Pub Date : 2017-02-06DOI: 10.1080/00018732.2017.1341604
H. Nguyen, R. Zecchina, J. Berg
Inverse problems in statistical physics are motivated by the challenges of ‘big data’ in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetizations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.
{"title":"Inverse statistical problems: from the inverse Ising problem to data science","authors":"H. Nguyen, R. Zecchina, J. Berg","doi":"10.1080/00018732.2017.1341604","DOIUrl":"https://doi.org/10.1080/00018732.2017.1341604","url":null,"abstract":"Inverse problems in statistical physics are motivated by the challenges of ‘big data’ in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetizations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"66 1","pages":"197 - 261"},"PeriodicalIF":0.0,"publicationDate":"2017-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2017.1341604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45107631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-02DOI: 10.1080/00018732.2017.1317963
C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, F. Fernandez-Alonso
This work provides an up-to-date account of the use of electron-volt neutron spectroscopy in materials research. This is a growing area of neutron science, capitalising upon the unique insights provided by epithermal neutrons on the behaviour and properties of an increasing number of complex materials. As such, the present work builds upon the aims and scope of a previous contribution to this journal back in 2005, whose primary focus was on a detailed description of the theoretical foundations of the technique and their application to fundamental systems [see Andreani et al., Adv. Phys. 54 (2005) p.377] A lot has happened since then, and this review intends to capture such progress in the field. With both expert and novice in mind, we start by presenting the general principles underpinning the technique and discuss recent conceptual and methodological developments. We emphasise the increasing use of the technique as a non-invasive spectroscopic probe with intrinsic mass selectivity, as well as the concurrent use of neutron diffraction and first-principles computational materials modelling to guide and interpret experiments. To illustrate the state of the art, we discuss in detail a number of recent exemplars, chosen to highlight the use of electron-volt neutron spectroscopy across physics, chemistry, biology, and materials science. These include: hydrides and proton conductors for energy applications; protons, deuterons, and oxygen atoms in bulk water; aqueous protons confined in nanoporous silicas, carbon nanotubes, and graphene-related materials; hydrated water in proteins and DNA; and the uptake of molecular hydrogen by soft nanostructured media, promising materials for energy-storage applications. For the primary benefit of the novice, this last case study is presented in a pedagogical and question-driven fashion, in the hope that it will stimulate further work into uncharted territory by newcomers to the field. All along, we emphasise the increasing (and much-needed) synergy between experiments using electron-volt neutrons and contemporary condensed matter theory and materials modelling to compute and ultimately understand neutron-scattering observables, as well as their relation to materials properties not amenable to scrutiny using other experimental probes.
这项工作提供了电子伏特中子光谱学在材料研究中的最新应用。这是中子科学的一个不断发展的领域,利用超热中子对越来越多的复杂材料的行为和性质提供的独特见解。因此,目前的工作建立在2005年本刊前一篇文章的目标和范围之上,该文章的主要重点是详细描述该技术的理论基础及其在基本系统中的应用[见Andreani et al., Adv. Phys. 54 (2005) p.377]从那时起发生了很多事情,这篇综述旨在捕捉该领域的进展。考虑到专家和新手,我们首先介绍支撑该技术的一般原则,并讨论最近的概念和方法发展。我们强调越来越多地使用该技术作为具有内在质量选择性的非侵入性光谱探针,以及同时使用中子衍射和第一性原理计算材料建模来指导和解释实验。为了说明技术的现状,我们详细讨论了一些最近的例子,选择突出电子伏特中子光谱在物理,化学,生物学和材料科学中的应用。这些包括:用于能源应用的氢化物和质子导体;散装水中的质子、氘核和氧原子;水质子限制在纳米多孔硅,碳纳米管和石墨烯相关材料;蛋白质和DNA中的水合水;而软纳米结构介质对分子氢的吸收,是储能应用的有前途的材料。为了新手的主要利益,最后一个案例研究以教学和问题驱动的方式呈现,希望它将刺激新来者进入未知领域的进一步工作。一直以来,我们强调使用电子伏特中子和当代凝聚态理论和材料建模的实验之间日益增加的(和急需的)协同作用,以计算并最终理解中子散射可观测值,以及它们与材料特性的关系,这些特性不适合使用其他实验探针进行审查。
{"title":"Electron-volt neutron spectroscopy: beyond fundamental systems","authors":"C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, F. Fernandez-Alonso","doi":"10.1080/00018732.2017.1317963","DOIUrl":"https://doi.org/10.1080/00018732.2017.1317963","url":null,"abstract":"This work provides an up-to-date account of the use of electron-volt neutron spectroscopy in materials research. This is a growing area of neutron science, capitalising upon the unique insights provided by epithermal neutrons on the behaviour and properties of an increasing number of complex materials. As such, the present work builds upon the aims and scope of a previous contribution to this journal back in 2005, whose primary focus was on a detailed description of the theoretical foundations of the technique and their application to fundamental systems [see Andreani et al., Adv. Phys. 54 (2005) p.377] A lot has happened since then, and this review intends to capture such progress in the field. With both expert and novice in mind, we start by presenting the general principles underpinning the technique and discuss recent conceptual and methodological developments. We emphasise the increasing use of the technique as a non-invasive spectroscopic probe with intrinsic mass selectivity, as well as the concurrent use of neutron diffraction and first-principles computational materials modelling to guide and interpret experiments. To illustrate the state of the art, we discuss in detail a number of recent exemplars, chosen to highlight the use of electron-volt neutron spectroscopy across physics, chemistry, biology, and materials science. These include: hydrides and proton conductors for energy applications; protons, deuterons, and oxygen atoms in bulk water; aqueous protons confined in nanoporous silicas, carbon nanotubes, and graphene-related materials; hydrated water in proteins and DNA; and the uptake of molecular hydrogen by soft nanostructured media, promising materials for energy-storage applications. For the primary benefit of the novice, this last case study is presented in a pedagogical and question-driven fashion, in the hope that it will stimulate further work into uncharted territory by newcomers to the field. All along, we emphasise the increasing (and much-needed) synergy between experiments using electron-volt neutrons and contemporary condensed matter theory and materials modelling to compute and ultimately understand neutron-scattering observables, as well as their relation to materials properties not amenable to scrutiny using other experimental probes.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"66 1","pages":"1 - 73"},"PeriodicalIF":0.0,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2017.1317963","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41676523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radicular cyst (RC) is the most common odontogenic cyst of inflammatory origin affecting the jaws; involves the roots of the carious or traumatic non-vital tooth. Different therapeutic modalities, such as nonsurgical endodontic therapy or surgical enucleation with primary closure, decompression etc., were proposed for the management of such lesions. Presenting a case of a 28-year-old otherwise healthy male patient who reported with pain and swelling with respect to tooth #41, 31. Diagnosis of infected RC at a rare location was established on the basis of clinical, radiographical and fine needle aspiration cytological examination. Looking after the clinical characteristics, origin, extension, size of cystic lesion and patient cooperation; nonsurgical endodontic therapy utilizing Bhasker's hypothesis was opted. One year post-operative result suggested that nonsurgical endodontic therapy along with minimally invasive treatment utilizing Bhasker's hypothesis is an effective tool to transform infected radicular cystic lesion to healthy periapical periodontal tissue.
{"title":"Nonsurgical endodontic therapy along with minimal invasive treatment utilizing Bhasker's hypothesis for the management of infected radicular cystic lesion: A rare case report.","authors":"Sanjeev Kumar Salaria, Shilpa Kamra, Simrat Kaur Ghuman, Garima Sharma","doi":"10.4103/0976-237X.194098","DOIUrl":"10.4103/0976-237X.194098","url":null,"abstract":"<p><p>Radicular cyst (RC) is the most common odontogenic cyst of inflammatory origin affecting the jaws; involves the roots of the carious or traumatic non-vital tooth. Different therapeutic modalities, such as nonsurgical endodontic therapy or surgical enucleation with primary closure, decompression etc., were proposed for the management of such lesions. Presenting a case of a 28-year-old otherwise healthy male patient who reported with pain and swelling with respect to tooth #41, 31. Diagnosis of infected RC at a rare location was established on the basis of clinical, radiographical and fine needle aspiration cytological examination. Looking after the clinical characteristics, origin, extension, size of cystic lesion and patient cooperation; nonsurgical endodontic therapy utilizing Bhasker's hypothesis was opted. One year post-operative result suggested that nonsurgical endodontic therapy along with minimally invasive treatment utilizing Bhasker's hypothesis is an effective tool to transform infected radicular cystic lesion to healthy periapical periodontal tissue.</p>","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"5 1","pages":"562-565"},"PeriodicalIF":1.2,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80788193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-28DOI: 10.1080/00018732.2016.1226804
Jinwei Gao, K. Kempa, M. Giersig, E. Akinoglu, B. Han, Ruopeng Li
Transparent conductors (TCs) are materials, which are characterized by high transmission of light and simultaneously very high electrical DC conductivity. These materials play a crucial role, and made possible numerous applications in the fields of electro-optics, plasmonics, biosensing, medicine, and “green energy”. Modern applications, for example in the field of touchscreen and flexible displays, require that TCs are also mechanically strong and flexible. TC can be broadly classified into two categories: uniform and non-uniform TC. The uniform TC can be viewed as conventional metals (or electron plasmas) with plasma frequency located in the infrared frequency range (e.g. transparent conducting oxides), or ultra-thin metals with large plasma frequency (e.g. graphen). The physics of the nonuniform TC is much more complex, and could involve transmission enhancement due to refraction (including plasmonic), and exotic effects of electron transport, including percolation and fractal effects. This review ties the TC performance to the underlying physical phenomena. We begin with the theoretical basis for studying the various phenomena encountered in TC. Next, we consider the uniform TC, and discuss first the conventional conducting oxides (such as indium tin oxide), reviewing advantages and limitations of these classic uniform electron plasmas. Next, we discuss the potential of single- and multiple-layer graphene as uniform TC. In the part of the paper dealing with non-uniform metallic films, we begin with the review of random metallic networks. The transparency of these networks could be enhanced beyond the classical shading limit by the plasmonic refractive effects. The electrical conduction strongly depends on the network type, and we review first networks made of individual metallic nanowires, where conductivity depends on the inter-wire contact, and the percolation effects. Next, we review the uniform metallic film networks, which are free of the percolation effects and contact problems. In applications that require high-quality electric contact of a TC to an active substrate (such as LED or solar cells), the network performance can be optimized by employing a quasi-fractal structure of the network. We also consider the periodic metallic networks, where active plasmonic refraction leads to the phenomenon of the extraordinary optical transmission. We review the relevant literature on this topic, and demonstrate networks, which take advantage of this strategy (the bio-inspired leaf venation (LV) network, hybrid networks, etc.). Finally, we review “smart” TCs, with an added functionality, such as light interference, metamaterial effects, built-in semiconductors, and their junctions.
{"title":"Physics of transparent conductors","authors":"Jinwei Gao, K. Kempa, M. Giersig, E. Akinoglu, B. Han, Ruopeng Li","doi":"10.1080/00018732.2016.1226804","DOIUrl":"https://doi.org/10.1080/00018732.2016.1226804","url":null,"abstract":"Transparent conductors (TCs) are materials, which are characterized by high transmission of light and simultaneously very high electrical DC conductivity. These materials play a crucial role, and made possible numerous applications in the fields of electro-optics, plasmonics, biosensing, medicine, and “green energy”. Modern applications, for example in the field of touchscreen and flexible displays, require that TCs are also mechanically strong and flexible. TC can be broadly classified into two categories: uniform and non-uniform TC. The uniform TC can be viewed as conventional metals (or electron plasmas) with plasma frequency located in the infrared frequency range (e.g. transparent conducting oxides), or ultra-thin metals with large plasma frequency (e.g. graphen). The physics of the nonuniform TC is much more complex, and could involve transmission enhancement due to refraction (including plasmonic), and exotic effects of electron transport, including percolation and fractal effects. This review ties the TC performance to the underlying physical phenomena. We begin with the theoretical basis for studying the various phenomena encountered in TC. Next, we consider the uniform TC, and discuss first the conventional conducting oxides (such as indium tin oxide), reviewing advantages and limitations of these classic uniform electron plasmas. Next, we discuss the potential of single- and multiple-layer graphene as uniform TC. In the part of the paper dealing with non-uniform metallic films, we begin with the review of random metallic networks. The transparency of these networks could be enhanced beyond the classical shading limit by the plasmonic refractive effects. The electrical conduction strongly depends on the network type, and we review first networks made of individual metallic nanowires, where conductivity depends on the inter-wire contact, and the percolation effects. Next, we review the uniform metallic film networks, which are free of the percolation effects and contact problems. In applications that require high-quality electric contact of a TC to an active substrate (such as LED or solar cells), the network performance can be optimized by employing a quasi-fractal structure of the network. We also consider the periodic metallic networks, where active plasmonic refraction leads to the phenomenon of the extraordinary optical transmission. We review the relevant literature on this topic, and demonstrate networks, which take advantage of this strategy (the bio-inspired leaf venation (LV) network, hybrid networks, etc.). Finally, we review “smart” TCs, with an added functionality, such as light interference, metamaterial effects, built-in semiconductors, and their junctions.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"48 1","pages":"553 - 617"},"PeriodicalIF":0.0,"publicationDate":"2016-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2016.1226804","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-07-03DOI: 10.1080/00018732.2016.1200832
Shreyas Gokhale, A. Sood, R. Ganapathy
The glass transition is the most enduring grand-challenge problem in contemporary condensed matter physics. Here, we review the contribution of colloid experiments to our understanding of this problem. First, we briefly outline the success of colloidal systems in yielding microscopic insights into a wide range of condensed matter phenomena. In the context of the glass transition, we demonstrate their utility in revealing the nature of spatial and temporal dynamical heterogeneity. We then discuss the evidence from colloid experiments in favor of various theories of glass formation that has accumulated over the last two decades. In the next section, we expound on the recent paradigm shift in colloid experiments from an exploratory approach to a critical one aimed at distinguishing between predictions of competing frameworks. We demonstrate how this critical approach is aided by the discovery of novel dynamical crossovers within the range accessible to colloid experiments. We also highlight the impact of alternate routes to glass formation such as random pinning, trajectory space phase transitions and replica coupling on current and future research on the glass transition. We conclude our review by listing some key open challenges in glass physics such as the comparison of growing static length scales and the preparation of ultrastable glasses that can be addressed using colloid experiments.
{"title":"Deconstructing the glass transition through critical experiments on colloids","authors":"Shreyas Gokhale, A. Sood, R. Ganapathy","doi":"10.1080/00018732.2016.1200832","DOIUrl":"https://doi.org/10.1080/00018732.2016.1200832","url":null,"abstract":"The glass transition is the most enduring grand-challenge problem in contemporary condensed matter physics. Here, we review the contribution of colloid experiments to our understanding of this problem. First, we briefly outline the success of colloidal systems in yielding microscopic insights into a wide range of condensed matter phenomena. In the context of the glass transition, we demonstrate their utility in revealing the nature of spatial and temporal dynamical heterogeneity. We then discuss the evidence from colloid experiments in favor of various theories of glass formation that has accumulated over the last two decades. In the next section, we expound on the recent paradigm shift in colloid experiments from an exploratory approach to a critical one aimed at distinguishing between predictions of competing frameworks. We demonstrate how this critical approach is aided by the discovery of novel dynamical crossovers within the range accessible to colloid experiments. We also highlight the impact of alternate routes to glass formation such as random pinning, trajectory space phase transitions and replica coupling on current and future research on the glass transition. We conclude our review by listing some key open challenges in glass physics such as the comparison of growing static length scales and the preparation of ultrastable glasses that can be addressed using colloid experiments.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"65 1","pages":"363 - 452"},"PeriodicalIF":0.0,"publicationDate":"2016-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2016.1200832","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-26DOI: 10.1080/00018732.2016.1194044
C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani, D. Mihailovic
In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials. The possibility of obtaining simultaneously spectroscopic and temporal information has led to insights that are complementary to (and in several cases beyond) those attainable by studying the matter at equilibrium. From this perspective, multiple phase transitions and new orders arising from competing interactions are benchmark examples where the interplay among electrons, lattice and spin dynamics can be disentangled because of the different timescales that characterize the recovery of the initial ground state. For example, the nature of the broken-symmetry phases and of the bosonic excitations that mediate the electronic interactions, eventually leading to superconductivity or other exotic states, can be revealed by observing the sub-picosecond dynamics of impulsively excited states. Furthermore, recent experimental and theoretical developments have made it possible to monitor the time-evolution of both the single-particle and collective excitations under extreme conditions, such as those arising from strong and selective photo-stimulation. These developments are opening the way for new, non-equilibrium phenomena that can eventually be induced and manipulated by short laser pulses. Here, we review the most recent achievements in the experimental and theoretical studies of the non-equilibrium electronic, optical, structural and magnetic properties of correlated materials. The focus will be mainly on the prototypical case of correlated oxides that exhibit unconventional superconductivity or other exotic phases. The discussion will also extend to other topical systems, such as iron-based and organic superconductors, and charge-transfer insulators. With this review, the dramatically growing demand for novel experimental tools and theoretical methods, models and concepts, will clearly emerge. In particular, the necessity of extending the actual experimental capabilities and the numerical and analytic tools to microscopically treat the non-equilibrium phenomena beyond the simple phenomenological approaches represents one of the most challenging new frontiers in physics.
{"title":"Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach","authors":"C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani, D. Mihailovic","doi":"10.1080/00018732.2016.1194044","DOIUrl":"https://doi.org/10.1080/00018732.2016.1194044","url":null,"abstract":"In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials. The possibility of obtaining simultaneously spectroscopic and temporal information has led to insights that are complementary to (and in several cases beyond) those attainable by studying the matter at equilibrium. From this perspective, multiple phase transitions and new orders arising from competing interactions are benchmark examples where the interplay among electrons, lattice and spin dynamics can be disentangled because of the different timescales that characterize the recovery of the initial ground state. For example, the nature of the broken-symmetry phases and of the bosonic excitations that mediate the electronic interactions, eventually leading to superconductivity or other exotic states, can be revealed by observing the sub-picosecond dynamics of impulsively excited states. Furthermore, recent experimental and theoretical developments have made it possible to monitor the time-evolution of both the single-particle and collective excitations under extreme conditions, such as those arising from strong and selective photo-stimulation. These developments are opening the way for new, non-equilibrium phenomena that can eventually be induced and manipulated by short laser pulses. Here, we review the most recent achievements in the experimental and theoretical studies of the non-equilibrium electronic, optical, structural and magnetic properties of correlated materials. The focus will be mainly on the prototypical case of correlated oxides that exhibit unconventional superconductivity or other exotic phases. The discussion will also extend to other topical systems, such as iron-based and organic superconductors, and charge-transfer insulators. With this review, the dramatically growing demand for novel experimental tools and theoretical methods, models and concepts, will clearly emerge. In particular, the necessity of extending the actual experimental capabilities and the numerical and analytic tools to microscopically treat the non-equilibrium phenomena beyond the simple phenomenological approaches represents one of the most challenging new frontiers in physics.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"65 1","pages":"238 - 58"},"PeriodicalIF":0.0,"publicationDate":"2016-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2016.1194044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-09-01DOI: 10.1080/23746149.2016.1221739
Robert H Wilson, Karthik Vishwanath, Mary-Ann Mycek
We present an overview of quantitative and label-free optical methods used to characterize living biological tissues, with an emphasis on emerging applications in clinical tissue diagnostics. Specifically, this review focuses on diffuse optical spectroscopy, imaging, and tomography, optical coherence-based techniques, and non-linear optical methods for molecular imaging. The potential for non- or minimally-invasive assessment, quantitative diagnostics, and continuous monitoring enabled by these tissue-optics technologies provides significant promise for continued clinical translation.
{"title":"Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications.","authors":"Robert H Wilson, Karthik Vishwanath, Mary-Ann Mycek","doi":"10.1080/23746149.2016.1221739","DOIUrl":"10.1080/23746149.2016.1221739","url":null,"abstract":"<p><p>We present an overview of quantitative and label-free optical methods used to characterize living biological tissues, with an emphasis on emerging applications in clinical tissue diagnostics. Specifically, this review focuses on diffuse optical spectroscopy, imaging, and tomography, optical coherence-based techniques, and non-linear optical methods for molecular imaging. The potential for non- or minimally-invasive assessment, quantitative diagnostics, and continuous monitoring enabled by these tissue-optics technologies provides significant promise for continued clinical translation.</p>","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"1 4","pages":"523-543"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560608/pdf/nihms838222.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35284479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-08DOI: 10.1080/00018732.2016.1211393
L. Zdeborová, F. Krzakala
Many questions of fundamental interest in today's science can be formulated as inference problems: some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on the indirect information contained in the measurements. For such problems, the central scientific questions are: Under what conditions is the information contained in the measurements sufficient for a satisfactory inference to be possible? What are the most efficient algorithms for this task? A growing body of work has shown that often we can understand and locate these fundamental barriers by thinking of them as phase transitions in the sense of statistical physics. Moreover, it turned out that we can use the gained physical insight to develop new promising algorithms. The connection between inference and statistical physics is currently witnessing an impressive renaissance and we review here the current state-of-the-art, with a pedagogical focus on the Ising model which, formulated as an inference problem, we call the planted spin glass. In terms of applications we review two classes of problems: (i) inference of clusters on graphs and networks, with community detection as a special case and (ii) estimating a signal from its noisy linear measurements, with compressed sensing as a case of sparse estimation. Our goal is to provide a pedagogical review for researchers in physics and other fields interested in this fascinating topic.
{"title":"Statistical physics of inference: thresholds and algorithms","authors":"L. Zdeborová, F. Krzakala","doi":"10.1080/00018732.2016.1211393","DOIUrl":"https://doi.org/10.1080/00018732.2016.1211393","url":null,"abstract":"Many questions of fundamental interest in today's science can be formulated as inference problems: some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on the indirect information contained in the measurements. For such problems, the central scientific questions are: Under what conditions is the information contained in the measurements sufficient for a satisfactory inference to be possible? What are the most efficient algorithms for this task? A growing body of work has shown that often we can understand and locate these fundamental barriers by thinking of them as phase transitions in the sense of statistical physics. Moreover, it turned out that we can use the gained physical insight to develop new promising algorithms. The connection between inference and statistical physics is currently witnessing an impressive renaissance and we review here the current state-of-the-art, with a pedagogical focus on the Ising model which, formulated as an inference problem, we call the planted spin glass. In terms of applications we review two classes of problems: (i) inference of clusters on graphs and networks, with community detection as a special case and (ii) estimating a signal from its noisy linear measurements, with compressed sensing as a case of sparse estimation. Our goal is to provide a pedagogical review for researchers in physics and other fields interested in this fascinating topic.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"65 1","pages":"453 - 552"},"PeriodicalIF":0.0,"publicationDate":"2015-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2016.1211393","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-02DOI: 10.1080/00018732.2015.1114338
S. Dong, Jun-ming Liu, S. Cheong, Z. Ren
Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed. The review is ended with a set of prospectives and forward-looking conclusions, which may inevitably reflect the authors' biased opinions but are certainly critical.
{"title":"Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology","authors":"S. Dong, Jun-ming Liu, S. Cheong, Z. Ren","doi":"10.1080/00018732.2015.1114338","DOIUrl":"https://doi.org/10.1080/00018732.2015.1114338","url":null,"abstract":"Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed. The review is ended with a set of prospectives and forward-looking conclusions, which may inevitably reflect the authors' biased opinions but are certainly critical.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"64 1","pages":"519 - 626"},"PeriodicalIF":0.0,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2015.1114338","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-09-21DOI: 10.1080/00018732.2016.1198134
L. D'Alessio, Y. Kafri, A. Polkovnikov, M. Rigol
This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural extension of ideas from quantum chaos and random matrix theory (RMT). To this end, we present a brief overview of classical and quantum chaos, as well as RMT and some of its most important predictions. The latter include the statistics of energy levels, eigenstate components, and matrix elements of observables. Building on these, we introduce the ETH and show that it allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath. We examine numerical evidence of eigenstate thermalization from studies of many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The second part of the review explores the implications of quantum chaos and ETH to thermodynamics. Basic thermodynamic relations are derived, including the second law of thermodynamics, the fundamental thermodynamic relation, fluctuation theorems, the fluctuation–dissipation relation, and the Einstein and Onsager relations. In particular, it is shown that quantum chaos allows one to prove these relations for individual Hamiltonian eigenstates and thus extend them to arbitrary stationary statistical ensembles. In some cases, it is possible to extend their regimes of applicability beyond the standard thermal equilibrium domain. We then show how one can use these relations to obtain nontrivial universal energy distributions in continuously driven systems. At the end of the review, we briefly discuss the relaxation dynamics and description after relaxation of integrable quantum systems, for which ETH is violated. We present results from numerical experiments and analytical studies of quantum quenches at integrability. We introduce the concept of the generalized Gibbs ensemble and discuss its connection with ideas of prethermalization in weakly interacting systems.
{"title":"From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics","authors":"L. D'Alessio, Y. Kafri, A. Polkovnikov, M. Rigol","doi":"10.1080/00018732.2016.1198134","DOIUrl":"https://doi.org/10.1080/00018732.2016.1198134","url":null,"abstract":"This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural extension of ideas from quantum chaos and random matrix theory (RMT). To this end, we present a brief overview of classical and quantum chaos, as well as RMT and some of its most important predictions. The latter include the statistics of energy levels, eigenstate components, and matrix elements of observables. Building on these, we introduce the ETH and show that it allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath. We examine numerical evidence of eigenstate thermalization from studies of many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The second part of the review explores the implications of quantum chaos and ETH to thermodynamics. Basic thermodynamic relations are derived, including the second law of thermodynamics, the fundamental thermodynamic relation, fluctuation theorems, the fluctuation–dissipation relation, and the Einstein and Onsager relations. In particular, it is shown that quantum chaos allows one to prove these relations for individual Hamiltonian eigenstates and thus extend them to arbitrary stationary statistical ensembles. In some cases, it is possible to extend their regimes of applicability beyond the standard thermal equilibrium domain. We then show how one can use these relations to obtain nontrivial universal energy distributions in continuously driven systems. At the end of the review, we briefly discuss the relaxation dynamics and description after relaxation of integrable quantum systems, for which ETH is violated. We present results from numerical experiments and analytical studies of quantum quenches at integrability. We introduce the concept of the generalized Gibbs ensemble and discuss its connection with ideas of prethermalization in weakly interacting systems.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"65 1","pages":"239 - 362"},"PeriodicalIF":0.0,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2016.1198134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}