Pub Date : 2011-10-13DOI: 10.1080/00018732.2011.624266
A. Martín-Rodero, A. Levy Yeyati
In this article, we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements, although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single-level Anderson-type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of π-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states that characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
{"title":"Josephson and Andreev transport through quantum dots","authors":"A. Martín-Rodero, A. Levy Yeyati","doi":"10.1080/00018732.2011.624266","DOIUrl":"https://doi.org/10.1080/00018732.2011.624266","url":null,"abstract":"In this article, we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements, although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single-level Anderson-type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of π-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states that characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"899 - 958"},"PeriodicalIF":0.0,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.624266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-10-01DOI: 10.1080/00018732.2011.621320
Yang Wang, E. W. Plummer, K. Kempa
Plasma physics is a very mature field, studied extensively for well over a century. The cross-disciplinary field of plasmonics (electromagnetics of metallic nanostructures), on the other hand, with its potential for an extraordinary light control through novel class of materials and the resulting applications, has become very fashionable only recently. Inevitably, as a result of this rapid development, the deep connections with the mother discipline, the plasma physics, have sometimes been overlooked. The goal of this work is to review some of these basic connections, which are relevant, and ultimately helpful for researchers in the new field. We focus on the solid-state structured plasmas and address the issue of classical versus quantum treatments. We discuss the little known subtleties of the surface plasmons at metallic surfaces (e.g. multipole plasmons) and their consequences on plasmonics of the textured metallic films. Plasmonics of nanoparticles has been preceded by studies of plasma effects in metallic clusters and semiconducting quantum dots (QDs). In this context, we discuss the little known connection between the Mie resonance in metallic particles and the collective resonance in wide parabolic quantum wells (QWs) and QDs. Researchers dealing with plasmonics of thin films can benefit from earlier studies of plasmons in the semiconductor modulation doped heterojunctions and QWs, with its rich spectrum of intersubband and two-dimensional plasmons. In non-equilibrium plasmonic systems, generation of plasmons can be stimulated, leading to the exciting possibility of the plasmon instability. Extraordinarily complex is the plasmonics of carbon nanotubes and graphene, with its numerous van Hove, one- and three-dimensional plasmons, and we discuss how the plasmonics of metamaterials can benefit from this complexity. Finally, we discuss a few applications, which could directly benefit from plasmonics, including medical and the novel class of solar cells.
{"title":"Foundations of Plasmonics","authors":"Yang Wang, E. W. Plummer, K. Kempa","doi":"10.1080/00018732.2011.621320","DOIUrl":"https://doi.org/10.1080/00018732.2011.621320","url":null,"abstract":"Plasma physics is a very mature field, studied extensively for well over a century. The cross-disciplinary field of plasmonics (electromagnetics of metallic nanostructures), on the other hand, with its potential for an extraordinary light control through novel class of materials and the resulting applications, has become very fashionable only recently. Inevitably, as a result of this rapid development, the deep connections with the mother discipline, the plasma physics, have sometimes been overlooked. The goal of this work is to review some of these basic connections, which are relevant, and ultimately helpful for researchers in the new field. We focus on the solid-state structured plasmas and address the issue of classical versus quantum treatments. We discuss the little known subtleties of the surface plasmons at metallic surfaces (e.g. multipole plasmons) and their consequences on plasmonics of the textured metallic films. Plasmonics of nanoparticles has been preceded by studies of plasma effects in metallic clusters and semiconducting quantum dots (QDs). In this context, we discuss the little known connection between the Mie resonance in metallic particles and the collective resonance in wide parabolic quantum wells (QWs) and QDs. Researchers dealing with plasmonics of thin films can benefit from earlier studies of plasmons in the semiconductor modulation doped heterojunctions and QWs, with its rich spectrum of intersubband and two-dimensional plasmons. In non-equilibrium plasmonic systems, generation of plasmons can be stimulated, leading to the exciting possibility of the plasmon instability. Extraordinarily complex is the plasmonics of carbon nanotubes and graphene, with its numerous van Hove, one- and three-dimensional plasmons, and we discuss how the plasmonics of metamaterials can benefit from this complexity. Finally, we discuss a few applications, which could directly benefit from plasmonics, including medical and the novel class of solar cells.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"799 - 898"},"PeriodicalIF":0.0,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.621320","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-08-01DOI: 10.1080/00018732.2011.599963
Y. Lan, Yang Wang, Z. Ren
Ever since the discovery of carbon nanotubes (CNTs) by Iijima in 1991, there have been extensive research efforts on their synthesis, physics, electronics, chemistry, and applications due to the fact that CNTs were predicted to have extraordinary physical, mechanical, chemical, optical, and electronic properties. Among the various forms of CNTs, single-walled and multi-walled, random and aligned, semiconducting and metallic, aligned CNTs are especially important since fundamental physics studies and many important applications will not be possible without alignment. Even though there have been significant endeavors on growing CNTs in an aligned configuration since their discovery, little success had been realized before our first report on growing individually aligned CNTs on various substrates by plasma-enhanced chemical vapor deposition (PECVD) [Science 282 (1998) 1105–1108]. Our report spearheaded a new field on growth, characterization, physics, and applications of aligned CNTs. Up to now, there have been thousands of scientific publications on synthesizing, studying, and utilizing aligned CNTs in various aspects. In this communication, we review the current status of aligned CNTs, the physics for their alignment, their applications in field emission, optical antennas, subwavelength light transmission in CNT-based nanocoax structures, nanocoax arrays for novel solar cell structures, etc. The focus of this review is to examine various aligned CNT systems, either as an individual or as an array, either the orientation is vertical, parallel, or at other angles to the substrate horizon, either the CNT core structures are mostly hollow channels or are composed of complex compartments. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications whereas current limitations and challenges will also be discussed to lay down the foundation for future developments.
{"title":"Physics and applications of aligned carbon nanotubes","authors":"Y. Lan, Yang Wang, Z. Ren","doi":"10.1080/00018732.2011.599963","DOIUrl":"https://doi.org/10.1080/00018732.2011.599963","url":null,"abstract":"Ever since the discovery of carbon nanotubes (CNTs) by Iijima in 1991, there have been extensive research efforts on their synthesis, physics, electronics, chemistry, and applications due to the fact that CNTs were predicted to have extraordinary physical, mechanical, chemical, optical, and electronic properties. Among the various forms of CNTs, single-walled and multi-walled, random and aligned, semiconducting and metallic, aligned CNTs are especially important since fundamental physics studies and many important applications will not be possible without alignment. Even though there have been significant endeavors on growing CNTs in an aligned configuration since their discovery, little success had been realized before our first report on growing individually aligned CNTs on various substrates by plasma-enhanced chemical vapor deposition (PECVD) [Science 282 (1998) 1105–1108]. Our report spearheaded a new field on growth, characterization, physics, and applications of aligned CNTs. Up to now, there have been thousands of scientific publications on synthesizing, studying, and utilizing aligned CNTs in various aspects. In this communication, we review the current status of aligned CNTs, the physics for their alignment, their applications in field emission, optical antennas, subwavelength light transmission in CNT-based nanocoax structures, nanocoax arrays for novel solar cell structures, etc. The focus of this review is to examine various aligned CNT systems, either as an individual or as an array, either the orientation is vertical, parallel, or at other angles to the substrate horizon, either the CNT core structures are mostly hollow channels or are composed of complex compartments. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications whereas current limitations and challenges will also be discussed to lay down the foundation for future developments.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"553 - 678"},"PeriodicalIF":0.0,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.599963","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-07-11DOI: 10.1080/00018732.2011.598293
D. Sherrington
{"title":"Advancing in Physics","authors":"D. Sherrington","doi":"10.1080/00018732.2011.598293","DOIUrl":"https://doi.org/10.1080/00018732.2011.598293","url":null,"abstract":"","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"551 - 552"},"PeriodicalIF":0.0,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.598293","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-06-01DOI: 10.1080/00018732.2011.582251
R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. Dresselhaus
This paper reviews progress that has been made in the use of Raman spectroscopy to study graphene and carbon nanotubes. These are two nanostructured forms of sp2 carbon materials that are of major current interest. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. This review focuses on each of these materials systems individually and comparatively as prototype examples of nanostructured materials. In particular, this paper discusses the power of Raman spectroscopy as a probe and a characterization tool for sp2 carbon materials, with particular emphasis given to the field of photophysics. Some coverage is also given to the close relatives of these sp2 carbon materials, namely graphite, a three-dimensional (3D) material based on the AB stacking of individual graphene layers, and carbon nanoribbons, which are one-dimensional (1D) planar structures, where the width of the ribbon is on the nanometer length scale. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends.
{"title":"Raman spectroscopy of graphene and carbon nanotubes","authors":"R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. Dresselhaus","doi":"10.1080/00018732.2011.582251","DOIUrl":"https://doi.org/10.1080/00018732.2011.582251","url":null,"abstract":"This paper reviews progress that has been made in the use of Raman spectroscopy to study graphene and carbon nanotubes. These are two nanostructured forms of sp2 carbon materials that are of major current interest. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. This review focuses on each of these materials systems individually and comparatively as prototype examples of nanostructured materials. In particular, this paper discusses the power of Raman spectroscopy as a probe and a characterization tool for sp2 carbon materials, with particular emphasis given to the field of photophysics. Some coverage is also given to the close relatives of these sp2 carbon materials, namely graphite, a three-dimensional (3D) material based on the AB stacking of individual graphene layers, and carbon nanoribbons, which are one-dimensional (1D) planar structures, where the width of the ribbon is on the nanometer length scale. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"413 - 550"},"PeriodicalIF":0.0,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.582251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-03-25DOI: 10.1080/00018732.2011.555385
R. Cowley, S. Gvasaliya, S. Lushnikov, B. Roessli, G. Rotaru
Relaxor ferroelectrics were discovered in the 1950s but many of their properties are not understood. In this review, we shall concentrate on materials such as PMN (PbMg1/3Nb2/3O3), which crystallize in the cubic perovskite structure but with the Mg ion, charge 2+, and the Nb ion, charge 5+, randomly distributed over the B site of the perovskite structure. The peak of the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferroelectrics, while below the maximum of the susceptibility most relaxors remain cubic and show no electric polarization, unlike that observed for conventional ferroelectrics. Because of the large width of the susceptibility, relaxors are often used as capacitors. Recently, there have been many X-ray and neutron scattering studies of relaxors and the results have enabled a more detailed picture to be obtained. An important conclusion is that relaxors can exist in a random field state, as initially proposed by Westphal, Kleemann and Glinchuk, similar to that which has been studied for diluted antiferromagnets. If a relaxor is cooled from a high temperature, then the Burns temperature is a measure of when slow fluctuations become evident. These fluctuations are connected with the disorder and are known as nano-domains. The Burns temperature is not a well-defined transition temperature. At a lower temperature, there is a well-defined boundary to a so-called random field state when the nano-domains become static but there is no long-range periodic order. This phase may have both history-dependent properties and a skin effect in which the surface of the sample is different from that of the bulk material, as also found in experiments on magnetic systems. Section 1 is an introduction to the review, to ferroelectricity and to relaxors. Section 2 gives a description of the results obtained by dielectric, optical, specific heat and other macroscopic properties. These long-wavelength properties give a variety of different characteristic temperatures and do not directly probe the random field state. In Section 3, we describe the results of neutron and X-ray scattering and show that they strongly support the interpretation that relaxors have a random field state. In Section 4, we briefly describe the results for other relaxor systems such as (PMN)1−x (PT) x for which PMN is mixed with different amounts of the ferroelectric lead titanate (PT), and we show that the existence of a random field state enables us also to describe the experimental results for these mixed materials. We hope that this review will inspire further theoretical and experimental work to understand the nature of the random field states and to compare the experimental results more satisfactorily with theory.
{"title":"Relaxing with relaxors: a review of relaxor ferroelectrics","authors":"R. Cowley, S. Gvasaliya, S. Lushnikov, B. Roessli, G. Rotaru","doi":"10.1080/00018732.2011.555385","DOIUrl":"https://doi.org/10.1080/00018732.2011.555385","url":null,"abstract":"Relaxor ferroelectrics were discovered in the 1950s but many of their properties are not understood. In this review, we shall concentrate on materials such as PMN (PbMg1/3Nb2/3O3), which crystallize in the cubic perovskite structure but with the Mg ion, charge 2+, and the Nb ion, charge 5+, randomly distributed over the B site of the perovskite structure. The peak of the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferroelectrics, while below the maximum of the susceptibility most relaxors remain cubic and show no electric polarization, unlike that observed for conventional ferroelectrics. Because of the large width of the susceptibility, relaxors are often used as capacitors. Recently, there have been many X-ray and neutron scattering studies of relaxors and the results have enabled a more detailed picture to be obtained. An important conclusion is that relaxors can exist in a random field state, as initially proposed by Westphal, Kleemann and Glinchuk, similar to that which has been studied for diluted antiferromagnets. If a relaxor is cooled from a high temperature, then the Burns temperature is a measure of when slow fluctuations become evident. These fluctuations are connected with the disorder and are known as nano-domains. The Burns temperature is not a well-defined transition temperature. At a lower temperature, there is a well-defined boundary to a so-called random field state when the nano-domains become static but there is no long-range periodic order. This phase may have both history-dependent properties and a skin effect in which the surface of the sample is different from that of the bulk material, as also found in experiments on magnetic systems. Section 1 is an introduction to the review, to ferroelectricity and to relaxors. Section 2 gives a description of the results obtained by dielectric, optical, specific heat and other macroscopic properties. These long-wavelength properties give a variety of different characteristic temperatures and do not directly probe the random field state. In Section 3, we describe the results of neutron and X-ray scattering and show that they strongly support the interpretation that relaxors have a random field state. In Section 4, we briefly describe the results for other relaxor systems such as (PMN)1−x (PT) x for which PMN is mixed with different amounts of the ferroelectric lead titanate (PT), and we show that the existence of a random field state enables us also to describe the experimental results for these mixed materials. We hope that this review will inspire further theoretical and experimental work to understand the nature of the random field states and to compare the experimental results more satisfactorily with theory.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"30 1","pages":"229 - 327"},"PeriodicalIF":0.0,"publicationDate":"2011-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.555385","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-03-14DOI: 10.1080/00018732.2011.619814
E. Cobanera, G. Ortiz, Z. Nussinov
An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.
{"title":"The bond-algebraic approach to dualities","authors":"E. Cobanera, G. Ortiz, Z. Nussinov","doi":"10.1080/00018732.2011.619814","DOIUrl":"https://doi.org/10.1080/00018732.2011.619814","url":null,"abstract":"An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"679 - 798"},"PeriodicalIF":0.0,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.619814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-06DOI: 10.1080/00018732.2010.534865
M. Bibes, J. Villegas, A. Barthélémy
Oxides have become a key ingredient for new concepts of electronic devices. To a large extent, this is due to the profusion of new physics and novel functionalities arising from ultrathin oxide films and at oxide interfaces. We present here a perspective on selected topics within this vast field and focus on two main issues. The first part of this review is dedicated to the use of ultrathin films of insulating oxides as barriers for tunnel junctions. In addition to dielectric non-magnetic epitaxial barriers, which can produce tunneling magnetoresistances in excess of a few hundred percent, we pay special attention to the possibility of exploiting the multifunctional character of some oxides in order to realize ‘active’ tunnel barriers. In these, the conductance across the barrier is not only controlled by the bias voltage and/or the electrodes magnetic state, but also depends on the barrier ferroic state. Some examples include spin-filtering effects using ferro- and ferrimagnetic oxides, and the possibility of realizing hysteretic, multi-state junctions using ferroelectric barriers. The second part of this review is devoted to novel states appearing at oxide interfaces. Often completely different from those of the corresponding bulk materials, they bring about novel functionalities to be exploited in spintronics and electronics architectures. We review the main mechanisms responsible for these new properties (such as magnetic coupling, charge transfer and proximity effects) and summarize some of the most paradigmatic phenomena. These include the formation of high-mobility two-dimensional electron gases at the interface between insulators, the emergence of superconductivity (or ferromagnetism) at the interface between non-superconducting (or non-ferromagnetic) materials, the observation of magnetoelectric effects at magnetic/ferroelectric interfaces or the effects of the interplay and competing interactions at all-oxide ferromagnetic/superconducting interfaces. Finally, we link up the two reviewed research fields and emphasize that the tunneling geometry is particularly suited to probe novel interface effects at oxide barrier/electrode interfaces. We close by giving some directions toward tunneling devices exploiting novel oxide interfacial phenomena.
{"title":"Ultrathin oxide films and interfaces for electronics and spintronics","authors":"M. Bibes, J. Villegas, A. Barthélémy","doi":"10.1080/00018732.2010.534865","DOIUrl":"https://doi.org/10.1080/00018732.2010.534865","url":null,"abstract":"Oxides have become a key ingredient for new concepts of electronic devices. To a large extent, this is due to the profusion of new physics and novel functionalities arising from ultrathin oxide films and at oxide interfaces. We present here a perspective on selected topics within this vast field and focus on two main issues. The first part of this review is dedicated to the use of ultrathin films of insulating oxides as barriers for tunnel junctions. In addition to dielectric non-magnetic epitaxial barriers, which can produce tunneling magnetoresistances in excess of a few hundred percent, we pay special attention to the possibility of exploiting the multifunctional character of some oxides in order to realize ‘active’ tunnel barriers. In these, the conductance across the barrier is not only controlled by the bias voltage and/or the electrodes magnetic state, but also depends on the barrier ferroic state. Some examples include spin-filtering effects using ferro- and ferrimagnetic oxides, and the possibility of realizing hysteretic, multi-state junctions using ferroelectric barriers. The second part of this review is devoted to novel states appearing at oxide interfaces. Often completely different from those of the corresponding bulk materials, they bring about novel functionalities to be exploited in spintronics and electronics architectures. We review the main mechanisms responsible for these new properties (such as magnetic coupling, charge transfer and proximity effects) and summarize some of the most paradigmatic phenomena. These include the formation of high-mobility two-dimensional electron gases at the interface between insulators, the emergence of superconductivity (or ferromagnetism) at the interface between non-superconducting (or non-ferromagnetic) materials, the observation of magnetoelectric effects at magnetic/ferroelectric interfaces or the effects of the interplay and competing interactions at all-oxide ferromagnetic/superconducting interfaces. Finally, we link up the two reviewed research fields and emphasize that the tunneling geometry is particularly suited to probe novel interface effects at oxide barrier/electrode interfaces. We close by giving some directions toward tunneling devices exploiting novel oxide interfacial phenomena.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"5 - 84"},"PeriodicalIF":0.0,"publicationDate":"2011-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2010.534865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-06DOI: 10.1080/00018732.2011.534868
D. Sherrington
{"title":"Diamond Anniversary of Advances in Physics","authors":"D. Sherrington","doi":"10.1080/00018732.2011.534868","DOIUrl":"https://doi.org/10.1080/00018732.2011.534868","url":null,"abstract":"","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"1 - 3"},"PeriodicalIF":0.0,"publicationDate":"2011-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.534868","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58773175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}