首页 > 最新文献

Advances in Physics最新文献

英文 中文
Correction 校正
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2020-04-02 DOI: 10.1080/00018732.2020.1859069
{"title":"Correction","authors":"","doi":"10.1080/00018732.2020.1859069","DOIUrl":"https://doi.org/10.1080/00018732.2020.1859069","url":null,"abstract":"","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"69 1","pages":"249 - 250"},"PeriodicalIF":0.0,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2020.1859069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49401212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical thermodynamics of dislocations in solids 固体位错的统计热力学
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2020-03-04 DOI: 10.1080/00018732.2023.2190730
J. Langer
The thermodynamic dislocation theory (TDT) is based on two fundamental but unconventional assumptions: first, that the dislocations in a persistently deforming crystalline solid must obey the second law of thermodynamics and thus be described by an effective temperature; and second, that the controlling time scale for deformation of these systems is the inverse of the thermally activated rate at which entangled dislocation lines become unpinned from each other. By use of these first-principles concepts and comparisons with experimental data, I show that this theory achieves new, usefully predictive understandings of strain hardening, yield stresses, shear banding, and brittle and ductile fracture. I argue that it opens new directions for research.
热力学位错理论(TDT)基于两个基本但非常规的假设:首先,持续变形的结晶固体中的位错必须服从热力学第二定律,因此可以用有效温度来描述;其次,这些系统变形的控制时间尺度与纠缠的位错线相互解开的热激活速率相反。通过使用这些第一性原理概念并与实验数据进行比较,我表明该理论实现了对应变硬化、屈服应力、剪切带以及脆性和韧性断裂的新的、有用的预测性理解。我认为它为研究开辟了新的方向。
{"title":"Statistical thermodynamics of dislocations in solids","authors":"J. Langer","doi":"10.1080/00018732.2023.2190730","DOIUrl":"https://doi.org/10.1080/00018732.2023.2190730","url":null,"abstract":"The thermodynamic dislocation theory (TDT) is based on two fundamental but unconventional assumptions: first, that the dislocations in a persistently deforming crystalline solid must obey the second law of thermodynamics and thus be described by an effective temperature; and second, that the controlling time scale for deformation of these systems is the inverse of the thermally activated rate at which entangled dislocation lines become unpinned from each other. By use of these first-principles concepts and comparisons with experimental data, I show that this theory achieves new, usefully predictive understandings of strain hardening, yield stresses, shear banding, and brittle and ductile fracture. I argue that it opens new directions for research.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"70 1","pages":"445 - 467"},"PeriodicalIF":0.0,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42691892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular quantum materials: electronic phases and charge dynamics in two-dimensional organic solids 分子量子材料:二维有机固体中的电子相和电荷动力学
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2020-01-02 DOI: 10.1080/00018732.2020.1837833
M. Dressel, S. Tomi'c
This review provides a perspective on recent developments and their implications for our understanding of novel quantum phenomena in the physics of two-dimensional organic solids. We concentrate on the phase transitions and collective response in the charge sector, the importance of coupling of electronic and lattice degrees of freedom and stress an intriguing role of disorder. After a brief introduction to low-dimensional organic solids and their crystallographic structures, we focus on the dimensionality and interactions and emergent quantum phenomena. Important topics of current research in organic matter with sizeable electronic correlations are Mott metal-insulator phase transitions, charge order and ferroelectricity. Highly frustrated two-dimensional systems are established model compounds for studying the quantum spin liquid state and the competition with magnetic long-range order. There are also unique examples of quantum disordered state of magnetic and electric dipoles. Representative experimental results are complemented by current theoretical approaches.
本文综述了二维有机固体物理学的最新发展及其对我们理解新的量子现象的影响。我们集中讨论了电荷区相变和集体响应,电子和晶格自由度耦合的重要性,并强调了无序的有趣作用。在简要介绍了低维有机固体及其晶体结构之后,我们将重点关注其维数、相互作用和涌现的量子现象。目前研究具有相当大的电子相关性的有机物质的重要课题是莫特金属-绝缘体相变,电荷顺序和铁电性。为研究量子自旋液态和与磁长程序的竞争,建立了高度受挫的二维系统模型化合物。磁偶极子和电偶极子的量子无序态也有独特的例子。有代表性的实验结果与现有的理论方法相辅相成。
{"title":"Molecular quantum materials: electronic phases and charge dynamics in two-dimensional organic solids","authors":"M. Dressel, S. Tomi'c","doi":"10.1080/00018732.2020.1837833","DOIUrl":"https://doi.org/10.1080/00018732.2020.1837833","url":null,"abstract":"This review provides a perspective on recent developments and their implications for our understanding of novel quantum phenomena in the physics of two-dimensional organic solids. We concentrate on the phase transitions and collective response in the charge sector, the importance of coupling of electronic and lattice degrees of freedom and stress an intriguing role of disorder. After a brief introduction to low-dimensional organic solids and their crystallographic structures, we focus on the dimensionality and interactions and emergent quantum phenomena. Important topics of current research in organic matter with sizeable electronic correlations are Mott metal-insulator phase transitions, charge order and ferroelectricity. Highly frustrated two-dimensional systems are established model compounds for studying the quantum spin liquid state and the competition with magnetic long-range order. There are also unique examples of quantum disordered state of magnetic and electric dipoles. Representative experimental results are complemented by current theoretical approaches.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"69 1","pages":"1 - 120"},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2020.1837833","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48099038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Explosive phenomena in complex networks 复杂网络中的爆炸现象
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2019-07-03 DOI: 10.1080/00018732.2019.1650450
R. D’Souza, J. G'omez-Gardenes, J. Nagler, A. Arenas
The emergence of large-scale connectivity and synchronization are crucial to the structure, function and failure of many complex socio-technical networks. Thus, there is great interest in analyzing phase transitions to large-scale connectivity and to global synchronization, including how to enhance or delay the onset. These phenomena are traditionally studied as second-order phase transitions where, at the critical threshold, the order parameter increases rapidly but continuously. In 2009, an extremely abrupt transition was found for a network growth process where links compete for addition in an attempt to delay percolation. This observation of ‘explosive percolation’ was ultimately revealed to be a continuous transition in the thermodynamic limit, yet with very atypical finite-size scaling, and it started a surge of work on explosive phenomena and their consequences. Many related models are now shown to yield discontinuous percolation transitions and even hybrid transitions. Explosive percolation enables many other features such as multiple giant components, modular structures, discrete scale invariance and non-self-averaging, relating to properties found in many real phenomena such as explosive epidemics, electric breakdowns and the emergence of molecular life. Models of explosive synchronization provide an analytic framework for the dynamics of abrupt transitions and reveal the interplay between the distribution in natural frequencies and the network structure, with applications ranging from epileptic seizures to waking from anesthesia. Here we review the vast literature on explosive phenomena in networked systems and synthesize the fundamental connections between models and survey the application areas. We attempt to classify explosive phenomena based on underlying mechanisms and to provide a coherent overview and perspective for future research to address the many vital questions that remained unanswered.
大规模连接和同步的出现对许多复杂的社会技术网络的结构、功能和故障至关重要。因此,人们对分析大规模连接和全局同步的相变非常感兴趣,包括如何增强或延迟开始。传统上,这些现象被研究为二阶相变,在临界阈值下,阶参数快速但连续地增加。2009年,在网络增长过程中发现了一个极其突然的转变,即链路竞争添加,试图延迟渗透。这种对“爆炸渗流”的观察最终被揭示为热力学极限的连续转变,但具有非常非典型的有限尺寸标度,它开始了对爆炸现象及其后果的大量研究。许多相关的模型现在被证明产生了不连续的渗流跃迁,甚至混合跃迁。爆炸渗流实现了许多其他特征,如多个巨大组件、模块化结构、离散尺度不变性和非自平均,这些特征与许多真实现象中发现的特性有关,如爆炸流行病、电击穿和分子生命的出现。爆炸同步模型为突变的动力学提供了一个分析框架,并揭示了自然频率分布和网络结构之间的相互作用,其应用范围从癫痫发作到麻醉苏醒。在这里,我们回顾了关于网络系统中爆炸现象的大量文献,综合了模型之间的基本联系,并考察了应用领域。我们试图根据潜在机制对爆炸现象进行分类,并为未来的研究提供连贯的概述和视角,以解决许多尚未解决的重要问题。
{"title":"Explosive phenomena in complex networks","authors":"R. D’Souza, J. G'omez-Gardenes, J. Nagler, A. Arenas","doi":"10.1080/00018732.2019.1650450","DOIUrl":"https://doi.org/10.1080/00018732.2019.1650450","url":null,"abstract":"The emergence of large-scale connectivity and synchronization are crucial to the structure, function and failure of many complex socio-technical networks. Thus, there is great interest in analyzing phase transitions to large-scale connectivity and to global synchronization, including how to enhance or delay the onset. These phenomena are traditionally studied as second-order phase transitions where, at the critical threshold, the order parameter increases rapidly but continuously. In 2009, an extremely abrupt transition was found for a network growth process where links compete for addition in an attempt to delay percolation. This observation of ‘explosive percolation’ was ultimately revealed to be a continuous transition in the thermodynamic limit, yet with very atypical finite-size scaling, and it started a surge of work on explosive phenomena and their consequences. Many related models are now shown to yield discontinuous percolation transitions and even hybrid transitions. Explosive percolation enables many other features such as multiple giant components, modular structures, discrete scale invariance and non-self-averaging, relating to properties found in many real phenomena such as explosive epidemics, electric breakdowns and the emergence of molecular life. Models of explosive synchronization provide an analytic framework for the dynamics of abrupt transitions and reveal the interplay between the distribution in natural frequencies and the network structure, with applications ranging from epileptic seizures to waking from anesthesia. Here we review the vast literature on explosive phenomena in networked systems and synthesize the fundamental connections between models and survey the application areas. We attempt to classify explosive phenomena based on underlying mechanisms and to provide a coherent overview and perspective for future research to address the many vital questions that remained unanswered.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"68 1","pages":"123 - 223"},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2019.1650450","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49153517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 126
Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes 磁场对自旋和轨道状态下有机半导体激发态、电荷输运和电极化的影响
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2019-04-03 DOI: 10.1080/00018732.2019.1590295
Hengxing Xu, Miaosheng Wang, Zhi-Gang Yu, Kai Wang, Bin Hu
Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic–inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic–inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized π electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin–spin interactions between orbitals. This article reviews recent progress on MFEs with the focus on elucidating fundamental mechanisms to control optical, electrical, optoelectronic, and polarization behaviors via spin-dependent excited states, electrical transport, and dielectric polarization. In this article both representative experimental results and mainstream theoretical models are presented to understand MFEs in the spin and orbital regimes for organic materials, nanoparticles, and organic–inorganic hybrids under linear and non-linear excitation regimes with emphasis on underlying spin-dependent processes.
磁场可以通过重新分布自旋布居影响有机材料、有机-无机杂化物和纳米颗粒在室温下的光致发光、电致发光、光电流、注入电流和介电常数,产生新出现的现象,包括磁光致发光,以及磁电介质。在低轨道和高轨道材料中,在单光子和双光子激发下,可以在线性和非线性状态下观察到这些所谓的本征磁场效应(MFE)。另一方面,可以实现自旋注入,通过有机/铁磁混合界面影响自旋相关激发态和导电,从而导致非本征MFE。在过去的几十年里,MFE一直是一种独特的实验工具,用于揭示发光二极管、太阳能电池、存储器、场效应晶体管和激光器件中激发态、电输运和极化的自旋相关过程。最近,它们对先进有机光电材料的操作机制提供了关键的理解,如热激活延迟荧光发光材料、非富勒烯光伏体异质结和有机-无机杂化钙钛矿。虽然MFE最初是通过在可忽略的轨道动量下操作具有离域π电子的有机半导体材料中的自旋态来实现的,但最近的研究表明,在发光、光伏和介电极化中,在强轨道动量和Rashba效应下也可以实现MFE。MFE从自旋状态到轨道状态的转变创造了新的机会,通过使用轨道之间的长程库仑和短程自旋-自旋相互作用,全面控制发光、光伏、激光和介电性质。本文综述了MFE的最新进展,重点阐明了通过自旋相关激发态、电输运和介电极化控制光学、电学、光电子和偏振行为的基本机制。本文介绍了具有代表性的实验结果和主流理论模型,以了解有机材料、纳米颗粒和有机-无机杂化物在线性和非线性激发机制下的自旋和轨道机制中的MFE,重点是潜在的自旋依赖过程。
{"title":"Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes","authors":"Hengxing Xu, Miaosheng Wang, Zhi-Gang Yu, Kai Wang, Bin Hu","doi":"10.1080/00018732.2019.1590295","DOIUrl":"https://doi.org/10.1080/00018732.2019.1590295","url":null,"abstract":"Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic–inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic–inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized π electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin–spin interactions between orbitals. This article reviews recent progress on MFEs with the focus on elucidating fundamental mechanisms to control optical, electrical, optoelectronic, and polarization behaviors via spin-dependent excited states, electrical transport, and dielectric polarization. In this article both representative experimental results and mainstream theoretical models are presented to understand MFEs in the spin and orbital regimes for organic materials, nanoparticles, and organic–inorganic hybrids under linear and non-linear excitation regimes with emphasis on underlying spin-dependent processes.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"68 1","pages":"121 - 49"},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2019.1590295","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46794352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
Density-functional theory for plutonium 钚的密度泛函理论
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2019-01-02 DOI: 10.1080/00018732.2019.1599554
P. Söderlind, A. Landa, B. Sadigh
We review developments in the theoretical description and understanding of plutonium in terms of a metal with itinerant (band) 5f electrons. Within this picture most facets of this remarkable and anomalous material are accurately described by first-principle, parameter-free, density-functional-theory (DFT) calculations. We show that the model explains plutonium’s phase stability, elasticity, lattice vibrations, electronic structure, alloy properties, and magnetism. Fluctuations are addressed by means of constrained DFT calculations and new light is shed on the anomalous properties of δ plutonium, including explaining its negative thermal expansion. Effects of alloying and point defects in plutonium are also addressed. It is further emphasized that strong electron correlations, originating from a large intra-atomic Coulomb repulsion (∼4 eV) of the 5f electrons, that has often been assumed for plutonium in the literature, is inconsistent with the experimental phase diagram of plutonium.
我们回顾了钚的理论描述和理解的发展,钚是一种具有5f电子的流动(带)金属。在这张照片中,这种非凡和反常材料的大多数方面都通过第一性原理、无参数密度泛函理论(DFT)计算得到了准确的描述。我们证明,该模型解释了钚的相稳定性、弹性、晶格振动、电子结构、合金性能和磁性。通过受约束的DFT计算来解决波动问题,并对δ钚的异常性质进行了新的研究,包括解释其负热膨胀。还讨论了钚中合金化和点缺陷的影响。进一步强调的是,强烈的电子关联源于原子内的库仑斥力(~4 eV)与钚的实验相图不一致。
{"title":"Density-functional theory for plutonium","authors":"P. Söderlind, A. Landa, B. Sadigh","doi":"10.1080/00018732.2019.1599554","DOIUrl":"https://doi.org/10.1080/00018732.2019.1599554","url":null,"abstract":"We review developments in the theoretical description and understanding of plutonium in terms of a metal with itinerant (band) 5f electrons. Within this picture most facets of this remarkable and anomalous material are accurately described by first-principle, parameter-free, density-functional-theory (DFT) calculations. We show that the model explains plutonium’s phase stability, elasticity, lattice vibrations, electronic structure, alloy properties, and magnetism. Fluctuations are addressed by means of constrained DFT calculations and new light is shed on the anomalous properties of δ plutonium, including explaining its negative thermal expansion. Effects of alloying and point defects in plutonium are also addressed. It is further emphasized that strong electron correlations, originating from a large intra-atomic Coulomb repulsion (∼4 eV) of the 5f electrons, that has often been assumed for plutonium in the literature, is inconsistent with the experimental phase diagram of plutonium.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"68 1","pages":"1 - 47"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2019.1599554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43139593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
Community Perspectives: Developing and Implementing a Smartphone Intervention for Latina Breast Cancer Survivors in Chicago. 社区视角:为芝加哥拉丁裔乳腺癌幸存者开发和实施智能手机干预措施。
IF 0.8 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2019-01-01 DOI: 10.1353/cpr.2019.0046
Laura B Oswald, Judy Guitelman, Diana Buitrago, Joanna Buscemi, Francisco Iacobelli, Alejandra Perez-Tamayo, Frank Penedo, Betina Yanez

Compared with non-Latina White breast cancer survivors (BCS), Latina BCS have poorer health-related quality of life and greater psychosocial needs. However, Latinas are less engaged in clinical research owing to barriers including less access to health-related information, less awareness of clinical trials, and practical barriers (e.g., competing time demands). Latina BCS are in need of educational and health-related resources that are culturally informed, scalable, and accessible. In 2015, the Chicago Cancer Health Equity Collaborative (ChicagoCHEC), a National Cancer Institute research collaborative, and ALAS-WINGS, a community organization providing educational and supportive resources to Latina BCS, partnered to develop My Guide. My Guide is a smartphone application-based intervention for Latina BCS designed to improve health-related quality of life (HRQOL). This article summarizes the experiences of ChicagoCHEC and ALAS-WINGS throughout the community-engaged research (CEnR) partnership. Using existing relationships in community and academic settings via CEnR provides an ideal starting point for tailoring resources to Latina BCS and engaging Latina BCS in health-related research.

与非拉美裔的白人乳腺癌幸存者(BCS)相比,拉美裔乳腺癌幸存者的健康相关生活质量更差,心理需求更大。然而,拉丁裔女性参与临床研究的程度较低,原因包括获取健康相关信息的渠道较少、对临床试验的了解较少以及实际障碍(如相互竞争的时间需求)。拉美裔 BCS 需要有文化背景、可扩展和可获取的教育和健康相关资源。2015 年,芝加哥癌症健康公平合作组织(Chicago Cancer Health Equity Collaborative,ChicagoCHEC)(美国国家癌症研究所的一个研究合作组织)和 ALAS-WINGS(一个为拉丁裔 BCS 提供教育和支持资源的社区组织)合作开发了 "我的指南"。我的指南 "是一项基于智能手机应用的干预措施,旨在改善拉丁裔 BCS 的健康相关生活质量 (HRQOL)。本文总结了 ChicagoCHEC 和 ALAS-WINGS 在整个社区参与研究 (CEnR) 合作过程中的经验。通过 CEnR 利用社区和学术环境中的现有关系,为拉丁裔 BCS 量身定制资源并让拉丁裔 BCS 参与健康相关研究提供了一个理想的起点。
{"title":"Community Perspectives: Developing and Implementing a Smartphone Intervention for Latina Breast Cancer Survivors in Chicago.","authors":"Laura B Oswald, Judy Guitelman, Diana Buitrago, Joanna Buscemi, Francisco Iacobelli, Alejandra Perez-Tamayo, Frank Penedo, Betina Yanez","doi":"10.1353/cpr.2019.0046","DOIUrl":"10.1353/cpr.2019.0046","url":null,"abstract":"<p><p>Compared with non-Latina White breast cancer survivors (BCS), Latina BCS have poorer health-related quality of life and greater psychosocial needs. However, Latinas are less engaged in clinical research owing to barriers including less access to health-related information, less awareness of clinical trials, and practical barriers (e.g., competing time demands). Latina BCS are in need of educational and health-related resources that are culturally informed, scalable, and accessible. In 2015, the Chicago Cancer Health Equity Collaborative (ChicagoCHEC), a National Cancer Institute research collaborative, and ALAS-WINGS, a community organization providing educational and supportive resources to Latina BCS, partnered to develop My Guide. My Guide is a smartphone application-based intervention for Latina BCS designed to improve health-related quality of life (HRQOL). This article summarizes the experiences of ChicagoCHEC and ALAS-WINGS throughout the community-engaged research (CEnR) partnership. Using existing relationships in community and academic settings via CEnR provides an ideal starting point for tailoring resources to Latina BCS and engaging Latina BCS in health-related research.</p>","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"53 1","pages":"131-136"},"PeriodicalIF":0.8,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80783800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The order parameter for the superconducting phases of UPt3 UPt3超导相的有序参数
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2018-12-24 DOI: 10.1080/00018739400101475
J. Sauls
Abstract I review the principal theories that have been proposed for the superconducting phases of UPt3. The detailed H-T phase diagram places constraints on any theory for the multiple superconducting phases. Much attention has been given to the Ginzberg-Landau region of the phase diagram where the phase boundaries of three phases appear to meet at a tetracritical point. It has been argued that the existence of a tetracritical point for all field orientations eliminates the two-dimensional (2D) orbital representations coupled to a symmetry-breaking field (SBF) as a viable theory of these phases and favours either a theory based on two primary order parameters belonging to different irreducible representations that are accidentally degenerate, as described by Chen and Garg 1993, or a spin-triplet, orbital one-dimensional representation with non spin-orbit coupling in the pairing channel, as described by Machida and Ozaki 1991. I comment on the limitations of the models proposed so far for the superconduct...
摘要我综述了UPt3超导相的主要理论。详细的H-T相图限制了多个超导相的任何理论。人们对相图的Ginzberg-Landau区域给予了很大的关注,在该区域,三相的相边界似乎在四临界点相遇。有人认为,对于所有场取向,四临界点的存在消除了耦合到对称破缺场(SBF)的二维(2D)轨道表示作为这些相的可行理论,如Chen和Garg 1993所述,或者如Machida和Ozaki 1991所述,在配对通道中具有非自旋轨道耦合的自旋三重态轨道一维表示。我评论了迄今为止提出的超导体模型的局限性。。。
{"title":"The order parameter for the superconducting phases of UPt3","authors":"J. Sauls","doi":"10.1080/00018739400101475","DOIUrl":"https://doi.org/10.1080/00018739400101475","url":null,"abstract":"Abstract I review the principal theories that have been proposed for the superconducting phases of UPt3. The detailed H-T phase diagram places constraints on any theory for the multiple superconducting phases. Much attention has been given to the Ginzberg-Landau region of the phase diagram where the phase boundaries of three phases appear to meet at a tetracritical point. It has been argued that the existence of a tetracritical point for all field orientations eliminates the two-dimensional (2D) orbital representations coupled to a symmetry-breaking field (SBF) as a viable theory of these phases and favours either a theory based on two primary order parameters belonging to different irreducible representations that are accidentally degenerate, as described by Chen and Garg 1993, or a spin-triplet, orbital one-dimensional representation with non spin-orbit coupling in the pairing channel, as described by Machida and Ozaki 1991. I comment on the limitations of the models proposed so far for the superconduct...","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"43 1","pages":"113-141"},"PeriodicalIF":0.0,"publicationDate":"2018-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018739400101475","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41834249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 187
Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications Ehrenfest-Maxwell-Pauli-Kohn-Sham框架中的光-物质相互作用:基础,实现和纳米光学应用
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2018-12-12 DOI: 10.1080/00018732.2019.1695875
R. Jestädt, M. Ruggenthaler, Micael J. T. Oliveira, Á. Rubio, H. Appel
In recent years significant experimental advances in nano-scale fabrication techniques and in available light sources have opened the possibility to study a vast set of novel light-matter interaction scenarios, including strong coupling cases. In many situations nowadays, classical electromagnetic modeling is insufficient as quantum effects, both in matter and light, start to play an important role. Instead, a fully self-consistent and microscopic coupling of light and matter becomes necessary. We provide here a critical review of current approaches for electromagnetic modeling, highlighting their limitations. We show how to overcome these limitations by introducing the theoretical foundations and the implementation details of a density-functional approach for coupled photons, electrons, and effective nuclei in non-relativistic quantum electrodynamics. Starting point of the formalism is a generalization of the Pauli–Fierz field theory for which we establish a one-to-one correspondence between external fields and internal variables. Based on this correspondence, we introduce a Kohn-Sham construction which provides a computationally feasible approach for ab-initio light-matter interactions. In the mean-field limit, the formalism reduces to coupled Ehrenfest–Maxwell–Pauli–Kohn–Sham equations. We present an implementation of the approach in the real-space real-time code Octopus using the Riemann–Silberstein formulation of classical electrodynamics to rewrite Maxwell's equations in Schrödinger form. This allows us to use existing very efficient time-evolution algorithms developed for quantum-mechanical systems also for Maxwell's equations. We show how to couple the time-evolution of the electromagnetic fields self-consistently with the quantum time-evolution of the electrons and nuclei. This approach is ideally suited for applications in nano-optics, nano-plasmonics, (photo) electrocatalysis, light-matter coupling in 2D materials, cases where laser pulses carry orbital angular momentum, or light-tailored chemical reactions in optical cavities just to name but a few.
近年来,纳米级制造技术和可用光源的重大实验进展为研究大量新的光物质相互作用场景(包括强耦合情况)开辟了可能性。在当今的许多情况下,经典的电磁建模是不够的,因为量子效应,无论是在物质还是光中,都开始发挥重要作用。相反,光和物质的完全自洽和微观耦合变得必要。我们在这里对当前的电磁建模方法进行了批判性的回顾,强调了它们的局限性。我们通过介绍非相对论量子电动力学中耦合光子、电子和有效核的密度泛函方法的理论基础和实现细节,展示了如何克服这些限制。形式主义的起点是泡利-菲尔兹场论的推广,为此我们在外部场和内部变量之间建立了一对一的对应关系。基于这种对应关系,我们引入了一种Kohn-Sham结构,它为从头计算轻物质相互作用提供了一种计算上可行的方法。在平均场极限中,形式化简化为耦合的Ehrenfest–Maxwell–Pauli–Kohn–Sham方程。我们在真实空间实时代码Octopus中介绍了该方法的实现,该代码使用经典电动力学的黎曼-西尔伯斯坦公式将麦克斯韦方程改写为薛定谔形式。这使我们能够使用为量子力学系统开发的现有非常有效的时间演化算法,也可以用于麦克斯韦方程。我们展示了如何将电磁场的时间演化与电子和原子核的量子时间演化自洽耦合。这种方法非常适合应用于纳米光学、纳米等离子体、(光)电催化、2D材料中的光-物质耦合、激光脉冲携带轨道角动量的情况,或光腔中的光定制化学反应,仅举几例。
{"title":"Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications","authors":"R. Jestädt, M. Ruggenthaler, Micael J. T. Oliveira, Á. Rubio, H. Appel","doi":"10.1080/00018732.2019.1695875","DOIUrl":"https://doi.org/10.1080/00018732.2019.1695875","url":null,"abstract":"In recent years significant experimental advances in nano-scale fabrication techniques and in available light sources have opened the possibility to study a vast set of novel light-matter interaction scenarios, including strong coupling cases. In many situations nowadays, classical electromagnetic modeling is insufficient as quantum effects, both in matter and light, start to play an important role. Instead, a fully self-consistent and microscopic coupling of light and matter becomes necessary. We provide here a critical review of current approaches for electromagnetic modeling, highlighting their limitations. We show how to overcome these limitations by introducing the theoretical foundations and the implementation details of a density-functional approach for coupled photons, electrons, and effective nuclei in non-relativistic quantum electrodynamics. Starting point of the formalism is a generalization of the Pauli–Fierz field theory for which we establish a one-to-one correspondence between external fields and internal variables. Based on this correspondence, we introduce a Kohn-Sham construction which provides a computationally feasible approach for ab-initio light-matter interactions. In the mean-field limit, the formalism reduces to coupled Ehrenfest–Maxwell–Pauli–Kohn–Sham equations. We present an implementation of the approach in the real-space real-time code Octopus using the Riemann–Silberstein formulation of classical electrodynamics to rewrite Maxwell's equations in Schrödinger form. This allows us to use existing very efficient time-evolution algorithms developed for quantum-mechanical systems also for Maxwell's equations. We show how to couple the time-evolution of the electromagnetic fields self-consistently with the quantum time-evolution of the electrons and nuclei. This approach is ideally suited for applications in nano-optics, nano-plasmonics, (photo) electrocatalysis, light-matter coupling in 2D materials, cases where laser pulses carry orbital angular momentum, or light-tailored chemical reactions in optical cavities just to name but a few.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"68 1","pages":"225 - 333"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2019.1695875","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43969888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Topological quantum matter with cold atoms 具有冷原子的拓扑量子物质
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2018-10-02 DOI: 10.1080/00018732.2019.1594094
Dan-Wei Zhang, Yan-Qing Zhu, Y. Zhao, Hui Yan, Shi-Liang Zhu
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su–Schrieffer–Heeger model, the Hofstadter–Harper model, the Haldane model and the Kane–Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold-atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.
这是对具有冷原子的拓扑量子物质物理学的介绍性综述。拓扑量子相最初是在凝聚态物理学中发现和研究的,最近在一系列不同的系统中进行了探索,这产生了引人入胜的物理学发现和令人兴奋的应用机会。在被认为可以实现和探测这些有趣相的物理系统中,超冷原子由于其高度的灵活性和可控性而成为有前途的平台。用冷原子气体对拓扑相进行量子模拟是一个快速发展的领域,最近的理论和实验发展表明,最初在凝聚态物理学中提出的一些玩具模型已经用这种人工量子系统实现了。这篇文章的目的是介绍这些发展。本文首先介绍了拓扑不变量和控制中性原子哈密顿量中参数的方法。接下来,详细介绍了光学晶格中的拓扑量子相,特别是一些著名的模型,如Su–Schrieffer–Heeger模型、Hofstadter–Harper模型、Haldane模型和Kane–Mele模型。讨论了这些模型的理论建议和实验实现。值得注意的是,这些模型中的许多不能在传统的固态实验中直接实现。还综述了新发展的探测冷原子系统拓扑相本征性质的方法。最后,讨论了一些连续介质中存在相互作用的冷原子拓扑相,并对未来的工作进行了展望。
{"title":"Topological quantum matter with cold atoms","authors":"Dan-Wei Zhang, Yan-Qing Zhu, Y. Zhao, Hui Yan, Shi-Liang Zhu","doi":"10.1080/00018732.2019.1594094","DOIUrl":"https://doi.org/10.1080/00018732.2019.1594094","url":null,"abstract":"This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su–Schrieffer–Heeger model, the Hofstadter–Harper model, the Haldane model and the Kane–Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold-atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"67 1","pages":"253 - 402"},"PeriodicalIF":0.0,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2019.1594094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42582933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 213
期刊
Advances in Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1