Pub Date : 2023-01-01Epub Date: 2022-10-06DOI: 10.1080/23746149.2022.2125342
Mina Aleksanyan, Hammad A Faizi, Maria-Anna Kirmpaki, Petia M Vlahovska, Karin A Riske, Rumiana Dimova
Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis.
{"title":"Assessing membrane material properties from the response of giant unilamellar vesicles to electric fields.","authors":"Mina Aleksanyan, Hammad A Faizi, Maria-Anna Kirmpaki, Petia M Vlahovska, Karin A Riske, Rumiana Dimova","doi":"10.1080/23746149.2022.2125342","DOIUrl":"10.1080/23746149.2022.2125342","url":null,"abstract":"<p><p>Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis.</p>","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"8 1","pages":""},"PeriodicalIF":7.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33496735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/23746149.2022.2161936
E. Collet, G. Azzolina, J. Jeftić, M. Lemée-Cailleau
ABSTRACT Spin-crossover (SCO) materials exhibit thermal conversion from low to high-spin states. We review different models developed to describe this entropy-driven process and the occurrence of cooperative conversions resulting from elastic interactions. There is a growing number of SCO materials exhibiting unusual thermal conversions when symmetry breaking occurs. To illustrate the importance of considering both phenomena, we review studies of the prototype [Fe(ptz)6](BF4)2 system, exhibiting at atmospheric pressure a single step thermal transition with hysteresis, where a ferroelastic distortion occurs from the high-spin high-symmetry (HShs) phase, towards the low-spin low-symmetry (LSls) phase. Under pressure, sequential conversions occur on cooling from the HShs phase towards a high-spin low-symmetry (HSls) phase, followed by a spin crossover towards the LSls phase. In addition, a metastable low-spin high-symmetry (LShs) state forms upon fast cooling. We revisit this coupling and decoupling of spin crossover and ferroelastic phase transition through the Landau theory model adapted by Collet, which provides qualitative agreement with the experimental data, such as the phase diagram and the evolution of spin transition curves or lattice deformations under pressure. This Ferroelastic Instability coupled to Spin Crossover (FISCO) approach should be generalized to many materials undergoing coupled spin transition and symmetry breaking. GraphicalAbstract
{"title":"Coupled spin cross-over and ferroelasticity: revisiting the prototype [Fe(ptz)6](BF4)2 material","authors":"E. Collet, G. Azzolina, J. Jeftić, M. Lemée-Cailleau","doi":"10.1080/23746149.2022.2161936","DOIUrl":"https://doi.org/10.1080/23746149.2022.2161936","url":null,"abstract":"ABSTRACT Spin-crossover (SCO) materials exhibit thermal conversion from low to high-spin states. We review different models developed to describe this entropy-driven process and the occurrence of cooperative conversions resulting from elastic interactions. There is a growing number of SCO materials exhibiting unusual thermal conversions when symmetry breaking occurs. To illustrate the importance of considering both phenomena, we review studies of the prototype [Fe(ptz)6](BF4)2 system, exhibiting at atmospheric pressure a single step thermal transition with hysteresis, where a ferroelastic distortion occurs from the high-spin high-symmetry (HShs) phase, towards the low-spin low-symmetry (LSls) phase. Under pressure, sequential conversions occur on cooling from the HShs phase towards a high-spin low-symmetry (HSls) phase, followed by a spin crossover towards the LSls phase. In addition, a metastable low-spin high-symmetry (LShs) state forms upon fast cooling. We revisit this coupling and decoupling of spin crossover and ferroelastic phase transition through the Landau theory model adapted by Collet, which provides qualitative agreement with the experimental data, such as the phase diagram and the evolution of spin transition curves or lattice deformations under pressure. This Ferroelastic Instability coupled to Spin Crossover (FISCO) approach should be generalized to many materials undergoing coupled spin transition and symmetry breaking. GraphicalAbstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46692336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.1080/23746149.2022.2126796
Asami Odate, A. Kirrander, P. Weber, M. Minitti
ABSTRACT Advances in FEL technologies have contributed remarkably to various scientific fields over the past decade, and ultrafast molecular dynamics is no exception. The ability to probe motions of the molecule via scattering provides uniquely direct structural information, which, when combined with traditional spectroscopic techniques of comparable temporal resolution, paints a holistic movie of the molecular dynamics. This review aims to provide an introduction to the ultrafast scattering of gas-phase molecules, and to identify the key results and technological breakthroughs that advance our acquaintance of ultrafast molecular dynamics, with a particular focus on the achievements in ultrafast molecular dynamics since the first generation of FEL facilities. We present a brief history of gas-phase ultrafast scattering and the fundamentals of electron- and x-ray scattering, highlighting the complementarity, differences, and bottlenecks of the two experimental scattering methods. We then consider key upgrades in XRS and UED experiments that facilitated the unprecedented spatiotemporal resolution that enabled many of the notable results in the field. Finally, we examine anticipated facility upgrades that address the demand for experimental versatility and enable further developments and exploration. Graphical Abstract
{"title":"Brighter, faster, stronger: ultrafast scattering of free molecules","authors":"Asami Odate, A. Kirrander, P. Weber, M. Minitti","doi":"10.1080/23746149.2022.2126796","DOIUrl":"https://doi.org/10.1080/23746149.2022.2126796","url":null,"abstract":"ABSTRACT Advances in FEL technologies have contributed remarkably to various scientific fields over the past decade, and ultrafast molecular dynamics is no exception. The ability to probe motions of the molecule via scattering provides uniquely direct structural information, which, when combined with traditional spectroscopic techniques of comparable temporal resolution, paints a holistic movie of the molecular dynamics. This review aims to provide an introduction to the ultrafast scattering of gas-phase molecules, and to identify the key results and technological breakthroughs that advance our acquaintance of ultrafast molecular dynamics, with a particular focus on the achievements in ultrafast molecular dynamics since the first generation of FEL facilities. We present a brief history of gas-phase ultrafast scattering and the fundamentals of electron- and x-ray scattering, highlighting the complementarity, differences, and bottlenecks of the two experimental scattering methods. We then consider key upgrades in XRS and UED experiments that facilitated the unprecedented spatiotemporal resolution that enabled many of the notable results in the field. Finally, we examine anticipated facility upgrades that address the demand for experimental versatility and enable further developments and exploration. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47979594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-11DOI: 10.1080/23746149.2022.2153625
O. Lopez-Acevedo, D. Sucerquia
ABSTRACT A QM/MM method is an atomistic simulation algorithm that allows researchers to describe different regions of a system with different physical laws. Here, we review this hybrid method’s applications to the study of copper, silver, and gold atoms and clusters interacting with biological and organic molecules. In particular, we highlight efforts to characterize the relaxation process in a copper(I) phenanthroline complex; details of Cu’s secretory path; the atomic structure of Ag-homopolymers of cytosine and guanine; DNA-stabilized silver clusters; effects related to temperature and solvent on thiolate-protected gold clusters’ optical properties; and the effect of a medium-like noble gas on a cluster’s optical spectrum. The results of these efforts demonstrate how QM/MM methods are applied successfully to a wide range of processes that include the study of excited state evolution, charge transport, light absorption, and emission, and determining an atomic structure in the absence of crystal-determined structure. We expect QM/MM methods will continue supporting the exploration of novel hybrid organo-metallic materials and their safe use in the environment, while also providing guidance on mechanisms to deal with diseases associated with a failure in cells’ proper behavior. Graphical Abstract
{"title":"QM/MM methods in studies of coinage metals: copper, silver, and gold interacting with biological and organic molecules","authors":"O. Lopez-Acevedo, D. Sucerquia","doi":"10.1080/23746149.2022.2153625","DOIUrl":"https://doi.org/10.1080/23746149.2022.2153625","url":null,"abstract":"ABSTRACT A QM/MM method is an atomistic simulation algorithm that allows researchers to describe different regions of a system with different physical laws. Here, we review this hybrid method’s applications to the study of copper, silver, and gold atoms and clusters interacting with biological and organic molecules. In particular, we highlight efforts to characterize the relaxation process in a copper(I) phenanthroline complex; details of Cu’s secretory path; the atomic structure of Ag-homopolymers of cytosine and guanine; DNA-stabilized silver clusters; effects related to temperature and solvent on thiolate-protected gold clusters’ optical properties; and the effect of a medium-like noble gas on a cluster’s optical spectrum. The results of these efforts demonstrate how QM/MM methods are applied successfully to a wide range of processes that include the study of excited state evolution, charge transport, light absorption, and emission, and determining an atomic structure in the absence of crystal-determined structure. We expect QM/MM methods will continue supporting the exploration of novel hybrid organo-metallic materials and their safe use in the environment, while also providing guidance on mechanisms to deal with diseases associated with a failure in cells’ proper behavior. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43902317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-07DOI: 10.1080/23746149.2022.2153624
Muhammad Saif ur Rahman, Jiaen Wu, Hao Chen, Chengmei Sun, Ying Liu, Shanshan Xu
ABSTRACT Cancer tissues are a heterogeneously multifaceted assembly. Understanding the relationship of tumors with their microenvironment is also required to understand the tumor progression and metastasis better. Like tumors, the tumor microenvironment (TME) is heterogeneous, offering numerous mechanobiological, mechanochemical, and mechanophysical cues. Biomaterials impersonating extracellular matrix (ECM) properties must provide the mechanical cues cells get from their 3D extracellular environment. Pore size is one imperative yet less studied ECM factor implicated in the invasion and migration of the tumor. Several techniques are used to control the pore size of biomaterials constructed for a distinct tissue. Electrospinning is one of the most steadfast techniques for producing scaffolds with the preferred pore size. A comprehensive interpretation of ECM pore size would contribute toward a better understanding of the reciprocal interaction between pore size and tumor progression and can be used as a promising target for cancer treatments. In this review, we abridged the knowledge pertaining to (1) ECM and pore size, (2) the importance of pore size and its interplay with cancer, and (3) current advancement in the field of biomaterials to study pore size. Overall, this review will cover the effect of pore size on tumor cell behavior concerning electrospinning. ABSTRACT
{"title":"Matrix mechanophysical factor: pore size governs the cell behavior in cancer","authors":"Muhammad Saif ur Rahman, Jiaen Wu, Hao Chen, Chengmei Sun, Ying Liu, Shanshan Xu","doi":"10.1080/23746149.2022.2153624","DOIUrl":"https://doi.org/10.1080/23746149.2022.2153624","url":null,"abstract":"ABSTRACT Cancer tissues are a heterogeneously multifaceted assembly. Understanding the relationship of tumors with their microenvironment is also required to understand the tumor progression and metastasis better. Like tumors, the tumor microenvironment (TME) is heterogeneous, offering numerous mechanobiological, mechanochemical, and mechanophysical cues. Biomaterials impersonating extracellular matrix (ECM) properties must provide the mechanical cues cells get from their 3D extracellular environment. Pore size is one imperative yet less studied ECM factor implicated in the invasion and migration of the tumor. Several techniques are used to control the pore size of biomaterials constructed for a distinct tissue. Electrospinning is one of the most steadfast techniques for producing scaffolds with the preferred pore size. A comprehensive interpretation of ECM pore size would contribute toward a better understanding of the reciprocal interaction between pore size and tumor progression and can be used as a promising target for cancer treatments. In this review, we abridged the knowledge pertaining to (1) ECM and pore size, (2) the importance of pore size and its interplay with cancer, and (3) current advancement in the field of biomaterials to study pore size. Overall, this review will cover the effect of pore size on tumor cell behavior concerning electrospinning. ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44829855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-07DOI: 10.1080/23746149.2022.2153626
Chong Sheng, Shining Zhu, Hui Liu
ABSTRACT Transformation optics have been an essential paradigm to manipulate electromagnetic waves on the subwavelength scale and have brought various functional photonic architectures into integrated photonic chips. On the other hand, in the spirit of analogical thinking, classical and quantum simulations of general relativity have been extensively studied in diverse physical systems. In this review, we summarize recent advances in analogical gravitation based on integrated photonic chips with the aid of transformation optics. Meanwhile, different types of transformation optical structures, such as gradient waveguides, metasurface waveguides, waveguides on curved space and gradient waveguide arrays, emulating a variety of phenomena in curved space are reviewed, including the gravitational lensing of black holes, Einstein rings, cosmic strings, the particle pair evolution near the event horizon and so on. Furthermore, perspectives for the study of analogical gravitation based on integrated photonic chips are discussed. Graphical Abstract
{"title":"Optical simulation of various phenomena in curved space on photonic chips","authors":"Chong Sheng, Shining Zhu, Hui Liu","doi":"10.1080/23746149.2022.2153626","DOIUrl":"https://doi.org/10.1080/23746149.2022.2153626","url":null,"abstract":"ABSTRACT Transformation optics have been an essential paradigm to manipulate electromagnetic waves on the subwavelength scale and have brought various functional photonic architectures into integrated photonic chips. On the other hand, in the spirit of analogical thinking, classical and quantum simulations of general relativity have been extensively studied in diverse physical systems. In this review, we summarize recent advances in analogical gravitation based on integrated photonic chips with the aid of transformation optics. Meanwhile, different types of transformation optical structures, such as gradient waveguides, metasurface waveguides, waveguides on curved space and gradient waveguide arrays, emulating a variety of phenomena in curved space are reviewed, including the gravitational lensing of black holes, Einstein rings, cosmic strings, the particle pair evolution near the event horizon and so on. Furthermore, perspectives for the study of analogical gravitation based on integrated photonic chips are discussed. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"1 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41659022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-11DOI: 10.1080/23746149.2022.2134051
M Sacchi, A Tamtögl
The interaction of water and surfaces, at molecular level, is of critical importance for understanding processes such as corrosion, friction, catalysis and mass transport. The significant literature on interactions with single crystal metal surfaces should not obscure unknowns in the unique behaviour of ice and the complex relationships between adsorption, diffusion and long-range inter-molecular interactions. Even less is known about the atomic-scale behaviour of water on novel, non-metallic interfaces, in particular on graphene and other 2D materials. In this manuscript, we review recent progress in the characterisation of water adsorption on 2D materials, with a focus on the nano-material graphene and graphitic nanostructures; materials which are of paramount importance for separation technologies, electrochemistry and catalysis, to name a few. The adsorption of water on graphene has also become one of the benchmark systems for modern computational methods, in particular dispersion-corrected density functional theory (DFT). We then review recent experimental and theoretical advances in studying the single-molecular motion of water at surfaces, with a special emphasis on scattering approaches as they allow an unparalleled window of observation to water surface motion, including diffusion, vibration and self-assembly.
{"title":"Water adsorption and dynamics on graphene and other 2D materials: Computational and experimental advances.","authors":"M Sacchi, A Tamtögl","doi":"10.1080/23746149.2022.2134051","DOIUrl":"https://doi.org/10.1080/23746149.2022.2134051","url":null,"abstract":"<p><p>The interaction of water and surfaces, at molecular level, is of critical importance for understanding processes such as corrosion, friction, catalysis and mass transport. The significant literature on interactions with single crystal metal surfaces should not obscure unknowns in the unique behaviour of ice and the complex relationships between adsorption, diffusion and long-range inter-molecular interactions. Even less is known about the atomic-scale behaviour of water on novel, non-metallic interfaces, in particular on graphene and other 2D materials. In this manuscript, we review recent progress in the characterisation of water adsorption on 2D materials, with a focus on the nano-material graphene and graphitic nanostructures; materials which are of paramount importance for separation technologies, electrochemistry and catalysis, to name a few. The adsorption of water on graphene has also become one of the benchmark systems for modern computational methods, in particular dispersion-corrected density functional theory (DFT). We then review recent experimental and theoretical advances in studying the single-molecular motion of water at surfaces, with a special emphasis on scattering approaches as they allow an unparalleled window of observation to water surface motion, including diffusion, vibration and self-assembly.</p>","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"8 1","pages":"2134051"},"PeriodicalIF":6.0,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9329386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-13DOI: 10.1080/23746149.2022.2132182
D. Rolles
ABSTRACT Over the last 20 years, XUV and X-ray free-electron lasers have enabled a wide variety of time-resolved experiments that have dramatically advanced our understanding of ultrafast molecular dynamics on atomic length scales and femtosecond time scales. This review focuses on experimental studies of ultrafast dynamics of atoms and molecules in the gas phase, tracing the development of the field from early proof-of-principle studies to recent pump-probe experiments that elucidate the coupled electronic and nuclear dynamics during photochemical reactions with a temporal resolution that is now extending into the attosecond domain. Graphical abstract
{"title":"Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers","authors":"D. Rolles","doi":"10.1080/23746149.2022.2132182","DOIUrl":"https://doi.org/10.1080/23746149.2022.2132182","url":null,"abstract":"ABSTRACT Over the last 20 years, XUV and X-ray free-electron lasers have enabled a wide variety of time-resolved experiments that have dramatically advanced our understanding of ultrafast molecular dynamics on atomic length scales and femtosecond time scales. This review focuses on experimental studies of ultrafast dynamics of atoms and molecules in the gas phase, tracing the development of the field from early proof-of-principle studies to recent pump-probe experiments that elucidate the coupled electronic and nuclear dynamics during photochemical reactions with a temporal resolution that is now extending into the attosecond domain. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46137900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-04DOI: 10.1080/23746149.2022.2137433
X. Lai, C. Xia, Renxin Xu
Our world is wonderful because of the normal but negligibly small baryonic part (i.e., atoms) although unknown dark matter and dark energy dominate the Universe. A stable atomic nucleus could be simply termed as ``strong matter'' since its nature is dominated by the fundamental strong interaction. Is there any other form of strong matter? Although nuclei are composed of 2-flavoured (i.e., up and down flavours of valence quarks) nucleons, it is conjectured that bulk strong matter could be 3-flavoured (with additional strange quarks) if the baryon number exceeds the critical value, $A_{rm c}$, in which case quarks could be either free (so-called strange quark matter) or localized (in strangeons, coined by combining ``strange nucleon''). Bulk strong matter could be manifested in the form of compact stars, cosmic rays, and even dark matter. This trinity will be explained in this brief review, that may impact dramatically on today's physics, particularly in the era of multi-messenger astronomy after the discovery of gravitational wave.
{"title":"Bulk strong matter: the trinity","authors":"X. Lai, C. Xia, Renxin Xu","doi":"10.1080/23746149.2022.2137433","DOIUrl":"https://doi.org/10.1080/23746149.2022.2137433","url":null,"abstract":"Our world is wonderful because of the normal but negligibly small baryonic part (i.e., atoms) although unknown dark matter and dark energy dominate the Universe. A stable atomic nucleus could be simply termed as ``strong matter'' since its nature is dominated by the fundamental strong interaction. Is there any other form of strong matter? Although nuclei are composed of 2-flavoured (i.e., up and down flavours of valence quarks) nucleons, it is conjectured that bulk strong matter could be 3-flavoured (with additional strange quarks) if the baryon number exceeds the critical value, $A_{rm c}$, in which case quarks could be either free (so-called strange quark matter) or localized (in strangeons, coined by combining ``strange nucleon''). Bulk strong matter could be manifested in the form of compact stars, cosmic rays, and even dark matter. This trinity will be explained in this brief review, that may impact dramatically on today's physics, particularly in the era of multi-messenger astronomy after the discovery of gravitational wave.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45803361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.1080/23746149.2022.2120416
E. Cinquanta, Eva A. A. Pogna, L. Gatto, S. Stagira, C. Vozzi
ABSTRACT In this review, we discuss the rich ultrafast response at terahertz (THz) frequencies of two-dimensional (2D) materials. Thanks to their unique optoelectronic properties and exceptional tunability, van der Waals organic and inorganic 2D materials, such as graphene, transition metal dichalcogenides (TMDs), and 2D perovskites, are emerging as promising platforms for the development of nano-electronic and nano-photonic devices in the THz range. The investigation of the ultrafast charge carriers dynamics resulting from their reduced dimensionality is crucial for guiding the engineering route towards novel nanotechnologies. Here, we first give a brief overview of the state-of-the-art experimental schemes for inspecting the ultrafast response of 2D materials in the THz range, including the generation and the detection of THz light and the prototypical optical pump THz probe setup. Then, we present and discuss the most relevant results, reviewing the THz ultrafast signatures of charge carriers and excitons dynamics in graphene, TMDs, and 2D perovskites. Finally, we provide a vision of the emerging tools for characterizing the ultrafast THz dynamics at the nanoscale. Graphical Abstract
{"title":"Charge carrier dynamics in 2D materials probed by ultrafast THzspectroscopy","authors":"E. Cinquanta, Eva A. A. Pogna, L. Gatto, S. Stagira, C. Vozzi","doi":"10.1080/23746149.2022.2120416","DOIUrl":"https://doi.org/10.1080/23746149.2022.2120416","url":null,"abstract":"ABSTRACT In this review, we discuss the rich ultrafast response at terahertz (THz) frequencies of two-dimensional (2D) materials. Thanks to their unique optoelectronic properties and exceptional tunability, van der Waals organic and inorganic 2D materials, such as graphene, transition metal dichalcogenides (TMDs), and 2D perovskites, are emerging as promising platforms for the development of nano-electronic and nano-photonic devices in the THz range. The investigation of the ultrafast charge carriers dynamics resulting from their reduced dimensionality is crucial for guiding the engineering route towards novel nanotechnologies. Here, we first give a brief overview of the state-of-the-art experimental schemes for inspecting the ultrafast response of 2D materials in the THz range, including the generation and the detection of THz light and the prototypical optical pump THz probe setup. Then, we present and discuss the most relevant results, reviewing the THz ultrafast signatures of charge carriers and excitons dynamics in graphene, TMDs, and 2D perovskites. Finally, we provide a vision of the emerging tools for characterizing the ultrafast THz dynamics at the nanoscale. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48566544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}