首页 > 最新文献

Advances in Physics最新文献

英文 中文
Dirac materials 狄拉克材料
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2014-01-02 DOI: 10.1080/00018732.2014.927109
T. Wehling, A. Black‐Schaffer, A. Balatsky
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrödinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call “Dirac materials.” In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin–orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.
各种各样的材料,如d波超导体、石墨烯和拓扑绝缘体,都有一个基本的相似之处:它们的低能费米子激发表现为无质量的狄拉克粒子,而不是遵从通常的Schrödinger哈密顿量的费米子。狄拉克费米子在凝聚态系统中的这种涌现行为定义了一类我们称之为“狄拉克材料”的材料的统一框架。为了建立这类材料,我们说明了狄拉克费米子是如何在多个完全不同的凝聚态物质系统中出现的,我们讨论了狄拉克费米子是如何通过电子能谱技术(角分辨光发射光谱和扫描隧道光谱)实验确定的。由于它们共同的低能激发,这种不同的材料在低能(红外)极限中具有大量的通用特性。我们回顾了这些常见的性质,包括激发谱中的节点、态密度、比热、输运、热力学性质、杂质共振和磁场响应,并讨论了多体相互作用效应。我们进一步回顾了狄拉克激发的出现是如何由材料的特定对称性控制的,例如时间反转、规范和自旋轨道对称性,以及如何通过打破这些对称性来产生有限的狄拉克质量。我们给出了狄拉克费米子与其独特的真实物质背景的相互作用如何导致具有共同指纹的丰富新颖物理的例子,例如抑制反向散射和杂质诱导的共振态。
{"title":"Dirac materials","authors":"T. Wehling, A. Black‐Schaffer, A. Balatsky","doi":"10.1080/00018732.2014.927109","DOIUrl":"https://doi.org/10.1080/00018732.2014.927109","url":null,"abstract":"A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrödinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call “Dirac materials.” In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin–orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"63 1","pages":"1 - 76"},"PeriodicalIF":0.0,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2014.927109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 673
Random quantum states: recent developments and applications 随机量子态:最近的发展和应用
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2013-11-01 DOI: 10.1080/00018732.2013.860277
J. Urbina, K. Richter
We review the methods and use of random quantum states with particular emphasis on recent theoretical developments and applications in various fields. The guiding principle of the review is the idea that random quantum states can be understood as classical probability distributions in the Hilbert space of the associated quantum system. We show how this central concept connects questions of physical interest that cover different fields such as quantum statistical physics, quantum chaos, mesoscopic systems of both non-interacting and interacting particles, including superconducting and spin–orbit phenomena, and stochastic Schrödinger equations describing open quantum systems.
我们回顾了随机量子态的方法和使用,特别强调了最近的理论发展和在各个领域的应用。这篇综述的指导原则是,随机量子态可以被理解为相关量子系统希尔伯特空间中的经典概率分布。我们展示了这个中心概念如何连接涵盖不同领域的物理兴趣问题,如量子统计物理,量子混沌,非相互作用和相互作用粒子的介观系统,包括超导和自旋轨道现象,以及描述开放量子系统的随机Schrödinger方程。
{"title":"Random quantum states: recent developments and applications","authors":"J. Urbina, K. Richter","doi":"10.1080/00018732.2013.860277","DOIUrl":"https://doi.org/10.1080/00018732.2013.860277","url":null,"abstract":"We review the methods and use of random quantum states with particular emphasis on recent theoretical developments and applications in various fields. The guiding principle of the review is the idea that random quantum states can be understood as classical probability distributions in the Hilbert space of the associated quantum system. We show how this central concept connects questions of physical interest that cover different fields such as quantum statistical physics, quantum chaos, mesoscopic systems of both non-interacting and interacting particles, including superconducting and spin–orbit phenomena, and stochastic Schrödinger equations describing open quantum systems.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"62 1","pages":"363 - 452"},"PeriodicalIF":0.0,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2013.860277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Functional renormalization group for multi-orbital Fermi surface instabilities 多轨道费米表面不稳定性的泛函重整化群
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2013-10-23 DOI: 10.1080/00018732.2013.862020
Christian Platt, Werner Hanke, R. Thomale
Technological progress in material synthesis, as well as artificial realization of condensed matter scenarios via ultra-cold atomic gases in optical lattices or epitaxial growth of thin films, is opening the gate to investigate a plethora of unprecedented strongly correlated electron systems. In a large subclass thereof, a metallic state of layered electrons undergoes an ordering transition below some temperature into unconventional states of matter driven by electronic correlations, such as magnetism, superconductivity (SC), or other Fermi surface (FS) instabilities. While these phenomena have been a well-established direction of research in condensed matter for decades, the variety of today's accessible scenarios pose fundamental new challenges to describe them. A core complication is the multi-orbital nature of the low-energy electronic structure of these systems, such as the multi-d orbital nature of electrons in iron-pnictides and transition-metal oxides in general, but also electronic states of matter on lattices with multiple sites per unit cell such as the honeycomb or kagome lattice. In this review, we propagate the functional renormalization group (FRG) as a suited approach to investigate multi-orbital FS instabilities. The primary goal of the review is to describe the FRG in explicit detail and render it accessible to everyone both at a technical and intuitive level. Summarizing recent progress in the field of multi-orbital FS instabilities, we illustrate how the unbiased fashion by which the FRG treats all kinds of ordering tendencies guarantees an adequate description of electronic phase diagrams and often allows to obtain parameter trends of sufficient accuracy to make qualitative predictions for experiments. This review includes detailed and illustrative examples of magnetism and, in particular, SC for the iron-pnictides from the viewpoint of FRG. Furthermore, it discusses candidate scenarios for topological bulk singlet SC and exotic particle–hole condensates on hexagonal lattices such as sodium-doped cobaltates, graphene doped to van-Hove filling, and the kagome Hubbard model. In total, the FRG promises to be one of the most versatile and revealing numerical approaches to address unconventional FS instabilities in future fields of condensed matter research.
材料合成的技术进步,以及通过光学晶格中的超冷原子气体或薄膜外延生长来人工实现凝聚态情景,为研究大量前所未有的强相关电子系统打开了大门。在一个大的亚类中,层状电子的金属状态在一定温度下经历有序转变,进入由电子相关性驱动的非常规物质状态,如磁性、超导性(SC)或其他费米表面(FS)不稳定性。虽然这些现象几十年来一直是凝聚态物质研究的一个既定方向,但今天各种各样的可访问场景对描述它们提出了根本性的新挑战。一个核心的复杂性是这些系统的低能电子结构的多轨道性质,例如铁- nictides和过渡金属氧化物中电子的多维轨道性质,以及每个单元具有多个位置的晶格(如蜂窝或kagome晶格)上物质的电子状态。在这篇综述中,我们推广了功能重整化群(FRG)作为研究多轨道FS不稳定性的合适方法。审查的主要目标是明确详细地描述FRG,并使每个人都能在技术和直观层面上访问它。总结了最近在多轨道FS不稳定性领域的进展,我们说明了FRG处理各种有序趋势的无偏方式如何保证对电子相图的充分描述,并经常允许获得足够精确的参数趋势,以便对实验进行定性预测。这篇综述包括从FRG的角度详细和说明磁性的例子,特别是SC。此外,它还讨论了拓扑体单线态SC和外来粒子-空穴凝聚在六方晶格上的候选场景,如钠掺杂钴酸盐,石墨烯掺杂到van-Hove填充,以及kagome Hubbard模型。总的来说,FRG有望成为未来凝聚态研究领域中解决非常规FS不稳定性的最通用和最具揭示性的数值方法之一。
{"title":"Functional renormalization group for multi-orbital Fermi surface instabilities","authors":"Christian Platt, Werner Hanke, R. Thomale","doi":"10.1080/00018732.2013.862020","DOIUrl":"https://doi.org/10.1080/00018732.2013.862020","url":null,"abstract":"Technological progress in material synthesis, as well as artificial realization of condensed matter scenarios via ultra-cold atomic gases in optical lattices or epitaxial growth of thin films, is opening the gate to investigate a plethora of unprecedented strongly correlated electron systems. In a large subclass thereof, a metallic state of layered electrons undergoes an ordering transition below some temperature into unconventional states of matter driven by electronic correlations, such as magnetism, superconductivity (SC), or other Fermi surface (FS) instabilities. While these phenomena have been a well-established direction of research in condensed matter for decades, the variety of today's accessible scenarios pose fundamental new challenges to describe them. A core complication is the multi-orbital nature of the low-energy electronic structure of these systems, such as the multi-d orbital nature of electrons in iron-pnictides and transition-metal oxides in general, but also electronic states of matter on lattices with multiple sites per unit cell such as the honeycomb or kagome lattice. In this review, we propagate the functional renormalization group (FRG) as a suited approach to investigate multi-orbital FS instabilities. The primary goal of the review is to describe the FRG in explicit detail and render it accessible to everyone both at a technical and intuitive level. Summarizing recent progress in the field of multi-orbital FS instabilities, we illustrate how the unbiased fashion by which the FRG treats all kinds of ordering tendencies guarantees an adequate description of electronic phase diagrams and often allows to obtain parameter trends of sufficient accuracy to make qualitative predictions for experiments. This review includes detailed and illustrative examples of magnetism and, in particular, SC for the iron-pnictides from the viewpoint of FRG. Furthermore, it discusses candidate scenarios for topological bulk singlet SC and exotic particle–hole condensates on hexagonal lattices such as sodium-doped cobaltates, graphene doped to van-Hove filling, and the kagome Hubbard model. In total, the FRG promises to be one of the most versatile and revealing numerical approaches to address unconventional FS instabilities in future fields of condensed matter research.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"62 1","pages":"453 - 562"},"PeriodicalIF":0.0,"publicationDate":"2013-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2013.862020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 123
Persistence and first-passage properties in nonequilibrium systems 非平衡系统的持续性和首次通过性质
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2013-04-03 DOI: 10.1080/00018732.2013.803819
A. Bray, S. Majumdar, G. Schehr
In this review, we discuss the persistence and the related first-passage properties in extended many-body nonequilibrium systems. Starting with simple systems with one or few degrees of freedom, such as random walk and random acceleration problems, we progressively discuss the persistence properties in systems with many degrees of freedom. These systems include spin models undergoing phase-ordering dynamics, diffusion equation, fluctuating interfaces, etc. Persistence properties are nontrivial in these systems as the effective underlying stochastic process is non-Markovian. Several exact and approximate methods have been developed to compute the persistence of such non-Markov processes over the last two decades, as reviewed in this article. We also discuss various generalizations of the local site persistence probability. Persistence in systems with quenched disorder is discussed briefly. Although the main emphasis of this review is on the theoretical developments on persistence, we briefly touch upon various experimental systems as well.
本文讨论了扩展多体非平衡系统的持续性及其相关的首通道性质。从具有一个或几个自由度的简单系统(如随机漫步和随机加速问题)开始,我们逐步讨论了具有多个自由度系统的持久性。这些系统包括经历相序动力学的自旋模型、扩散方程、波动界面等。在这些系统中,由于有效的底层随机过程是非马尔可夫的,因此持久性是非平凡的。在过去的二十年中,已经开发了几种精确和近似的方法来计算这种非马尔可夫过程的持久性,如本文所述。我们还讨论了局部站点持续概率的各种推广。简要讨论了具有淬火无序的系统的持久性。虽然这篇综述的主要重点是关于持久性的理论发展,但我们也简要地谈到了各种实验系统。
{"title":"Persistence and first-passage properties in nonequilibrium systems","authors":"A. Bray, S. Majumdar, G. Schehr","doi":"10.1080/00018732.2013.803819","DOIUrl":"https://doi.org/10.1080/00018732.2013.803819","url":null,"abstract":"In this review, we discuss the persistence and the related first-passage properties in extended many-body nonequilibrium systems. Starting with simple systems with one or few degrees of freedom, such as random walk and random acceleration problems, we progressively discuss the persistence properties in systems with many degrees of freedom. These systems include spin models undergoing phase-ordering dynamics, diffusion equation, fluctuating interfaces, etc. Persistence properties are nontrivial in these systems as the effective underlying stochastic process is non-Markovian. Several exact and approximate methods have been developed to compute the persistence of such non-Markov processes over the last two decades, as reviewed in this article. We also discuss various generalizations of the local site persistence probability. Persistence in systems with quenched disorder is discussed briefly. Although the main emphasis of this review is on the theoretical developments on persistence, we briefly touch upon various experimental systems as well.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"160 1","pages":"225 - 361"},"PeriodicalIF":0.0,"publicationDate":"2013-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2013.803819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 419
Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids 等离子体纳米科学:从等离子体中的纳米固体到固体中的纳米等离子体
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2013-04-01 DOI: 10.1080/00018732.2013.808047
K. Ostrikov, E. Neyts, M. Meyyappan
The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
在广泛的元素组成、结构和维度的纳米级固体系统的组织中,独特的等离子体特异性特征和物理现象进行了批判性的审查。这些效应导致了在纳米尺度上定位和控制能量和物质的可能性,并产生了具有高度不同寻常和优越性能的自组织纳米固体。介绍了一个基于前体物质的生产、传输和自组织控制的统一概念框架,并解释了各种等离子体特异性非平衡和动力学驱动的现象,这些现象跨越许多时空尺度。当等离子体被定位到微米和纳米尺度时,就会出现新的现象。这些例子包括半导体量子点和纳米线、单壁碳纳米管的手性控制、石墨烯、纳米金刚石和有机物质的超精细操作、纳米等离子体效应和不同物质状态的纳米等离子体。
{"title":"Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids","authors":"K. Ostrikov, E. Neyts, M. Meyyappan","doi":"10.1080/00018732.2013.808047","DOIUrl":"https://doi.org/10.1080/00018732.2013.808047","url":null,"abstract":"The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"62 1","pages":"113 - 224"},"PeriodicalIF":0.0,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2013.808047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 465
Emergent complexity of the cytoskeleton: from single filaments to tissue. 细胞骨架的涌现复杂性:从单丝到组织。
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2013-01-01 Epub Date: 2013-03-06 DOI: 10.1080/00018732.2013.771509
F Huber, J Schnauß, S Rönicke, P Rauch, K Müller, C Fütterer, J Käs

Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly.

尽管它们非常复杂,但活细胞显示出高度的内部机械和功能组织,这在很大程度上归因于细胞内的生物聚合物支架,即细胞骨架。作为一个远离热力学平衡的非常复杂的系统,细胞骨架的组织能力同时具有挑战性和吸引力。大量频繁相互作用的细胞构建块及其固有的多功能性允许高度自适应行为,并阻碍了纯粹的简化方法。尽管如此(尽管该领域相对新颖),物理方法已经被证明在揭示细胞骨架组织和行为的非常基本的概念方面非常成功。本文综述了细胞骨架的物理性质,从单个生物聚合物细丝到多细胞生物。在这个广泛的现象范围内,重点放在不同物理尺度(复杂性水平)的相互交织的本质上,这些物理尺度(复杂性水平)通过自组织或自组装的方式产生了许多涌现的特性。
{"title":"Emergent complexity of the cytoskeleton: from single filaments to tissue.","authors":"F Huber, J Schnauß, S Rönicke, P Rauch, K Müller, C Fütterer, J Käs","doi":"10.1080/00018732.2013.771509","DOIUrl":"10.1080/00018732.2013.771509","url":null,"abstract":"<p><p>Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly.</p>","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"62 1","pages":"1-112"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2013.771509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32276012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 177
Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids 复杂固体中有序、相和畴的纳米光学成像和光谱学
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2012-12-01 DOI: 10.1080/00018732.2012.737982
J. Atkin, S. Berweger, Andrew C. Jones, M. Raschke
The structure of our material world is characterized by a large hierarchy of length scales that determines material properties and functions. Increasing spatial resolution in optical imaging and spectroscopy has been a long standing desire, to provide access, in particular, to mesoscopic phenomena associated with phase separation, order, and intrinsic and extrinsic structural inhomogeneities. A general concept for the combination of optical spectroscopy with scanning probe microscopy emerged recently, extending the spatial resolution of optical imaging far beyond the diffraction limit. The optical antenna properties of a scanning probe tip and the local near-field coupling between its apex and a sample provide few-nanometer optical spatial resolution. With imaging mechanisms largely independent of wavelength, this concept is compatible with essentially any form of optical spectroscopy, including nonlinear and ultrafast techniques, over a wide frequency range from the terahertz to the extreme ultraviolet. The past 10 years have seen a rapid development of this nano-optical imaging technique, known as tip-enhanced or scattering-scanning near-field optical microscopy (s-SNOM). Its applicability has been demonstrated for the nano-scale investigation of a wide range of materials including biomolecular, polymer, plasmonic, semiconductor, and dielectric systems. We provide a general review of the development, fundamental imaging mechanisms, and different implementations of s-SNOM, and discuss its potential for providing nanoscale spectroscopic including femtosecond spatio-temporal information. We discuss possible near-field spectroscopic implementations, with contrast based on the metallic infrared Drude response, nano-scale impedance, infrared and Raman vibrational spectroscopy, phonon Raman nano-crystallography, and nonlinear optics to identify nanoscale phase separation (PS), strain, and ferroic order. With regard to applications, we focus on correlated and low-dimensional materials as examples that benefit, in particular, from the unique applicability of s-SNOM under variable and cryogenic temperatures, nearly arbitrary atmospheric conditions, controlled sample strain, and large electric and magnetic fields and currents. For example, in transition metal oxides, topological insulators, and graphene, unusual electronic, optical, magnetic, or mechanical properties emerge, such as colossal magneto-resistance (CMR), metal–insulator transitions (MITs), high-T C superconductivity, multiferroicity, and plasmon and phonon polaritons, with associated rich phase diagrams that are typically very sensitive to the above conditions. The interaction of charge, spin, orbital, and lattice degrees of freedom in correlated electron materials leads to frustration and degenerate ground states, with spatial PS over many orders of length scale. We discuss how the optical near-field response in s-SNOM allows for the systematic real space probing of multiple order parameters
我们物质世界的结构的特点是一个大层次的长度尺度,决定了材料的性质和功能。提高光学成像和光谱学的空间分辨率一直是人们长期以来的愿望,特别是提供与相分离,有序以及内在和外在结构不均匀性相关的介观现象的途径。近年来出现了光谱学与扫描探针显微镜相结合的一般概念,使光学成像的空间分辨率远远超出了衍射极限。扫描探针尖端的光学天线特性及其尖端与样品之间的局部近场耦合提供了几个纳米级的光学空间分辨率。由于成像机制在很大程度上与波长无关,这个概念基本上与任何形式的光谱学兼容,包括非线性和超快技术,在从太赫兹到极紫外的广泛频率范围内。在过去的十年里,这种纳米光学成像技术得到了快速发展,被称为尖端增强或散射扫描近场光学显微镜(s-SNOM)。它的适用性已被证明适用于广泛的材料的纳米级研究,包括生物分子、聚合物、等离子体、半导体和介电系统。我们对s-SNOM的发展、基本成像机制和不同实现进行了综述,并讨论了其在提供包括飞秒时空信息在内的纳米尺度光谱方面的潜力。我们讨论了可能的近场光谱实现,并基于金属红外德鲁德响应、纳米级阻抗、红外和拉曼振动光谱、声子拉曼纳米晶体学和非线性光学进行对比,以识别纳米级相分离(PS)、应变和铁有序。在应用方面,我们将重点放在相关和低维材料上,特别是s-SNOM在可变温度和低温、几乎任意大气条件、受控样品应变以及大电场和磁场和电流下的独特适用性。例如,在过渡金属氧化物、拓扑绝缘体和石墨烯中,出现了不寻常的电子、光学、磁性或机械性能,如巨磁电阻(CMR)、金属绝缘体跃迁(MITs)、高温度超导性、多铁性、等离子体和声子极化,以及对上述条件非常敏感的丰富相图。在相关电子材料中,电荷、自旋、轨道和晶格自由度的相互作用导致受挫和简并基态,具有多个数量级的空间PS。我们讨论了s-SNOM中的光学近场响应如何通过直接耦合材料中的电子、自旋、声子、光学和极化子共振,在广泛的内外刺激(应变、磁场、光掺杂等)下同时对多个阶参数进行系统的实空间探测。最后,我们展望了s-SNOM在纳米空间和飞秒时间分辨率下的多模态成像的未来扩展。
{"title":"Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids","authors":"J. Atkin, S. Berweger, Andrew C. Jones, M. Raschke","doi":"10.1080/00018732.2012.737982","DOIUrl":"https://doi.org/10.1080/00018732.2012.737982","url":null,"abstract":"The structure of our material world is characterized by a large hierarchy of length scales that determines material properties and functions. Increasing spatial resolution in optical imaging and spectroscopy has been a long standing desire, to provide access, in particular, to mesoscopic phenomena associated with phase separation, order, and intrinsic and extrinsic structural inhomogeneities. A general concept for the combination of optical spectroscopy with scanning probe microscopy emerged recently, extending the spatial resolution of optical imaging far beyond the diffraction limit. The optical antenna properties of a scanning probe tip and the local near-field coupling between its apex and a sample provide few-nanometer optical spatial resolution. With imaging mechanisms largely independent of wavelength, this concept is compatible with essentially any form of optical spectroscopy, including nonlinear and ultrafast techniques, over a wide frequency range from the terahertz to the extreme ultraviolet. The past 10 years have seen a rapid development of this nano-optical imaging technique, known as tip-enhanced or scattering-scanning near-field optical microscopy (s-SNOM). Its applicability has been demonstrated for the nano-scale investigation of a wide range of materials including biomolecular, polymer, plasmonic, semiconductor, and dielectric systems. We provide a general review of the development, fundamental imaging mechanisms, and different implementations of s-SNOM, and discuss its potential for providing nanoscale spectroscopic including femtosecond spatio-temporal information. We discuss possible near-field spectroscopic implementations, with contrast based on the metallic infrared Drude response, nano-scale impedance, infrared and Raman vibrational spectroscopy, phonon Raman nano-crystallography, and nonlinear optics to identify nanoscale phase separation (PS), strain, and ferroic order. With regard to applications, we focus on correlated and low-dimensional materials as examples that benefit, in particular, from the unique applicability of s-SNOM under variable and cryogenic temperatures, nearly arbitrary atmospheric conditions, controlled sample strain, and large electric and magnetic fields and currents. For example, in transition metal oxides, topological insulators, and graphene, unusual electronic, optical, magnetic, or mechanical properties emerge, such as colossal magneto-resistance (CMR), metal–insulator transitions (MITs), high-T C superconductivity, multiferroicity, and plasmon and phonon polaritons, with associated rich phase diagrams that are typically very sensitive to the above conditions. The interaction of charge, spin, orbital, and lattice degrees of freedom in correlated electron materials leads to frustration and degenerate ground states, with spatial PS over many orders of length scale. We discuss how the optical near-field response in s-SNOM allows for the systematic real space probing of multiple order parameters","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"61 1","pages":"745 - 842"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.737982","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 198
Hall effect in heavy fermion metals 重费米子金属中的霍尔效应
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2012-10-01 DOI: 10.1080/00018732.2012.730223
S. Nair, S. Wirth, S. Friedemann, F. Steglich, Q. Si, A. Schofield
The heavy fermion systems present a unique platform in which strong electronic correlations give rise to a host of novel, and often competing, electronic and magnetic ground states. Amongst a number of potential experimental tools at our disposal, measurements of the Hall effect have emerged as a particularly important one in discerning the nature and evolution of the Fermi surfaces of these enigmatic metals. In this article, we present a comprehensive review of Hall effect measurements in the heavy fermion materials, and examine the success it has had in contributing to our current understanding of strongly correlated matter. Particular emphasis is placed on its utility in the investigation of quantum critical phenomena which are thought to drive many of the exotic electronic ground states in these systems. This is achieved by the description of measurements of the Hall effect across the putative zero-temperature instability in the archetypal heavy fermion metal YbRh2Si2. Using the CeMIn5 (with M=Co, Ir) family of systems as a paradigm, the influence of (antiferro-)magnetic fluctuations on the Hall effect is also illustrated. This is compared to prior Hall effect measurements in the cuprates and other strongly correlated systems to emphasize on the generality of the unusual magnetotransport in materials with non-Fermi liquid behavior.
重费米子系统提供了一个独特的平台,在这个平台上,强电子相关性产生了许多新颖的、经常是相互竞争的电子和磁基态。在我们掌握的许多潜在的实验工具中,霍尔效应的测量已经成为识别这些神秘金属的费米表面的性质和演变的一个特别重要的工具。在本文中,我们对重费米子材料中的霍尔效应测量进行了全面的回顾,并检查了它在促进我们目前对强相关物质的理解方面取得的成功。特别强调的是它在研究量子临界现象中的效用,这些现象被认为是这些系统中许多奇异电子基态的驱动因素。这是通过描述在原型重费米子金属YbRh2Si2假定的零温度不稳定性中霍尔效应的测量来实现的。以CeMIn5 (M=Co, Ir)系为例,说明了(反铁)磁波动对霍尔效应的影响。这与先前在铜酸盐和其他强相关系统中的霍尔效应测量结果进行了比较,以强调具有非费米液体行为的材料中不寻常磁输运的普遍性。
{"title":"Hall effect in heavy fermion metals","authors":"S. Nair, S. Wirth, S. Friedemann, F. Steglich, Q. Si, A. Schofield","doi":"10.1080/00018732.2012.730223","DOIUrl":"https://doi.org/10.1080/00018732.2012.730223","url":null,"abstract":"The heavy fermion systems present a unique platform in which strong electronic correlations give rise to a host of novel, and often competing, electronic and magnetic ground states. Amongst a number of potential experimental tools at our disposal, measurements of the Hall effect have emerged as a particularly important one in discerning the nature and evolution of the Fermi surfaces of these enigmatic metals. In this article, we present a comprehensive review of Hall effect measurements in the heavy fermion materials, and examine the success it has had in contributing to our current understanding of strongly correlated matter. Particular emphasis is placed on its utility in the investigation of quantum critical phenomena which are thought to drive many of the exotic electronic ground states in these systems. This is achieved by the description of measurements of the Hall effect across the putative zero-temperature instability in the archetypal heavy fermion metal YbRh2Si2. Using the CeMIn5 (with M=Co, Ir) family of systems as a paradigm, the influence of (antiferro-)magnetic fluctuations on the Hall effect is also illustrated. This is compared to prior Hall effect measurements in the cuprates and other strongly correlated systems to emphasize on the generality of the unusual magnetotransport in materials with non-Fermi liquid behavior.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"11 1","pages":"583 - 664"},"PeriodicalIF":0.0,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.730223","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Electronic crystals: an experimental overview 电子晶体:实验综述
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2012-08-01 DOI: 10.1080/00018732.2012.719674
P. Monceau
This article reviews the static and dynamic properties of spontaneous superstructures formed by electrons. Representations of such electronic crystals are charge density waves (CDW) and spin density waves in inorganic as well as organic low-dimensional materials. A special attention is paid to the collective effects in pinning and sliding of these superstructures, and the glassy properties at low temperature. Charge order and charge disproportionation which occur in organic materials resulting from correlation effects are analysed. Experiments under magnetic field, and more specifically field-induced CDWs are discussed. Properties of meso- and nanostructures of CDWs are also reviewed.
本文综述了由电子形成的自发超结构的静态和动态性质。这种电子晶体的表征是无机和有机低维材料中的电荷密度波(CDW)和自旋密度波。特别注意了这些上层结构的钉住和滑动的集体效应,以及低温下的玻璃性质。分析了有机质中由于相关效应而产生的电荷顺序和电荷歧化现象。讨论了磁场下的实验,特别是场致cdw。综述了CDWs的介观和纳米结构的性质。
{"title":"Electronic crystals: an experimental overview","authors":"P. Monceau","doi":"10.1080/00018732.2012.719674","DOIUrl":"https://doi.org/10.1080/00018732.2012.719674","url":null,"abstract":"This article reviews the static and dynamic properties of spontaneous superstructures formed by electrons. Representations of such electronic crystals are charge density waves (CDW) and spin density waves in inorganic as well as organic low-dimensional materials. A special attention is paid to the collective effects in pinning and sliding of these superstructures, and the glassy properties at low temperature. Charge order and charge disproportionation which occur in organic materials resulting from correlation effects are analysed. Experiments under magnetic field, and more specifically field-induced CDWs are discussed. Properties of meso- and nanostructures of CDWs are also reviewed.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"61 1","pages":"325 - 581"},"PeriodicalIF":0.0,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.719674","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 348
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview 原子长度和扩散时间尺度上凝聚态动力学的相场晶体模型:综述
1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Pub Date : 2012-07-02 DOI: 10.1080/00018732.2012.737555
H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. Tóth, G. Tegze, L. Gránásy
Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.
本文综述了相场晶体(PFC)方法的基本概念及其应用,该方法是材料科学中原子尺度和微观尺度紧密耦合问题的最新模拟方法之一。PFC方法在原子长度和扩散时间尺度上运行,因此构成了分子模拟方法的计算效率替代方案。在埃尔德等人的工作之后,它在材料科学方面的激烈发展最近才开始。Rev. Lett. 88 (2002), p. 245701]。自这些初步研究以来,动态密度泛函理论和热力学概念已与PFC方法联系起来,作为后者的进一步理论基础。在这篇综述中,我们总结了这些方法的发展步骤以及PFC方法最重要的应用,特别关注了硬物质物理和软物质物理中发展步骤的相互作用。这样做,我们希望展示当今PFC建模的最新技术,以及在不久的将来,这种方法在物理和材料科学中可能仍然存在的潜力。
{"title":"Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview","authors":"H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. Tóth, G. Tegze, L. Gránásy","doi":"10.1080/00018732.2012.737555","DOIUrl":"https://doi.org/10.1080/00018732.2012.737555","url":null,"abstract":"Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"61 1","pages":"665 - 743"},"PeriodicalIF":0.0,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.737555","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 268
期刊
Advances in Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1