matsumoto, Junichi Hongu","doi":"10.1115/1.4063140","DOIUrl":"https://doi.org/10.1115/1.4063140","url":null,"abstract":"\u0000 The aorta is the largest artery in an animal body and is an important organ in the pulsatile flow regulation from the left ventricle. The mechanical and structural characteristics of the aortic media, which are primarily composed of smooth muscle cell layers (SMLs) and elastic laminae (ELs), have profound effects on the physiology and pathophysiology of the aorta. However, many aspects of the aortic tissue remain unknown due to the inherent layered wall structure and the regionally varying residual stresses. This study aimed to computationally represent EL buckling in the aortic medial ring at the unloaded state and reproduce the transmural variation in residual stresses and EL waviness across the vascular wall. A multiobjective optimization technique was applied to a series of simulations with the \"unit\" structure to obtain an idealized stress distribution throughout the aortic wall thickness. Hence, an appropriate boundary condition given to an initial reference configuration of the aortic ring was successfully identified. As a result, the average \"idealized\" residual stresses of SML and EL were on the order of 20 and -80 kPa, respectively, while EL waviness was ~1.01 in the unloaded state. Further, it was verified that the ring model with a radial cut will open spontaneously when the inner and outer layers of the medial wall are subjected to relative compressive and tensile residual stresses, respectively, in the unloaded state.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91329616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudip Hazra, Abdul Hafiz Abdul Rahaman, P. Shiakolas
Due to mobility impairment, a person might rely on wheelchairs, canes, and crutches for assistance but could face challenges when performing tasks such as grasping and manipulating objects due to limitations in reach and capability. To overcome these challenges, a multi-degree-of-freedom robotic arm with an anthropomorphic robotic hand (ARH) could be used. In this research, we propose an architecture and then implement it towards the development of an assistive system to assist a person with object grasping. The architecture interlinks three functional modules to provide three operation modes to calibrate the system, train a user on how to execute a grasp, synthesize grasps, and execute a grasp. The developed system consists of a user input and feedback glove capable of capturing user inputs and providing grasp-related vibrotactile feedback, a CoppeliaSim-based virtual environment emulating the motions of the ARH, and an underactuated ARH capable of executing grasps while sensing grasp contact locations. The operation of the developed system is evaluated to determine the ability of a person to operate it and perform a grasp using two control methods; using a synthesized grasp or under real-time continuous control. The successful evaluation validates the architecture and the developed system to provide the ability to perform a grasp. The results of the evaluation provide confidence in expanding the system capabilities and use it to develop a database of grasp trajectories of objects with different geometries.
{"title":"An Affordable Telerobotic System Architecture for Grasp Training and Object Grasping for Human-machine Interaction","authors":"Sudip Hazra, Abdul Hafiz Abdul Rahaman, P. Shiakolas","doi":"10.1115/1.4063072","DOIUrl":"https://doi.org/10.1115/1.4063072","url":null,"abstract":"\u0000 Due to mobility impairment, a person might rely on wheelchairs, canes, and crutches for assistance but could face challenges when performing tasks such as grasping and manipulating objects due to limitations in reach and capability. To overcome these challenges, a multi-degree-of-freedom robotic arm with an anthropomorphic robotic hand (ARH) could be used. In this research, we propose an architecture and then implement it towards the development of an assistive system to assist a person with object grasping. The architecture interlinks three functional modules to provide three operation modes to calibrate the system, train a user on how to execute a grasp, synthesize grasps, and execute a grasp. The developed system consists of a user input and feedback glove capable of capturing user inputs and providing grasp-related vibrotactile feedback, a CoppeliaSim-based virtual environment emulating the motions of the ARH, and an underactuated ARH capable of executing grasps while sensing grasp contact locations. The operation of the developed system is evaluated to determine the ability of a person to operate it and perform a grasp using two control methods; using a synthesized grasp or under real-time continuous control. The successful evaluation validates the architecture and the developed system to provide the ability to perform a grasp. The results of the evaluation provide confidence in expanding the system capabilities and use it to develop a database of grasp trajectories of objects with different geometries.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76084890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An approach is presented for calculation verification of geometry-based and voxel-based finite element modeling techniques used for biological hard tissue. The purpose of this study is to offer a controlled comparison of geometry- and voxel-based finite element modeling in terms of the convergence (i.e., discretization based on mesh size and/or element order), accuracy, and computational speed in modeling biological hard tissues. All of the geometry-based numerical test models have hp-converged at an acceptable mesh seed length of 0.6mm, while not all voxel-based models exhibited convergence and no voxel models p-converged. Converged geometry-based meshes were found to offer accurate solutions of the deformed model shape and equivalent vertebral stiffness, while voxel-based models were 6.35%±0.84% less stiff (p<0.0001) and deformed 6.79%±0.96% more (p<0.0001). Based on the controlled verification study results, the voxel-based models must be confirmed with local values and validation of quantities of interest to ensure accurate finite element model predictions.
{"title":"Verification Process for Finite Element Modeling Techniques Used in Biological Hard Tissue","authors":"Molly Townsend, Matthew Mills, N. Sarigul-Klijn","doi":"10.1115/1.4063302","DOIUrl":"https://doi.org/10.1115/1.4063302","url":null,"abstract":"\u0000 An approach is presented for calculation verification of geometry-based and voxel-based finite element modeling techniques used for biological hard tissue. The purpose of this study is to offer a controlled comparison of geometry- and voxel-based finite element modeling in terms of the convergence (i.e., discretization based on mesh size and/or element order), accuracy, and computational speed in modeling biological hard tissues. All of the geometry-based numerical test models have hp-converged at an acceptable mesh seed length of 0.6mm, while not all voxel-based models exhibited convergence and no voxel models p-converged. Converged geometry-based meshes were found to offer accurate solutions of the deformed model shape and equivalent vertebral stiffness, while voxel-based models were 6.35%±0.84% less stiff (p<0.0001) and deformed 6.79%±0.96% more (p<0.0001). Based on the controlled verification study results, the voxel-based models must be confirmed with local values and validation of quantities of interest to ensure accurate finite element model predictions.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90500146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minimally invasive biopsy needles are frequently inserted into the desired body regions while performing the bone marrow biopsy (BMB) procedure. The key problem with needle insertion in tissues is that the insertion force damages the tissue and deviates the needle path, leading the needle to miss the desired target and reducing biopsy sample integrity. To address these shortcomings, the present work developed a unique bioinspired barbed biopsy needle design that reduces insertion/extraction forces and needle deflection. This study established several design parameters, including barb geometry and shape (viz., the height of barb, barbed front angle, barbed back angle, and length of portion containing barbs), and examined the impact of these factors on insertion/extraction force and deflection. A Lagrangian surface-based non-linear finite element (FE) approach has been used to numerically simulate the BMB procedure on a three-dimensional (3D) multilayered heterogeneous model of the human iliac crest. The proposed honeybee stinger-inspired needle design has been found to reduce both insertion and extraction forces because of the decreased frictional surface of the biopsy needle.
{"title":"Development of a Multilayer Iliac Crest Numerical Model for Simulating Honeybee Stinger-Inspired Hollow Needle Insertion","authors":"R. Nadda, R. Repaka, A. Sahani","doi":"10.1115/1.4063054","DOIUrl":"https://doi.org/10.1115/1.4063054","url":null,"abstract":"\u0000 Minimally invasive biopsy needles are frequently inserted into the desired body regions while performing the bone marrow biopsy (BMB) procedure. The key problem with needle insertion in tissues is that the insertion force damages the tissue and deviates the needle path, leading the needle to miss the desired target and reducing biopsy sample integrity. To address these shortcomings, the present work developed a unique bioinspired barbed biopsy needle design that reduces insertion/extraction forces and needle deflection. This study established several design parameters, including barb geometry and shape (viz., the height of barb, barbed front angle, barbed back angle, and length of portion containing barbs), and examined the impact of these factors on insertion/extraction force and deflection. A Lagrangian surface-based non-linear finite element (FE) approach has been used to numerically simulate the BMB procedure on a three-dimensional (3D) multilayered heterogeneous model of the human iliac crest. The proposed honeybee stinger-inspired needle design has been found to reduce both insertion and extraction forces because of the decreased frictional surface of the biopsy needle.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89391819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Temporomandibular joint (TMJ) is a synovial joint that allows for movement of the jaw in relation to the skull. TMJs are located on both sides of the face, one on either side. It aids in performing of activities such as eating. TMJ disorder may sometime require an implant to replace this joint. Excessive stress on certain screws and implants may adversely affect the TMJ implant and may lead to breakage and requirement of replacement. Therefore, to predict stresses in the implant, finite element analysis (FEA) has been used in this study. We have simulated a human bite by applying force to the teeth and allowing the condyle to rotate and translate over the fossa with the restrictions on the rigid body motions coming from flexible muscles which are modelled as axial connector elements. This method is novel because it eliminates the need to collect data on muscle forces in order to simulate the TMJ as was done conventionally. Each individual mandibular tooth can be loaded in this simulation. Because of the reduced amount of restriction placed on the TMJ implant, it is possible to better understand the true stresses that will be generated under the routine movement of the jaw.
{"title":"Finite Element Analysis of a Temporomandibular Joint Implant","authors":"Vivek Kumar Mall, P. Wahi, Niraj Sinha","doi":"10.1115/1.4062893","DOIUrl":"https://doi.org/10.1115/1.4062893","url":null,"abstract":"\u0000 Temporomandibular joint (TMJ) is a synovial joint that allows for movement of the jaw in relation to the skull. TMJs are located on both sides of the face, one on either side. It aids in performing of activities such as eating. TMJ disorder may sometime require an implant to replace this joint. Excessive stress on certain screws and implants may adversely affect the TMJ implant and may lead to breakage and requirement of replacement. Therefore, to predict stresses in the implant, finite element analysis (FEA) has been used in this study. We have simulated a human bite by applying force to the teeth and allowing the condyle to rotate and translate over the fossa with the restrictions on the rigid body motions coming from flexible muscles which are modelled as axial connector elements. This method is novel because it eliminates the need to collect data on muscle forces in order to simulate the TMJ as was done conventionally. Each individual mandibular tooth can be loaded in this simulation. Because of the reduced amount of restriction placed on the TMJ implant, it is possible to better understand the true stresses that will be generated under the routine movement of the jaw.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85119368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To investigate the effect of shear stress direction on the direction of cell activity in a confluent layer, the migration and deformation of cells oriented parallel or perpendicular to the direction of the shear flow field were optically tracked in vitro. A Couette-type shear flow between parallel walls was formed between the lower stationary culture dish and the upper rotating disk. Shear stress (<2 Pa) was set by adjusting the rotational speed of the upper disk. Myoblasts (C2C12: mouse myoblast cell line) were cultured in an incubator equipped with an inverted phase-contrast microscope under continuous shear flow for 7 days until confluency. Deformation and migration of each cell were tracked in time-lapse images. Analysis of these images showed that cells deform and migrate along their major axis even at confluency (whether the major axis of the cell is parallel or perpendicular to the shear stress field). As a result, the orientation of the major axis of the cell remains parallel or perpendicular to the shear stress field. This observation may be used to improve the development of engineered muscle tissue.
{"title":"Behavior of a Confluent Layer of Myoblasts Under Shear Flow","authors":"S. Hashimoto, Haruki Kinoshiro, Yuta Nagasawa","doi":"10.1115/1.4062705","DOIUrl":"https://doi.org/10.1115/1.4062705","url":null,"abstract":"\u0000 To investigate the effect of shear stress direction on the direction of cell activity in a confluent layer, the migration and deformation of cells oriented parallel or perpendicular to the direction of the shear flow field were optically tracked in vitro. A Couette-type shear flow between parallel walls was formed between the lower stationary culture dish and the upper rotating disk. Shear stress (<2 Pa) was set by adjusting the rotational speed of the upper disk. Myoblasts (C2C12: mouse myoblast cell line) were cultured in an incubator equipped with an inverted phase-contrast microscope under continuous shear flow for 7 days until confluency. Deformation and migration of each cell were tracked in time-lapse images. Analysis of these images showed that cells deform and migrate along their major axis even at confluency (whether the major axis of the cell is parallel or perpendicular to the shear stress field). As a result, the orientation of the major axis of the cell remains parallel or perpendicular to the shear stress field. This observation may be used to improve the development of engineered muscle tissue.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89700582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrasound therapy is advantageous because it is a noninvasive treatment for the body. Low-intensity pulsed ultrasound can aid fracture healing. We focus on phased array transducers (PATs) to render force fields and realize the improvement in medical equipment to enhance this therapy. This can both render an arbitrary acoustic field and quickly change it by controlling the output and phase of each transducer. There are some algorithms for controlling PATs; however, the effectiveness of these algorithms is limited at sparse control points. We propose a novel algorithm to control PATs at many and close control points in this research. We compare the proposed algorithm with previous ones and assess the avoidance of negative effects outside the target area. The findings show that the proposed algorithm achieves both excellent reconstruction performance and low computational cost, and it can render an acoustic field sufficient to prevent negative effects on the body.
{"title":"An Algorithm for Rendering Force Fields at Many and Close Control Points Using Acoustic Holography for Ultrasound Therapy","authors":"Tomoya Shinato, T. Shiraishi","doi":"10.1115/1.4062684","DOIUrl":"https://doi.org/10.1115/1.4062684","url":null,"abstract":"\u0000 Ultrasound therapy is advantageous because it is a noninvasive treatment for the body. Low-intensity pulsed ultrasound can aid fracture healing. We focus on phased array transducers (PATs) to render force fields and realize the improvement in medical equipment to enhance this therapy. This can both render an arbitrary acoustic field and quickly change it by controlling the output and phase of each transducer. There are some algorithms for controlling PATs; however, the effectiveness of these algorithms is limited at sparse control points. We propose a novel algorithm to control PATs at many and close control points in this research. We compare the proposed algorithm with previous ones and assess the avoidance of negative effects outside the target area. The findings show that the proposed algorithm achieves both excellent reconstruction performance and low computational cost, and it can render an acoustic field sufficient to prevent negative effects on the body.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78551799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special Section on Recent Developments of Orthopedic and Dental Implants","authors":"O. Mukdadi, Sandipan Roy, A. Merdji","doi":"10.1115/1.4062693","DOIUrl":"https://doi.org/10.1115/1.4062693","url":null,"abstract":"","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90226632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}