Alexis Meeker, Jensen Van Gampelaere, Linda Zhu, Hao Luo, Jinsheng Zhang
Tinnitus is a health condition that affects a large population. Clinical diagnosis and treatment have been developed for treating tinnitus for years. However, there are still limitations because researchers have yet to elucidate the mechanisms underlying how tinnitus neural signals develop in the brain structures. Abnormal neural interactions among the brain areas are considered to play an important role in tinnitus generation. Researchers have been studying neural activities in the auditory brain structures, including the dorsal cochlear nucleus (DCN), inferior colliculus (IC), and auditory cortex (AC), to seek a better understanding of the information flow among these brain regions, especially in comparison with both health and tinnitus conditions. In this project, neural activities from the DCN, IC, and AC, were collected and analyzed before and after the animals were noise-exposed and before and after their auditory cortices were electrically stimulated. These conditions in rats were used to estimate healthy animals, noise-trauma-induced tinnitus, and after auditory cortex electrical stimulation (ACES) treatment. The signal processing algorithms started with the raw measurement data and focused on the local field potentials (LFPs) and spikes in the time domain. The firing rate, shape of spikes, and time differences among channels were analyzed in the time domain, and phase-phase correlation was used to test the phase-frequency information. All the analysis results were summarized in plots and color-heat maps and also used to identify if any neural signal differs and cross-channel relations changes at various animal conditions and discussed.
{"title":"Spike Analysis of the Neural Activities Across the Rats' Auditory Brain Structures","authors":"Alexis Meeker, Jensen Van Gampelaere, Linda Zhu, Hao Luo, Jinsheng Zhang","doi":"10.1115/1.4064652","DOIUrl":"https://doi.org/10.1115/1.4064652","url":null,"abstract":"\u0000 Tinnitus is a health condition that affects a large population. Clinical diagnosis and treatment have been developed for treating tinnitus for years. However, there are still limitations because researchers have yet to elucidate the mechanisms underlying how tinnitus neural signals develop in the brain structures. Abnormal neural interactions among the brain areas are considered to play an important role in tinnitus generation. Researchers have been studying neural activities in the auditory brain structures, including the dorsal cochlear nucleus (DCN), inferior colliculus (IC), and auditory cortex (AC), to seek a better understanding of the information flow among these brain regions, especially in comparison with both health and tinnitus conditions. In this project, neural activities from the DCN, IC, and AC, were collected and analyzed before and after the animals were noise-exposed and before and after their auditory cortices were electrically stimulated. These conditions in rats were used to estimate healthy animals, noise-trauma-induced tinnitus, and after auditory cortex electrical stimulation (ACES) treatment. The signal processing algorithms started with the raw measurement data and focused on the local field potentials (LFPs) and spikes in the time domain. The firing rate, shape of spikes, and time differences among channels were analyzed in the time domain, and phase-phase correlation was used to test the phase-frequency information. All the analysis results were summarized in plots and color-heat maps and also used to identify if any neural signal differs and cross-channel relations changes at various animal conditions and discussed.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139799013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis Meeker, Jensen Van Gampelaere, Linda Zhu, Hao Luo, Jinsheng Zhang
Tinnitus is a health condition that affects a large population. Clinical diagnosis and treatment have been developed for treating tinnitus for years. However, there are still limitations because researchers have yet to elucidate the mechanisms underlying how tinnitus neural signals develop in the brain structures. Abnormal neural interactions among the brain areas are considered to play an important role in tinnitus generation. Researchers have been studying neural activities in the auditory brain structures, including the dorsal cochlear nucleus (DCN), inferior colliculus (IC), and auditory cortex (AC), to seek a better understanding of the information flow among these brain regions, especially in comparison with both health and tinnitus conditions. In this project, neural activities from the DCN, IC, and AC, were collected and analyzed before and after the animals were noise-exposed and before and after their auditory cortices were electrically stimulated. These conditions in rats were used to estimate healthy animals, noise-trauma-induced tinnitus, and after auditory cortex electrical stimulation (ACES) treatment. The signal processing algorithms started with the raw measurement data and focused on the local field potentials (LFPs) and spikes in the time domain. The firing rate, shape of spikes, and time differences among channels were analyzed in the time domain, and phase-phase correlation was used to test the phase-frequency information. All the analysis results were summarized in plots and color-heat maps and also used to identify if any neural signal differs and cross-channel relations changes at various animal conditions and discussed.
{"title":"Spike Analysis of the Neural Activities Across the Rats' Auditory Brain Structures","authors":"Alexis Meeker, Jensen Van Gampelaere, Linda Zhu, Hao Luo, Jinsheng Zhang","doi":"10.1115/1.4064652","DOIUrl":"https://doi.org/10.1115/1.4064652","url":null,"abstract":"\u0000 Tinnitus is a health condition that affects a large population. Clinical diagnosis and treatment have been developed for treating tinnitus for years. However, there are still limitations because researchers have yet to elucidate the mechanisms underlying how tinnitus neural signals develop in the brain structures. Abnormal neural interactions among the brain areas are considered to play an important role in tinnitus generation. Researchers have been studying neural activities in the auditory brain structures, including the dorsal cochlear nucleus (DCN), inferior colliculus (IC), and auditory cortex (AC), to seek a better understanding of the information flow among these brain regions, especially in comparison with both health and tinnitus conditions. In this project, neural activities from the DCN, IC, and AC, were collected and analyzed before and after the animals were noise-exposed and before and after their auditory cortices were electrically stimulated. These conditions in rats were used to estimate healthy animals, noise-trauma-induced tinnitus, and after auditory cortex electrical stimulation (ACES) treatment. The signal processing algorithms started with the raw measurement data and focused on the local field potentials (LFPs) and spikes in the time domain. The firing rate, shape of spikes, and time differences among channels were analyzed in the time domain, and phase-phase correlation was used to test the phase-frequency information. All the analysis results were summarized in plots and color-heat maps and also used to identify if any neural signal differs and cross-channel relations changes at various animal conditions and discussed.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"119 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139858797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-26DOI: 10.1115/1.4063205
Blayton Padasdao, Bardia Konh
The last decade has witnessed major progress in the field of minimally invasive and robotic-assisted surgeries. Needle insertion, a minimally invasive technique, has proven its efficacy in procedures such as brachytherapy, ablation, drug delivery, and biopsy. Manual needle steering inside tissue is a challenging task due to complex needle-tissue interactions, needle and tissue movement, lack of actuation and control, as well as poor sensing and visualization. Recently, active tendon-driven notched needles, and robotic manipulation systems have been proposed to assist surgeons to guide the needles in desired trajectories toward target positions. This work introduces a new deflection model for the active tendon-driven notched needle steering inside soft tissue for intention to use in model-based robotic control. The model is developed to predict needle deflection in a single-layer tissue. To validate the proposed deflection model, five sets of needle insertion experiments with a bevel-tipped active needle into single-layer phantom tissues were performed. A real-time robot-assisted ultrasound tracking method was used to track the needle tip during needle insertion. It was shown that the model predicts needle deflection with an average error of 0.58 ± 0.14 mm for the bevel-tipped active needle insertion into a single-layer phantom tissue.
{"title":"A Model to Predict Deflection of an Active Tendon-Driven Notched Needle Inside Soft Tissue.","authors":"Blayton Padasdao, Bardia Konh","doi":"10.1115/1.4063205","DOIUrl":"10.1115/1.4063205","url":null,"abstract":"<p><p>The last decade has witnessed major progress in the field of minimally invasive and robotic-assisted surgeries. Needle insertion, a minimally invasive technique, has proven its efficacy in procedures such as brachytherapy, ablation, drug delivery, and biopsy. Manual needle steering inside tissue is a challenging task due to complex needle-tissue interactions, needle and tissue movement, lack of actuation and control, as well as poor sensing and visualization. Recently, active tendon-driven notched needles, and robotic manipulation systems have been proposed to assist surgeons to guide the needles in desired trajectories toward target positions. This work introduces a new deflection model for the active tendon-driven notched needle steering inside soft tissue for intention to use in model-based robotic control. The model is developed to predict needle deflection in a single-layer tissue. To validate the proposed deflection model, five sets of needle insertion experiments with a bevel-tipped active needle into single-layer phantom tissues were performed. A real-time robot-assisted ultrasound tracking method was used to track the needle tip during needle insertion. It was shown that the model predicts needle deflection with an average error of 0.58 ± 0.14 mm for the bevel-tipped active needle insertion into a single-layer phantom tissue.</p>","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"7 1","pages":"011006"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583277/pdf/jesmdt-23-1037_011006.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The disabled usually utilize wheelchairs for their daily mobility and locomotion. These motorized vehicles can travel on relatively flat surfaces or tracks without any problems, but moving up and down the stairs is always a challenge for most commercial wheelchairs. In other words, a person with a disability cannot go anywhere inside a multi-story building, shopping store, subway, etc. if they are not built according to accessibility codes. This article proposes two novel designs to facilitate the stair-climbing feature for a motorized wheelchair. One of the design concepts is based on a curved-spoke mechanism with transformation capability from a round wheel to a tri-leg mechanism to facilitate the translation mode as well as the stair-climbing mode of a wheelchair. The next design concept is an enhanced tri-wheel mechanism using a combination of a tri-wheel setup and planetary gears, to provide a unique capability for the climbing mechanism. After analysis and considering the pros and cons of each design concept, the tri-wheel planetary mechanism has been selected for making a scaled-down model and testing the transmission system on the stairs. The scaled-down prototype can successfully move up or down the stairs in the climbing mode and travel on flat or inclined surfaces in the translation mode.
{"title":"Design and Prototype a Stair-Climbing Wheelchair","authors":"Peyman Honarmandi, Emily Peters, Nok Ting Tang","doi":"10.1115/1.4064599","DOIUrl":"https://doi.org/10.1115/1.4064599","url":null,"abstract":"\u0000 The disabled usually utilize wheelchairs for their daily mobility and locomotion. These motorized vehicles can travel on relatively flat surfaces or tracks without any problems, but moving up and down the stairs is always a challenge for most commercial wheelchairs. In other words, a person with a disability cannot go anywhere inside a multi-story building, shopping store, subway, etc. if they are not built according to accessibility codes. This article proposes two novel designs to facilitate the stair-climbing feature for a motorized wheelchair. One of the design concepts is based on a curved-spoke mechanism with transformation capability from a round wheel to a tri-leg mechanism to facilitate the translation mode as well as the stair-climbing mode of a wheelchair. The next design concept is an enhanced tri-wheel mechanism using a combination of a tri-wheel setup and planetary gears, to provide a unique capability for the climbing mechanism. After analysis and considering the pros and cons of each design concept, the tri-wheel planetary mechanism has been selected for making a scaled-down model and testing the transmission system on the stairs. The scaled-down prototype can successfully move up or down the stairs in the climbing mode and travel on flat or inclined surfaces in the translation mode.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"57 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139878980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The disabled usually utilize wheelchairs for their daily mobility and locomotion. These motorized vehicles can travel on relatively flat surfaces or tracks without any problems, but moving up and down the stairs is always a challenge for most commercial wheelchairs. In other words, a person with a disability cannot go anywhere inside a multi-story building, shopping store, subway, etc. if they are not built according to accessibility codes. This article proposes two novel designs to facilitate the stair-climbing feature for a motorized wheelchair. One of the design concepts is based on a curved-spoke mechanism with transformation capability from a round wheel to a tri-leg mechanism to facilitate the translation mode as well as the stair-climbing mode of a wheelchair. The next design concept is an enhanced tri-wheel mechanism using a combination of a tri-wheel setup and planetary gears, to provide a unique capability for the climbing mechanism. After analysis and considering the pros and cons of each design concept, the tri-wheel planetary mechanism has been selected for making a scaled-down model and testing the transmission system on the stairs. The scaled-down prototype can successfully move up or down the stairs in the climbing mode and travel on flat or inclined surfaces in the translation mode.
{"title":"Design and Prototype a Stair-Climbing Wheelchair","authors":"Peyman Honarmandi, Emily Peters, Nok Ting Tang","doi":"10.1115/1.4064599","DOIUrl":"https://doi.org/10.1115/1.4064599","url":null,"abstract":"\u0000 The disabled usually utilize wheelchairs for their daily mobility and locomotion. These motorized vehicles can travel on relatively flat surfaces or tracks without any problems, but moving up and down the stairs is always a challenge for most commercial wheelchairs. In other words, a person with a disability cannot go anywhere inside a multi-story building, shopping store, subway, etc. if they are not built according to accessibility codes. This article proposes two novel designs to facilitate the stair-climbing feature for a motorized wheelchair. One of the design concepts is based on a curved-spoke mechanism with transformation capability from a round wheel to a tri-leg mechanism to facilitate the translation mode as well as the stair-climbing mode of a wheelchair. The next design concept is an enhanced tri-wheel mechanism using a combination of a tri-wheel setup and planetary gears, to provide a unique capability for the climbing mechanism. After analysis and considering the pros and cons of each design concept, the tri-wheel planetary mechanism has been selected for making a scaled-down model and testing the transmission system on the stairs. The scaled-down prototype can successfully move up or down the stairs in the climbing mode and travel on flat or inclined surfaces in the translation mode.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"4 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139818969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute respiratory distress syndrome (ARDS) is a condition secondary to direct or indirect insult to lungs, leading to acute respiratory failure, and is associated with high mortality. Majority of the ARDS patients require mechanical ventilation, which acts as double-edged sword. Ventilator induced lung injury (VILI) is considered secondary to high inspiratory pressure and cyclical opening during inspiration, and collapse during expiration as suggested by ARDS network clinical trials. Other mechanism for VILI exist secondary to heterogeneous ventilation. To enumerate these mechanisms leading to VILI, a computational fluids dynamics (CFD) study was performed in this study to explore the flow patterns and the pressure distribution in a human tracheobronchial airway model from third to sixth generation branches. The authors validated the computational methodology and analyzed the results to obtain velocity profiles in the primary and secondary flow directions. The study investigated the role of various flow velocities corresponding to Reynolds number (Re) from 100 to 2000 on the pressure drops along branches and bifurcation zones. The identification of secondary flow patterns was critical in understanding the development of asymmetric velocity profiles in the triple bifurcation geometry. The observed patterns in pressure drops and velocity profiles over the laminar flow regime pave the path toward further development of a numerical model to aid treatment for patients with ARDS.
{"title":"Developing a Computational Model of Lungs for Patients With Acute Respiratory Distress Syndrome","authors":"Chinmay Chavan, Asma Zainab, Debjyoti Banerjee","doi":"10.1115/1.4064288","DOIUrl":"https://doi.org/10.1115/1.4064288","url":null,"abstract":"\u0000 Acute respiratory distress syndrome (ARDS) is a condition secondary to direct or indirect insult to lungs, leading to acute respiratory failure, and is associated with high mortality. Majority of the ARDS patients require mechanical ventilation, which acts as double-edged sword. Ventilator induced lung injury (VILI) is considered secondary to high inspiratory pressure and cyclical opening during inspiration, and collapse during expiration as suggested by ARDS network clinical trials. Other mechanism for VILI exist secondary to heterogeneous ventilation. To enumerate these mechanisms leading to VILI, a computational fluids dynamics (CFD) study was performed in this study to explore the flow patterns and the pressure distribution in a human tracheobronchial airway model from third to sixth generation branches. The authors validated the computational methodology and analyzed the results to obtain velocity profiles in the primary and secondary flow directions. The study investigated the role of various flow velocities corresponding to Reynolds number (Re) from 100 to 2000 on the pressure drops along branches and bifurcation zones. The identification of secondary flow patterns was critical in understanding the development of asymmetric velocity profiles in the triple bifurcation geometry. The observed patterns in pressure drops and velocity profiles over the laminar flow regime pave the path toward further development of a numerical model to aid treatment for patients with ARDS.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"59 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139599348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Ezaz Ahammed, Mrunal Swaroop Peravali, Santosh S. Naik, Ajay Kumar Yadav, T. Laxminidhi
Radiofrequency ablation is an alternative method for the cure of malign tumors in the liver, lung, and kidney. In the present work, FEM analysis is conducted to study the effect of nanoparticles on the temporal and spatial temperature distribution during radiofrequency ablation (RFA). Three dimensional thermoelectrically FEM model consisting of a multi-tined radiofrequency electrode (nine-tine, deployed up to 2 cm) and a cubical tumor of size 50 mm3 is developed. Numerical simulation is carried out under the temperature-controlled mode (95°C) with 10 minutes ablation time. A study using multi-tined electrodes is carried out on different tissues i.e., lung and kidney, with and without nanoparticles. Results show that the nanoparticles increase the heat conduction rate and decrease the ablation time up to 13% for the inclusion of 6% nanoparticles. It has been found that the spatial temperature distribution becomes uniform with nanoparticle assistance.
{"title":"Study On Radiofrequency Ablation of Lung and Kidney Tumors with and Without Nanoparticles Using Multi-tined Electrode","authors":"Md. Ezaz Ahammed, Mrunal Swaroop Peravali, Santosh S. Naik, Ajay Kumar Yadav, T. Laxminidhi","doi":"10.1115/1.4064344","DOIUrl":"https://doi.org/10.1115/1.4064344","url":null,"abstract":"Radiofrequency ablation is an alternative method for the cure of malign tumors in the liver, lung, and kidney. In the present work, FEM analysis is conducted to study the effect of nanoparticles on the temporal and spatial temperature distribution during radiofrequency ablation (RFA). Three dimensional thermoelectrically FEM model consisting of a multi-tined radiofrequency electrode (nine-tine, deployed up to 2 cm) and a cubical tumor of size 50 mm3 is developed. Numerical simulation is carried out under the temperature-controlled mode (95°C) with 10 minutes ablation time. A study using multi-tined electrodes is carried out on different tissues i.e., lung and kidney, with and without nanoparticles. Results show that the nanoparticles increase the heat conduction rate and decrease the ablation time up to 13% for the inclusion of 6% nanoparticles. It has been found that the spatial temperature distribution becomes uniform with nanoparticle assistance.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"275 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139170089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this study was to investigate the effects of mindfulness-based stress reduction (MBSR) on relieving symptoms of emotional disorders caused by anxiety and depression in college students. Fifty college students with generalized anxiety disorder 7-item (GAD-7) scale scores > 7 and self-rating depression scale (SDS) scores = 50 were randomly divided into a blank group and an MBSR group. The MBSR group completed an eight-week training program, which included activities such as breath awareness and body scanning. The GAD-7 scale, SDS, Pittsburgh sleep quality index (PSQI), and five facet mindfulness questionnaire (FFMQ) scores were compared between the two groups before and after the experiment. After the experiment, the MBSR group showed a significant improvement in mindfulness levels as it had a FFMQ score of 124.64 ± 10.72 (p < 0.05 compared to the pre-experiment and blank group). The GAD-7 scale score was 5.46 ± 2.98, and the SDS score was 45.32 ± 6.01, indicating that both anxiety and depression symptoms were relieved. The sleep quality improved as the PSQI score decreased to 5.26 ± 1.88 (p < 0.05 compared to the pre-experiment and blank group). MBSR is beneficial in reducing anxiety and depression among college students, improving sleep quality, and has a certain effect on symptoms of emotional disorders. It can be promoted and applied in practice.
{"title":"Intervention Treatment for Anxiety and Depression-induced Emotional Disorders in College Students: Mindfulness-Based Stress Reduction","authors":"Lili Zhang","doi":"10.1115/1.4064345","DOIUrl":"https://doi.org/10.1115/1.4064345","url":null,"abstract":"The objective of this study was to investigate the effects of mindfulness-based stress reduction (MBSR) on relieving symptoms of emotional disorders caused by anxiety and depression in college students. Fifty college students with generalized anxiety disorder 7-item (GAD-7) scale scores > 7 and self-rating depression scale (SDS) scores = 50 were randomly divided into a blank group and an MBSR group. The MBSR group completed an eight-week training program, which included activities such as breath awareness and body scanning. The GAD-7 scale, SDS, Pittsburgh sleep quality index (PSQI), and five facet mindfulness questionnaire (FFMQ) scores were compared between the two groups before and after the experiment. After the experiment, the MBSR group showed a significant improvement in mindfulness levels as it had a FFMQ score of 124.64 ± 10.72 (p < 0.05 compared to the pre-experiment and blank group). The GAD-7 scale score was 5.46 ± 2.98, and the SDS score was 45.32 ± 6.01, indicating that both anxiety and depression symptoms were relieved. The sleep quality improved as the PSQI score decreased to 5.26 ± 1.88 (p < 0.05 compared to the pre-experiment and blank group). MBSR is beneficial in reducing anxiety and depression among college students, improving sleep quality, and has a certain effect on symptoms of emotional disorders. It can be promoted and applied in practice.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"105 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139170243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nure Alam Chowdhury, Lulu Wang, Md. Shazzadul Islam, Linxia Gu, Mehmet Kaya
Breast cancer is a global problem, and it is inevitable to detect cancerous cells at early stages. In recent years, microwave imaging (MWI) technology has been widely applied in biomedical applications for its non-ionizing radiation. Therefore, in this paper, a low profile hexagonal microstrip patch antenna has been proposed for the technology to detect breast cancer. This antenna has wide operating bandwidth of 13.5 GHz (6.6 GHz ¬to 20.1 GHz), and the return loss is as low as -50.83 dB at 8 GHz. To evaluate the antenna performances, the proposed antenna has been simulated in two different simulation software like HFSS and CST MWS. The antenna has achieved a maximum gain of 8.82 dBi with a quasi-omnidirectional radiation pattern. A three-layered human body mimicking breast phantom with different dielectric properties has been designed with and without tumor mimicking tissue. The difference between the dielectric properties of the tumor and the dielectric properties of different layers of breast phantom in the presence of external radiation field can inform the existence of tumor inside the breast phantom. An array of eight elements of proposed antenna is distributed around the breast phantom to detect the tumor with a minimum radius of 2 mm. Because of the low profile and compact in size (7.9 mm×11.4 mm), the proposed antenna is suitable for multi-static MWI technology for breast cancer detection at early stage.
{"title":"Modeling of a Hexagonal Microstrip Patch Antenna for Breast Cancer Detection","authors":"Nure Alam Chowdhury, Lulu Wang, Md. Shazzadul Islam, Linxia Gu, Mehmet Kaya","doi":"10.1115/1.4064068","DOIUrl":"https://doi.org/10.1115/1.4064068","url":null,"abstract":"Breast cancer is a global problem, and it is inevitable to detect cancerous cells at early stages. In recent years, microwave imaging (MWI) technology has been widely applied in biomedical applications for its non-ionizing radiation. Therefore, in this paper, a low profile hexagonal microstrip patch antenna has been proposed for the technology to detect breast cancer. This antenna has wide operating bandwidth of 13.5 GHz (6.6 GHz ¬to 20.1 GHz), and the return loss is as low as -50.83 dB at 8 GHz. To evaluate the antenna performances, the proposed antenna has been simulated in two different simulation software like HFSS and CST MWS. The antenna has achieved a maximum gain of 8.82 dBi with a quasi-omnidirectional radiation pattern. A three-layered human body mimicking breast phantom with different dielectric properties has been designed with and without tumor mimicking tissue. The difference between the dielectric properties of the tumor and the dielectric properties of different layers of breast phantom in the presence of external radiation field can inform the existence of tumor inside the breast phantom. An array of eight elements of proposed antenna is distributed around the breast phantom to detect the tumor with a minimum radius of 2 mm. Because of the low profile and compact in size (7.9 mm×11.4 mm), the proposed antenna is suitable for multi-static MWI technology for breast cancer detection at early stage.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139261339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Millions of people with disabilities, the elderly, and individuals suffering from physical deformities rely on assistive devices to perform basic actions and movements. With the increasing number of these individuals, the lack of available medical equipment/assistive personnel, and the size, bulkiness, and cost of assistive devices found in rehabilitation centers, there has been a growing interest in the research for lighter, portable, and cost-effective personal external assistive devices. In this paper, a new prototype of an ankle-foot exoskeleton was engineered with low-cost printed material that maintains structural integrity while providing appropriate comfort and support for the wearer. This ankle-foot exoskeleton was fabricated using thermoplastic polyurethane (TPU) and polylactic acid (PLA), common materials used for three-dimensional printing. The printed pieces were combined with zinc-nickel hinge joints to create a one-degree-of-freedom (DOF) support system. Finite element analysis on both fabricated parts indicates an average safety factor of 4 at applied loads of 700 N and 100 N to the foot and calf sections respectively. A pressure insole system consisting of a silicone-based pressure mold, force-sensitive resistors, and a microcontroller circuit was developed to measure foot pressure experienced during standing and stepping motion. This exoskeleton was also subjected to actuation tests via an external torque motor to obtain ankle trajectory profiles at various walking speeds.
{"title":"Development of an Assistive Ankle-Foot Exoskeleton with Sensorized Silicone-Based Insole","authors":"Tiancheng Cheng, Mojtaba Sharifi","doi":"10.1115/1.4063596","DOIUrl":"https://doi.org/10.1115/1.4063596","url":null,"abstract":"Abstract Millions of people with disabilities, the elderly, and individuals suffering from physical deformities rely on assistive devices to perform basic actions and movements. With the increasing number of these individuals, the lack of available medical equipment/assistive personnel, and the size, bulkiness, and cost of assistive devices found in rehabilitation centers, there has been a growing interest in the research for lighter, portable, and cost-effective personal external assistive devices. In this paper, a new prototype of an ankle-foot exoskeleton was engineered with low-cost printed material that maintains structural integrity while providing appropriate comfort and support for the wearer. This ankle-foot exoskeleton was fabricated using thermoplastic polyurethane (TPU) and polylactic acid (PLA), common materials used for three-dimensional printing. The printed pieces were combined with zinc-nickel hinge joints to create a one-degree-of-freedom (DOF) support system. Finite element analysis on both fabricated parts indicates an average safety factor of 4 at applied loads of 700 N and 100 N to the foot and calf sections respectively. A pressure insole system consisting of a silicone-based pressure mold, force-sensitive resistors, and a microcontroller circuit was developed to measure foot pressure experienced during standing and stepping motion. This exoskeleton was also subjected to actuation tests via an external torque motor to obtain ankle trajectory profiles at various walking speeds.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}