首页 > 最新文献

MedComm - Future medicine最新文献

英文 中文
SARS-CoV-2 modulation of RIG-I-MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. SARS-CoV-2调节RIG-I-MAVS信号:损害宿主抗病毒免疫的潜在机制和治疗方法
Pub Date : 2022-09-01 Epub Date: 2022-12-11 DOI: 10.1002/mef2.29
Mingming Wang, Yue Zhao, Juan Liu, Ting Li

The coronavirus disease 2019 (COVID-19) is a global infectious disease aroused by RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients may suffer from severe respiratory failure or even die, posing a huge challenge to global public health. Retinoic acid-inducible gene I (RIG-I) is one of the major pattern recognition receptors, function to recognize RNA viruses and mediate the innate immune response. RIG-1 and melanoma differentiation-associated gene 5 contain an N-terminal caspase recruitment domain that is activated upon detection of viral RNA in the cytoplasm of virus-infected cells. Activated RIG-I and mitochondrial antiviral signaling (MAVS) protein trigger a series of corresponding immune responses such as the production of type I interferon against viral infection. In this review, we are summarizing the role of the structural, nonstructural, and accessory proteins from SARS-CoV-2 on the RIG-I-MAVS pathway, and exploring the potential mechanism how SARS-CoV-2 could evade the host antiviral response. We then proposed that modulation of the RIG-I-MAVS signaling pathway might be a novel and effective therapeutic strategy to against COVID-19 as well as the constantly mutating coronavirus.

2019冠状病毒病(新冠肺炎)是由RNA病毒严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引起的全球性传染病。患者可能会出现严重的呼吸衰竭,甚至死亡,这对全球公共卫生构成了巨大挑战。维甲酸诱导基因I(RIG-I)是主要的模式识别受体之一,具有识别RNA病毒和介导先天免疫反应的功能。RIG-1和黑色素瘤分化相关基因5含有N-末端胱天蛋白酶募集结构域,该结构域在病毒感染细胞的细胞质中检测到病毒RNA时被激活。激活的RIG-I和线粒体抗病毒信号传导(MAVS)蛋白触发一系列相应的免疫反应,如产生针对病毒感染的I型干扰素。在这篇综述中,我们总结了严重急性呼吸系统综合征冠状病毒2型的结构蛋白、非结构蛋白和辅助蛋白在RIG-I-MAVS通路中的作用,并探索了严重急性呼吸道综合征冠状病毒2中如何逃避宿主抗病毒反应的潜在机制。然后我们提出,RIG-IMAVS信号通路的调节可能是对抗新冠肺炎和不断变异的冠状病毒的一种新的有效治疗策略。
{"title":"SARS-CoV-2 modulation of RIG-I-MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches.","authors":"Mingming Wang,&nbsp;Yue Zhao,&nbsp;Juan Liu,&nbsp;Ting Li","doi":"10.1002/mef2.29","DOIUrl":"10.1002/mef2.29","url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) is a global infectious disease aroused by RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients may suffer from severe respiratory failure or even die, posing a huge challenge to global public health. Retinoic acid-inducible gene I (RIG-I) is one of the major pattern recognition receptors, function to recognize RNA viruses and mediate the innate immune response. RIG-1 and melanoma differentiation-associated gene 5 contain an N-terminal caspase recruitment domain that is activated upon detection of viral RNA in the cytoplasm of virus-infected cells. Activated RIG-I and mitochondrial antiviral signaling (MAVS) protein trigger a series of corresponding immune responses such as the production of type I interferon against viral infection. In this review, we are summarizing the role of the structural, nonstructural, and accessory proteins from SARS-CoV-2 on the RIG-I-MAVS pathway, and exploring the potential mechanism how SARS-CoV-2 could evade the host antiviral response. We then proposed that modulation of the RIG-I-MAVS signaling pathway might be a novel and effective therapeutic strategy to against COVID-19 as well as the constantly mutating coronavirus.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 2","pages":"e29"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9913151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Dysbiosis of gut microbiome contributes to glaucoma pathogenesis 肠道菌群失调与青光眼发病有关
Pub Date : 2022-09-01 DOI: 10.1002/mef2.28
Shida Chen, Yayi Wang, Yaoming Liu, Fei Li, Yang Chen, Xiuli Fang, Tao Wen, Shuyi Xu, Daniel S. Kermany, Shufang Deng, Gen Li, Kang Zhang, Xiulan Zhang
{"title":"Dysbiosis of gut microbiome contributes to glaucoma pathogenesis","authors":"Shida Chen, Yayi Wang, Yaoming Liu, Fei Li, Yang Chen, Xiuli Fang, Tao Wen, Shuyi Xu, Daniel S. Kermany, Shufang Deng, Gen Li, Kang Zhang, Xiulan Zhang","doi":"10.1002/mef2.28","DOIUrl":"https://doi.org/10.1002/mef2.28","url":null,"abstract":"","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48550850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
How will previous infection or current vaccination strategies protect us from future SARS-CoV-2 variant infections? 以前的感染或当前的疫苗接种策略将如何保护我们免受未来的 SARS-CoV-2 变体感染?
Pub Date : 2022-09-01 Epub Date: 2022-10-17 DOI: 10.1002/mef2.20
Olivia Monteiro
{"title":"How will previous infection or current vaccination strategies protect us from future SARS-CoV-2 variant infections?","authors":"Olivia Monteiro","doi":"10.1002/mef2.20","DOIUrl":"10.1002/mef2.20","url":null,"abstract":"","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 2","pages":"e20"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9911008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosome‐based cancer stem cell communication: Implication for detecting and eliminating cancer stem cells 基于外泌体的癌症干细胞通讯:检测和消除癌症干细胞的意义
Pub Date : 2022-09-01 DOI: 10.1002/mef2.23
Abhishek Dutta, Swastika Paul
{"title":"Exosome‐based cancer stem cell communication: Implication for detecting and eliminating cancer stem cells","authors":"Abhishek Dutta, Swastika Paul","doi":"10.1002/mef2.23","DOIUrl":"https://doi.org/10.1002/mef2.23","url":null,"abstract":"","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44210872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding by design: Implementing deep learning from protein structure prediction to protein design 设计理解:实现从蛋白质结构预测到蛋白质设计的深度学习
Pub Date : 2022-09-01 DOI: 10.1002/mef2.22
Yuanxu Gao, Jiangshan Zhan, Albert C. H. Yu
{"title":"Understanding by design: Implementing deep learning from protein structure prediction to protein design","authors":"Yuanxu Gao, Jiangshan Zhan, Albert C. H. Yu","doi":"10.1002/mef2.22","DOIUrl":"https://doi.org/10.1002/mef2.22","url":null,"abstract":"","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48457802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluation of neuroprotective agents acting via the BDNF–TrkB pathway using AI-enabled predictions of ligand–receptor interactions 利用人工智能预测配体-受体相互作用,评估通过BDNF-TrkB途径作用的神经保护剂
Pub Date : 2022-08-26 DOI: 10.1002/mef2.15
Jing Zhu, Jun Zou, Fei Li, Yuanxu Gao, Lijun Wang, Yi Sun, Jie Zhu, Xiaomeng Zhang, Kanmin Xue, Gen Li, Nga M. Cheng, Juan Guo, Xiulan Zhang, Kang Zhang

Glaucoma is the leading cause of irreversible blindness globally and is associated with retinal ganglion cell (RGC) death. Brain-derived neurotrophic factor (BDNF) is a potent neurotrophin that promotes neuronal survival via its receptor, tropomyosin receptor kinase B (TrkB) encoded by NTRK2. Our current understanding of the mechanism of action and therapeutic potential of the BDNF pathway is limited by the lack of knowledge of its interaction with TrkB at atomic resolution. We developed an artificial intelligence (AI) model to predict the three-dimensional protein structures of BDNF and TrkB, as well as their interaction. The AI model was further applied to compare small-molecule drugs that mimic BDNF–TrkB interaction, leading to the identification of 7,8-dihydroxyflavone (DHF) as an agonist of TrkB. We verified the neuroprotective effects of DHF in an in vivo acute glaucoma model in which RGC apoptosis caused by acute elevation of intraocular pressure was prevented by the intraocular application of DHF and to a lesser extent by BDNF. Our results provide AI-enabled prediction of ligand–receptor interactions between BDNF and TrkB at the atomic level and demonstrate the great potential for AI-enabled drug discovery.

青光眼是全球不可逆失明的主要原因,与视网膜神经节细胞(RGC)死亡有关。脑源性神经营养因子(BDNF)是一种有效的神经营养因子,通过其受体原肌球蛋白受体激酶B (TrkB)编码NTRK2来促进神经元存活。我们目前对BDNF通路的作用机制和治疗潜力的理解受到其与TrkB在原子分辨率上相互作用的缺乏知识的限制。我们开发了一个人工智能(AI)模型来预测BDNF和TrkB的三维蛋白质结构,以及它们之间的相互作用。AI模型进一步应用于比较模拟BDNF-TrkB相互作用的小分子药物,从而确定7,8-二羟黄酮(DHF)是TrkB的激动剂。我们在体内急性青光眼模型中验证了DHF的神经保护作用,在该模型中,眼内应用DHF可以预防急性眼压升高引起的RGC凋亡,BDNF在较小程度上可以预防。我们的研究结果在原子水平上为BDNF和TrkB之间的配体-受体相互作用提供了人工智能预测,并展示了人工智能药物发现的巨大潜力。
{"title":"Evaluation of neuroprotective agents acting via the BDNF–TrkB pathway using AI-enabled predictions of ligand–receptor interactions","authors":"Jing Zhu,&nbsp;Jun Zou,&nbsp;Fei Li,&nbsp;Yuanxu Gao,&nbsp;Lijun Wang,&nbsp;Yi Sun,&nbsp;Jie Zhu,&nbsp;Xiaomeng Zhang,&nbsp;Kanmin Xue,&nbsp;Gen Li,&nbsp;Nga M. Cheng,&nbsp;Juan Guo,&nbsp;Xiulan Zhang,&nbsp;Kang Zhang","doi":"10.1002/mef2.15","DOIUrl":"10.1002/mef2.15","url":null,"abstract":"<p>Glaucoma is the leading cause of irreversible blindness globally and is associated with retinal ganglion cell (RGC) death. Brain-derived neurotrophic factor (BDNF) is a potent neurotrophin that promotes neuronal survival via its receptor, tropomyosin receptor kinase B (TrkB) encoded by <i>NTRK2</i>. Our current understanding of the mechanism of action and therapeutic potential of the BDNF pathway is limited by the lack of knowledge of its interaction with TrkB at atomic resolution. We developed an artificial intelligence (AI) model to predict the three-dimensional protein structures of BDNF and TrkB, as well as their interaction. The AI model was further applied to compare small-molecule drugs that mimic BDNF–TrkB interaction, leading to the identification of 7,8-dihydroxyflavone (DHF) as an agonist of TrkB. We verified the neuroprotective effects of DHF in an in vivo acute glaucoma model in which RGC apoptosis caused by acute elevation of intraocular pressure was prevented by the intraocular application of DHF and to a lesser extent by BDNF. Our results provide AI-enabled prediction of ligand–receptor interactions between BDNF and TrkB at the atomic level and demonstrate the great potential for AI-enabled drug discovery.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43898497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogenomic characterization of the 2022 outbreak of monkeypox virus—The importance of sustained genetic surveillance 2022年猴痘病毒暴发的系统基因组特征——持续遗传监测的重要性
Pub Date : 2022-08-16 DOI: 10.1002/mef2.16
Olivia Monteiro, Yan Wa Li, Daniel T. Baptista-Hon

Monkeypox cases are steadily increasing worldwide. Phylogenetic characterization of the monkeypox virus (MPXV) responsible is important for epidemiological studies. Isidro et al. performed shotgun metagenomics sequencing analysis of MPXV isolated from cases in the current outbreak, published in Nature Medicine.1 The results revealed for the first time that these samples cluster with a lower fatality clade of MPXV and that the current outbreak had a common origin. Furthermore, the study found evidence of accelerated evolution in the samples. This study highlights the importance of timely and sustained sequencing efforts to track the potential evolutionary trajectory of MPXV to mitigate its potential impact on global health.

The COVID-19 pandemic and other severe infectious disease outbreaks in recent years have in common among them the ability to cause infections across borders, likely facilitated by air travel and our changing relationship with rural areas.2 The recovery of cross-country travel following the COVID-19 slowdown increases the possibility of bringing predominantly endemic infectious diseases to naïve populations. Reports of monkeypox around the world may be an example and potentially represents the next infectious disease challenge. The first case was recorded on May 6, 2022 in the United Kingdom.3 As of June 27, 2022, over 4300 laboratory-confirmed monkeypox cases have been recorded across six continents.4 We grouped daily new cases into weekly bins (Figure 1A), and it is clear that the number of cases is showing a persistent increase.

Monkeypox is caused by MPXV, a group of linear double-stranded DNA viruses part of the Orthopoxvirus genus.5 Notable Orthopoxviruses include the Variola virus, the causative agent of smallpox and Molluscum contagiosum. All Orthopoxviruses are morphologically similar, with a brick-like structure (Figure 1B). The genome of Orthopoxviruses contains several hundred nonoverlapping open reading frames (ORFs). Many of these ORFs are highly conserved among members and are required for replication and morphogenesis. Others are divergent and result in heterogeneity in the host range, immune modulation properties, and pathogenesis. All Orthopoxviruses replicate in the cytoplasm of infected cells. Their life cycle is illustrated in Figure 1C.

Monkeypox has a variable incubation period (5–21 days), and is a self-limiting disease with symptoms lasting between 2 and 4 weeks.6 The disease can be divided into two phases. The invasive prodromal phase is characterized by generalized systemic symptoms, such as fever, headache, lymphadenopathy, fatigue, and myalgia. The characteristic monkeypox rash is a feature of the cutaneous phase, which begins 1–3 days after fever onset. These are well-circumscribed, deep-seated, and painful maculopapular sk

全世界的猴痘病例正在稳步增加。猴痘病毒(MPXV)的系统发育特征对流行病学研究具有重要意义。Isidro等人对从当前疫情病例中分离的MPXV进行了散弹枪宏基因组测序分析,结果发表在《自然医学》(Nature medicine)杂志上。结果首次表明,这些样本与MPXV的低致死率分支聚集在一起,并且当前疫情具有共同的起源。此外,研究还在样本中发现了加速进化的证据。这项研究强调了及时和持续测序工作的重要性,以跟踪MPXV的潜在进化轨迹,以减轻其对全球健康的潜在影响。2019冠状病毒病大流行和近年来爆发的其他严重传染病有一个共同之处,即能够造成跨境感染,这可能是由于航空旅行和我们与农村地区关系的变化在COVID-19疫情放缓后,跨国旅行的复苏增加了将主要地方性传染病传播给naïve人群的可能性。世界各地关于猴痘的报告可能是一个例子,并可能代表下一个传染病挑战。第一例病例于2022年5月6日在英国被记录。截至2022年6月27日,六大洲已记录了4300多例实验室确诊猴痘病例我们将每天的新病例分组到每周的箱子中(图1A),很明显,病例数量正在持续增加。猴痘是由MPXV引起的,MPXV是一组线性双链DNA病毒,属于正痘病毒属著名的正痘病毒包括天花和传染性软疣的病原体天花病毒。所有正痘病毒在形态上相似,具有砖状结构(图1B)。正痘病毒的基因组包含数百个非重叠的开放阅读框(orf)。这些orf中的许多在成员之间高度保守,并且是复制和形态发生所必需的。其他的是不同的,导致宿主范围、免疫调节特性和发病机制的异质性。所有正痘病毒都在感染细胞的细胞质中复制。它们的生命周期如图1C所示。猴痘有不同的潜伏期(5-21天),是一种自限性疾病,症状持续2至4周该病可分为两个阶段。侵袭性前驱期的特点是全身性症状,如发热、头痛、淋巴结病、疲劳和肌痛。猴痘皮疹是皮肤期的特征,在发热后1-3天开始出现。这是一种界限分明、根深蒂固、疼痛的黄斑丘疹性皮肤病变,通常发生在面部,然后扩散到四肢。猴痘的并发症很少见,通常继发于支气管肺或角膜感染,导致败血症、脑炎和视力丧失。MPXV是一种人畜共患感染,在中非和西非较贫困的社区流行。MPXV可分为三个支系:支系1(中非或刚果盆地支系)和支系2/3(统称西非支系)。进化支1的病死率(CFR)为10%,而进化支2和3的病死率为1%。在当前疫情爆发之前,已知MPXV感染病例与流行地区有旅行联系或与受感染动物有接触。然而,除了本次疫情(在联合王国)中的第一例确诊病例外,大多数病例没有去过流行地区,也没有接触过指示病例。此外,在目前爆发的病例中,与感染者有密切接触的个人,包括男男性行为者,在前驱期后立即发生生殖器病变,突出了性感染途径这种非典型流行病学需要对当前MPXV暴发的系统发育定位和进化趋势进行分析。Isidro等人报道的MPXV系统发育分析是首次为导致当前疫情的MPXV毒株的遗传学提供线索的研究。本研究基于从病变和囊泡拭子中获得的15个临床MPXV样本。对样本进行散弹枪宏基因组测序,并将其定位到参考基因组(MPXV-UK_P2, 2018;GenBank序列号#MT903344.1)。采用扎伊尔-96- i -16 (RefSeq accession #NC_003310.1)作为全球系统发育分支1的参考序列进行系统发育分析,结果表明这些MPXV样本属于毒性较小的分支3。对NCBI其他MPXV序列的进一步分析(截至2022年6月15日)表明,目前的暴发聚集群(B.1.1谱系)与2017/2018年在尼日利亚引起大规模暴发的B.1谱系形成了不同的分支。 此外,当前爆发的聚集性与最近的聚集性(2018/2019年爆发)存在50个单核苷酸多态性(snp)的差异。作者推测,目前的MPXV集群源于导致2017/2018年尼日利亚疫情的病毒,并继续演变。在英国出现指示性病例后3周内,多个国家发现了病例,这表明可能存在不止一个传染源。正痘病毒通常每年在每个位点积累1-2个snp,这意味着目前的病毒群拥有比预期多6- 12倍的snpIsidro等人认为,这可能是由于加速进化,并假设这可能是由人类载脂蛋白B mrna编辑催化多肽样3 (APOBEC3)酶介导的,该酶编辑病毒基因组以抑制其复制和传染性。微进化分析的重点是GA &gt; AA和TC &gt; TT替换,这是apobec3介导的基因组编辑的标志。他们在当前的MPXV集群中发现了26个GA &gt; AA和15个TC &gt; TT替换,产生24个非同义替换,18个同义替换和4个基因间替换。有趣的是,15个临床样本中有2个在编码富含锚蛋白的宿主蛋白的基因中共享移码缺失,导致基因丢失。作者推测,这种基因在二次传播过程中的丢失是由于病毒在人际传播过程中的微进化造成的。此外,该研究还在五个样本中发现了具有已知免疫调节功能的基因中的非同义患者内单核苷酸变异(iSNVs),这表明进化适应了人类的有效复制。Isidro等人的研究为科学界和医学界提供了对当前MPXV暴发的系统发育的第一次了解。令人鼓舞的是,已经确定当前暴发的系统发育属于较低的CFR进化支3。然而,它也发现了在单个患者中加速进化和基因组异质性的证据。这些发现强调了在当前疫情中继续对MPXV变异体进行遗传监测的重要性。发现的许多突变是非同义的,这可能影响MPXV的传染性、传播性、宿主范围和免疫调节。然而,也有许多同义突变,它们也可能影响MPXV的功能。在最近发现同义突变很少是中性的背景下,这一点尤为重要因此,有必要在功能研究中描述这些突变。将当前疫情升级为国际关注的疫情可能取决于MPXV的进化轨迹,也许是朝着更高的毒力和/或CFR发展。未得到缓解的传播增加了变异发生的几率,因此通过接种疫苗保护高危人群将是一个优先事项。英国正在向高危人群提供一种对MPXV感染有效的天花疫苗。此外,Tecovirimat是一种小分子抗病毒药物,自2022年1月以来已在欧洲被批准用于治疗猴痘。这些都是我们应对这种新出现的传染病威胁的重要武器,也许会使全球医学和科学界在应对MPXV方面有更坚实的基础。正如Isidro等人的研究所强调的那样,我们还需要借鉴我们在Covid-19方面的经验,加强对MPXV的遗传监测。Olivia Monteiro, Yan Wa Li和Daniel T. Baptista-Hon分析了MPXV发病率数据并制作了这些数据,并起草了手稿。Daniel T. Baptista-Hon构思了这项研究并提供了总体指导。所有作者都同意最终稿的内容。作者Daniel T. Baptista-Hon是MedComm - Future Medicine的编辑委员会成员。作者Daniel T. Baptista-Hon没有参与该杂志对该手稿的审查或相关决定。其余作者声明没有利益冲突。不适用。
{"title":"Phylogenomic characterization of the 2022 outbreak of monkeypox virus—The importance of sustained genetic surveillance","authors":"Olivia Monteiro,&nbsp;Yan Wa Li,&nbsp;Daniel T. Baptista-Hon","doi":"10.1002/mef2.16","DOIUrl":"10.1002/mef2.16","url":null,"abstract":"<p>Monkeypox cases are steadily increasing worldwide. Phylogenetic characterization of the monkeypox virus (MPXV) responsible is important for epidemiological studies. Isidro et al. performed shotgun metagenomics sequencing analysis of MPXV isolated from cases in the current outbreak, published in <i>Nature Medicine</i>.<span><sup>1</sup></span> The results revealed for the first time that these samples cluster with a lower fatality clade of MPXV and that the current outbreak had a common origin. Furthermore, the study found evidence of accelerated evolution in the samples. This study highlights the importance of timely and sustained sequencing efforts to track the potential evolutionary trajectory of MPXV to mitigate its potential impact on global health.</p><p>The COVID-19 pandemic and other severe infectious disease outbreaks in recent years have in common among them the ability to cause infections across borders, likely facilitated by air travel and our changing relationship with rural areas.<span><sup>2</sup></span> The recovery of cross-country travel following the COVID-19 slowdown increases the possibility of bringing predominantly endemic infectious diseases to naïve populations. Reports of monkeypox around the world may be an example and potentially represents the next infectious disease challenge. The first case was recorded on May 6, 2022 in the United Kingdom.<span><sup>3</sup></span> As of June 27, 2022, over 4300 laboratory-confirmed monkeypox cases have been recorded across six continents.<span><sup>4</sup></span> We grouped daily new cases into weekly bins (Figure 1A), and it is clear that the number of cases is showing a persistent increase.</p><p>Monkeypox is caused by MPXV, a group of linear double-stranded DNA viruses part of the Orthopoxvirus genus.<span><sup>5</sup></span> Notable Orthopoxviruses include the Variola virus, the causative agent of smallpox and <i>Molluscum contagiosum</i>. All Orthopoxviruses are morphologically similar, with a brick-like structure (Figure 1B). The genome of Orthopoxviruses contains several hundred nonoverlapping open reading frames (ORFs). Many of these ORFs are highly conserved among members and are required for replication and morphogenesis. Others are divergent and result in heterogeneity in the host range, immune modulation properties, and pathogenesis. All Orthopoxviruses replicate in the cytoplasm of infected cells. Their life cycle is illustrated in Figure 1C.</p><p>Monkeypox has a variable incubation period (5–21 days), and is a self-limiting disease with symptoms lasting between 2 and 4 weeks.<span><sup>6</sup></span> The disease can be divided into two phases. The invasive prodromal phase is characterized by generalized systemic symptoms, such as fever, headache, lymphadenopathy, fatigue, and myalgia. The characteristic monkeypox rash is a feature of the cutaneous phase, which begins 1–3 days after fever onset. These are well-circumscribed, deep-seated, and painful maculopapular sk","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.16","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44790572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanism and application of nonessential amino acid deprivation associated with tumor therapy 非必需氨基酸剥夺与肿瘤治疗相关的机制及应用
Pub Date : 2022-08-05 DOI: 10.1002/mef2.12
Shiqi Nong, Yuran Qian, Tingyue Zhang, Xueyan Zhou, Yuhao Wei, Xiaomeng Yin, Xuelei Ma

Metabolic reprogramming manifested as glycolysis is considered a character of metabolic activity in tumor cells. Glucose used in glycolysis is the major energy source to support the growth and development of tumor cells, contributing to the high glycolytic flux production for the accumulation of cell mass. Of note, beside high consumption of glucose, the glutamine of nonessential amino acids (NEAAs) could be used as a carbon and nitrogen source. However, glucose and glutamine alone are still not enough to serve as the nutritional source for tumors. Other NEAAs are also important, such as serine, asparagine, and arginine. Related studies have confirmed in cells and animal models that either increase or decrease of NEAAs can limit the growth of tumor cells. Therefore, NEAAs deprivation diet has attracted more attention in recent years and it has been gradually applied in clinical practice for further research. In this review, the possible mechanism and potential applications of NEAAs in diet deprivation therapy are summarized, which may provide a direction for the future application in cancer treatment.

代谢重编程表现为糖酵解,被认为是肿瘤细胞代谢活动的一个特征。糖酵解中使用的葡萄糖是支持肿瘤细胞生长发育的主要能量来源,有助于高糖酵解通量的产生,为细胞质量的积累做出贡献。值得注意的是,除了葡萄糖的高消耗外,非必需氨基酸(NEAAs)的谷氨酰胺可以用作碳和氮源。然而,仅靠葡萄糖和谷氨酰胺还不足以作为肿瘤的营养来源。其他neaa也很重要,如丝氨酸、天冬酰胺和精氨酸。相关研究在细胞和动物模型中证实,增加或减少NEAAs均可限制肿瘤细胞的生长。因此,近年来NEAAs剥夺饮食法受到越来越多的关注,并逐渐应用于临床实践中进行进一步的研究。本文就NEAAs在饮食剥夺治疗中的可能作用机制及潜在应用进行综述,为其在癌症治疗中的应用提供方向。
{"title":"Mechanism and application of nonessential amino acid deprivation associated with tumor therapy","authors":"Shiqi Nong,&nbsp;Yuran Qian,&nbsp;Tingyue Zhang,&nbsp;Xueyan Zhou,&nbsp;Yuhao Wei,&nbsp;Xiaomeng Yin,&nbsp;Xuelei Ma","doi":"10.1002/mef2.12","DOIUrl":"10.1002/mef2.12","url":null,"abstract":"<p>Metabolic reprogramming manifested as glycolysis is considered a character of metabolic activity in tumor cells. Glucose used in glycolysis is the major energy source to support the growth and development of tumor cells, contributing to the high glycolytic flux production for the accumulation of cell mass. Of note, beside high consumption of glucose, the glutamine of nonessential amino acids (NEAAs) could be used as a carbon and nitrogen source. However, glucose and glutamine alone are still not enough to serve as the nutritional source for tumors. Other NEAAs are also important, such as serine, asparagine, and arginine. Related studies have confirmed in cells and animal models that either increase or decrease of NEAAs can limit the growth of tumor cells. Therefore, NEAAs deprivation diet has attracted more attention in recent years and it has been gradually applied in clinical practice for further research. In this review, the possible mechanism and potential applications of NEAAs in diet deprivation therapy are summarized, which may provide a direction for the future application in cancer treatment.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48307159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Opsonizing antibodies mediated SARS-CoV-2 entry into monocytes leads to inflammation 调理抗体介导的SARS-CoV-2进入单核细胞导致炎症
Pub Date : 2022-07-25 DOI: 10.1002/mef2.11
Tong Yao, Shuai Wang, Long Zhang, Johnson Yiu-Nam Lau, Fangfang Zhou

A recent paper published in Nature by Caroline Junqueira et al. (2022)1 reveals that FcγR and opsonizing antibodies can mediate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of monocytes/macrophages, which can then activate NLRP3 inflammasomes, caspase-1, and Gasdermin D (GSDMD), and thereby trigger pyroptosis and severe inflammatory reaction.

Since the first description in late 2019, coronavirus disease 2019 (COVID-19), caused by RS-CoV-2, has emerged as one of the most significant global public health crises. In some patients, SARS-CoV-2 infection can induce a severe inflammatory cytokine storm that can lead to respiratory syndrome and multiorgan failure.1, 2 From a biological perspective, when myeloid cells sense invasive infection, they activate inflammasomes, which recruit apoptotic speck protein containing a caspase recruitment domain (ASC) adaptors and further activate downstream caspase-1, which cleaves the suppressant C-domain and releases the pore-forming N-domain of GSDMD (a pyroptosis execution protein that can be activated by caspase-1), leading to cell membrane breaks, pyroptosis, and the release of inflammatory cytokines3 (Figure 1).

In this paper, Junqueira et al.1 reported that SARS-CoV-2 can also infect monocytes/macrophages, and this is through the Fcγ receptors-mediated uptake of antibody-opsonized virus. They then showed that SARS-CoV-2 triggers NLRP3 inflammasomes, caspase-1, and GSDMD-dependent pyroptosis, an inflammation-induced programmed cell death,4 exacerbating systemic inflammation and the symptoms of COVID-19. The pyroptosis blocks the infectious virus production despite the replication of the viral genome in monocytes.

The study began with the detection of inflammasome activation and pyroptosis in blood samples obtained from SARS-CoV-2-infected patients. They found that approximately 6% of circulating monocytes from SARS-CoV-2 infected patients were stained by Zombie dye, a sign of membrane damage consistent with pyroptosis. A series of pyroptosis biomarkers, including GSDMD, interleukin 1β (IL-1β), IL-1RA, IL-18, and lactate dehydrogenase activity, were studied and found to be elevated. Through imaging flow cytometry, they found that about 4% of monocytes from COVID-19 patients exhibit activation of canonical inflammasomes, which form large micron-sized inflammasome-ASC-caspase-1 specks. ASC specks were colocalized with caspase-1, NLRP3 (a canonical inflammasome), and AIM2. Moreover, the lung-resident macrophages were also found to contain activated inflammasomes.1 Previous studies have proven that several SARS-CoV-2 proteins are involved in NLRP3 inflammasome activation. Nucleocapsid (N) protein directly interacts with NLRP3 and contributes to severe inflammatory responses in patients.5, 6 Spike (

Caroline Junqueira et al.(2022)1最近发表在Nature杂志上的一篇论文显示,FcγR和opsonizing antibody可以介导单核/巨噬细胞感染SARS-CoV-2,进而激活NLRP3炎性小体、caspase-1和Gasdermin D (GSDMD),从而引发焦亡和严重炎症反应。自2019年底首次描述以来,由RS-CoV-2引起的2019年冠状病毒病(COVID-19)已成为最重大的全球公共卫生危机之一。在一些患者中,SARS-CoV-2感染可诱发严重的炎症细胞因子风暴,导致呼吸综合征和多器官衰竭。1,2从生物学角度来看,当髓细胞感知侵入性感染时,它们激活炎性小体,这些炎性小体招募含有caspase募集结构域(ASC)接子的凋亡斑蛋白,并进一步激活下游的caspase-1, caspase-1切割抑制c结构域并释放GSDMD(一种可被caspase-1激活的焦亡执行蛋白)的成孔n结构域,导致细胞膜破裂、焦亡。在这篇论文中,Junqueira等人报道了SARS-CoV-2也可以感染单核细胞/巨噬细胞,并且是通过Fcγ受体介导的抗体调理病毒的摄取。他们随后发现,SARS-CoV-2触发NLRP3炎症小体、caspase-1和gsdmd依赖性焦亡,这是一种炎症诱导的程序性细胞死亡,4加剧了全身性炎症和COVID-19的症状。尽管病毒基因组在单核细胞中复制,但热亡阻止了传染性病毒的产生。该研究首先从sars - cov -2感染患者的血液样本中检测炎症小体活化和焦亡。他们发现,来自SARS-CoV-2感染患者的循环单核细胞中约有6%被僵尸染料染色,这是与热亡相一致的膜损伤迹象。研究发现,GSDMD、白细胞介素1β (IL-1β)、IL-1RA、IL-18和乳酸脱氢酶活性等一系列焦亡生物标志物均升高。通过成像流式细胞术,他们发现来自COVID-19患者的约4%的单核细胞表现出典型炎症小体的激活,这些炎症小体形成大的微米大小的炎症小体- asc -caspase-1斑点。ASC斑点与caspase-1、NLRP3(一种典型炎性体)和AIM2共定位。此外,还发现肺内巨噬细胞含有活化的炎性小体先前的研究已经证明,几种SARS-CoV-2蛋白参与NLRP3炎症小体的激活。核衣壳(N)蛋白直接与NLRP3相互作用,导致患者出现严重的炎症反应。5,6 Spike (S)蛋白也被证明可以激活NLRP3炎症小体诱导的造血干细胞/祖细胞焦亡。鉴于单核细胞中未检测到病毒进入受体ACE2,他们研究了SARS-CoV-2如何激活炎性体COVID-19单核细胞。他们发现10%的单核细胞可以被sars - cov - 2n蛋白和双链RNA抗体染色,这一比例与血液单核细胞中表达CD16 (FcγRIIIa)的单核细胞的比例(约10%)一致(稍后详细介绍)8此外,所有带有ASC斑点的单核细胞都被感染;所有感染的单核细胞均存在ASC斑点,表明SARS-CoV-2直接感染单核细胞并激活炎症小体和焦亡。作者使用工程感染克隆(icSARS-CoV-2-mNG,编码病毒复制的霓虹绿(NG)荧光报告基因)发现,与抗刺突单克隆抗体或COVID-19患者血浆预孵生可使病毒进入单核细胞。最高感染率需要将病毒与患者血浆进行预孵育,并用脂多糖预处理健康供体单核细胞。同时,COVID-19血浆中免疫球蛋白G (IgG)的缺失,而IgA的缺失,消除了病毒感染。来自COVID-19血浆的纯化IgG也促进病毒感染,而来自健康供体血浆的IgG几乎不影响病毒的进入,这表明感染是由抗刺突抗体介导的病毒介导的。有趣的是,患者血浆比从COVID-19血浆中纯化的IgG更能增强健康供体单核细胞感染,这表明其他成分也可能参与其中。重要的是,接种疫苗个体的血浆不会促进病毒感染。为了鉴定病毒受体,利用ACE2、CD147、CD16、CD32和CD64的阻断抗体来阻断潜在的单核细胞受体。阻断单核细胞FcγRs、CD16或CD64可显著抑制感染,提示CD16或CD64介导了活化的SARS-CoV-2进入单核细胞。 虽然CD64的阻断抗体也可以阻断感染,但CD64比CD16表达更广泛,即更受限制,因为所有感染的单核细胞都表达CD16;作者得出结论,CD16可能是主要的Fc受体。尽管中性粒细胞、细胞毒性T细胞和NK细胞也表达CD16,但在COVID-19患者的这些细胞中未检测到SARS-CoV-2感染,这意味着抗体依赖的进入仅限于单核细胞。此外,尽管定量聚合酶链反应试验证实了病毒基因组的复制,但在sars - cov -2感染的健康供体单核细胞培养上清中未检测到感染性病毒,这表明热亡和炎症反应终止了病毒的生产周期。本文提出了以下几点要点。首先,他们证实了抗体介导的SARS-CoV-2单核细胞感染。抗体介导的感染增强已在几种病毒中得到报道,包括流感病毒、呼吸道合胞病毒、中东呼吸综合征冠状病毒、sars冠状病毒以及登革热病毒。同样,最近的一项研究报道,SARS-CoV-2 S蛋白单克隆抗体促进SARS-CoV-2进入肺内巨噬细胞,驱动炎性体活化和焦亡。阻断CD16可显著抑制SARS-CoV-2的进入,尽管巨噬细胞也表达ACE2。Caspase-1和NLRP3抑制剂可以改善炎症,但会导致感染的巨噬细胞释放感染性病毒另一项研究表明,IgG受体FcγRIIA和FcγRIIIA可促进sars - cov的抗体依赖性增强。10其次,本研究揭示单核细胞感染可诱导单核细胞凋亡,释放炎症因子,参与COVID-19的发病机制。在SARS-CoV-2感染期间,焦亡可能是一把双刃剑,一方面在产生感染性病毒粒子之前消除了病毒感染,另一方面促进了炎症因子的释放,从而导致细胞因子风暴。这些发现可能为部分患者出现临床恶化的发病机制提供一些见解,这与SARS-CoV-2抗体的检测时间一致。最后,幸运的是,COVID-19疫苗诱导的抗体不介导感染,可能与与不同表位的结合有关,或者与不促进病毒进入的类型变化有关。姚通和王帅撰写了手稿;张龙、刘耀南、周芳芳等人进行了有价值的讨论。作者声明无利益冲突。
{"title":"Opsonizing antibodies mediated SARS-CoV-2 entry into monocytes leads to inflammation","authors":"Tong Yao,&nbsp;Shuai Wang,&nbsp;Long Zhang,&nbsp;Johnson Yiu-Nam Lau,&nbsp;Fangfang Zhou","doi":"10.1002/mef2.11","DOIUrl":"10.1002/mef2.11","url":null,"abstract":"<p>A recent paper published in <i>Nature</i> by Caroline Junqueira et al. (2022)<span><sup>1</sup></span> reveals that FcγR and opsonizing antibodies can mediate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of monocytes/macrophages, which can then activate NLRP3 inflammasomes, caspase-1, and Gasdermin D (GSDMD), and thereby trigger pyroptosis and severe inflammatory reaction.</p><p>Since the first description in late 2019, coronavirus disease 2019 (COVID-19), caused by RS-CoV-2, has emerged as one of the most significant global public health crises. In some patients, SARS-CoV-2 infection can induce a severe inflammatory cytokine storm that can lead to respiratory syndrome and multiorgan failure.<span><sup>1, 2</sup></span> From a biological perspective, when myeloid cells sense invasive infection, they activate inflammasomes, which recruit apoptotic speck protein containing a caspase recruitment domain (ASC) adaptors and further activate downstream caspase-1, which cleaves the suppressant C-domain and releases the pore-forming N-domain of GSDMD (a pyroptosis execution protein that can be activated by caspase-1), leading to cell membrane breaks, pyroptosis, and the release of inflammatory cytokines<span><sup>3</sup></span> (Figure 1).</p><p>In this paper, Junqueira et al.<span><sup>1</sup></span> reported that SARS-CoV-2 can also infect monocytes/macrophages, and this is through the Fcγ receptors-mediated uptake of antibody-opsonized virus. They then showed that SARS-CoV-2 triggers NLRP3 inflammasomes, caspase-1, and GSDMD-dependent pyroptosis, an inflammation-induced programmed cell death,<span><sup>4</sup></span> exacerbating systemic inflammation and the symptoms of COVID-19. The pyroptosis blocks the infectious virus production despite the replication of the viral genome in monocytes.</p><p>The study began with the detection of inflammasome activation and pyroptosis in blood samples obtained from SARS-CoV-2-infected patients. They found that approximately 6% of circulating monocytes from SARS-CoV-2 infected patients were stained by Zombie dye, a sign of membrane damage consistent with pyroptosis. A series of pyroptosis biomarkers, including GSDMD, interleukin 1β (IL-1β), IL-1RA, IL-18, and lactate dehydrogenase activity, were studied and found to be elevated. Through imaging flow cytometry, they found that about 4% of monocytes from COVID-19 patients exhibit activation of canonical inflammasomes, which form large micron-sized inflammasome-ASC-caspase-1 specks. ASC specks were colocalized with caspase-1, NLRP3 (a canonical inflammasome), and AIM2. Moreover, the lung-resident macrophages were also found to contain activated inflammasomes.<span><sup>1</sup></span> Previous studies have proven that several SARS-CoV-2 proteins are involved in NLRP3 inflammasome activation. Nucleocapsid (N) protein directly interacts with NLRP3 and contributes to severe inflammatory responses in patients.<span><sup>5, 6</sup></span> Spike (","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10284251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a prediction model for metastasis in colorectal cancer based on LncRNA CRNDE and radiomics 基于LncRNA-CRNDE和放射组学的癌症转移预测模型的建立和验证
Pub Date : 2022-07-17 DOI: 10.1002/mef2.6
Jiaojiao Zhao, Ou Jiang, Xiao Chen, Qin Liu, Xue Li, Min Wu, Yan Zhang, Fanxin Zeng

Accurate prediction of metastasis is an important determinant for selecting appropriate treatment for advanced colorectal cancer (CRC). In this study, 1250 patients in two hospitals from 2014 to 2019 histologically diagnosed with CRC were enrolled. We performed the transcriptome analysis on 141 CRC patients. RNA-seq analysis revealed that long noncoding RNA (LncRNA) colorectal neoplasia differentially expressed (CRNDE) played an important role in CRC metastasis. The least absolute shrinkage and selection operator regression was used to select features and develop radiomics model. Multivariate logistic regression analysis was used to develop combined model. The radiomics model with 13 filtered radiomics features had good discrimination in predicting expression level of LncRNA CRNDE in training set (receiver operating characteristic [AUC] = 0.809) and testing set (AUC = 0.755). Furthermore, the radiomics model could predict the metastasis of CRC in internal validation set (AUC, 0.665) and in external validation set (AUC = 0.690). The combined model developed with radiomics score and carcinoembryonic antigen had better performance, and the AUC was 0.708, 0.700 in internal validation set and in external validation set, respectively. In conclusion, we proposed a radiomics model and combined model, which could predict the expression level of LncRNA CRNDE and further predict CRC metastasis, thereby helping clinician make treatment decisions.

准确预测转移是晚期结直肠癌(CRC)选择适当治疗的重要决定因素。本研究纳入两家医院2014 - 2019年组织学诊断为结直肠癌的1250例患者。我们对141例结直肠癌患者进行了转录组分析。RNA-seq分析显示,长链非编码RNA (LncRNA)结直肠癌差异表达(CRNDE)在结直肠癌转移中发挥重要作用。利用最小绝对收缩和选择算子回归选择特征,建立放射组学模型。采用多元logistic回归分析建立组合模型。经过筛选的13个放射组学特征的放射组学模型在预测LncRNA CRNDE在训练集(受者工作特征[AUC] = 0.809)和测试集(AUC = 0.755)中的表达水平方面具有良好的辨别能力。此外,放射组学模型在内部验证集(AUC = 0.665)和外部验证集(AUC = 0.690)中能预测结直肠癌的转移。放射组学评分与癌胚抗原联合建立的模型表现较好,内部验证集AUC为0.708,外部验证集AUC为0.700。综上所述,我们提出了一个放射组学模型和联合模型,可以预测LncRNA CRNDE的表达水平,进一步预测结直肠癌的转移,从而帮助临床医生做出治疗决策。
{"title":"Development and validation of a prediction model for metastasis in colorectal cancer based on LncRNA CRNDE and radiomics","authors":"Jiaojiao Zhao,&nbsp;Ou Jiang,&nbsp;Xiao Chen,&nbsp;Qin Liu,&nbsp;Xue Li,&nbsp;Min Wu,&nbsp;Yan Zhang,&nbsp;Fanxin Zeng","doi":"10.1002/mef2.6","DOIUrl":"10.1002/mef2.6","url":null,"abstract":"<p>Accurate prediction of metastasis is an important determinant for selecting appropriate treatment for advanced colorectal cancer (CRC). In this study, 1250 patients in two hospitals from 2014 to 2019 histologically diagnosed with CRC were enrolled. We performed the transcriptome analysis on 141 CRC patients. RNA-seq analysis revealed that long noncoding RNA (LncRNA) colorectal neoplasia differentially expressed (CRNDE) played an important role in CRC metastasis. The least absolute shrinkage and selection operator regression was used to select features and develop radiomics model. Multivariate logistic regression analysis was used to develop combined model. The radiomics model with 13 filtered radiomics features had good discrimination in predicting expression level of LncRNA CRNDE in training set (receiver operating characteristic [AUC] = 0.809) and testing set (AUC = 0.755). Furthermore, the radiomics model could predict the metastasis of CRC in internal validation set (AUC, 0.665) and in external validation set (AUC = 0.690). The combined model developed with radiomics score and carcinoembryonic antigen had better performance, and the AUC was 0.708, 0.700 in internal validation set and in external validation set, respectively. In conclusion, we proposed a radiomics model and combined model, which could predict the expression level of LncRNA CRNDE and further predict CRC metastasis, thereby helping clinician make treatment decisions.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49281297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
MedComm - Future medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1