We have demonstrated a quantification of all component wires in a bent electric cable, which is necessary for discussion of cable products in actual use cases. Quantification became possible for the first time because of our new technologies for image analysis of bent cables. In this paper, various image analysis techniques to detect all wire tracks in a bent cable are demonstrated. Unique cross-sectional image construction and deep active learning schemes are the most important items in this study. These methods allow us to know the actual state of cables under external loads, which makes it possible to elucidate the mechanisms of various phenomena related to cables in the field and further improve the quality of cable products.
{"title":"Wire-tracking of bent electric cable using X-ray CT and deep active learning.","authors":"Yutaka Hoshina, Takuma Yamamoto, Shigeaki Uemura","doi":"10.1093/jmicro/dfae028","DOIUrl":"10.1093/jmicro/dfae028","url":null,"abstract":"<p><p>We have demonstrated a quantification of all component wires in a bent electric cable, which is necessary for discussion of cable products in actual use cases. Quantification became possible for the first time because of our new technologies for image analysis of bent cables. In this paper, various image analysis techniques to detect all wire tracks in a bent cable are demonstrated. Unique cross-sectional image construction and deep active learning schemes are the most important items in this study. These methods allow us to know the actual state of cables under external loads, which makes it possible to elucidate the mechanisms of various phenomena related to cables in the field and further improve the quality of cable products.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"499-510"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Microstructural observation of casein micelles in milk by cryo-electron microscopy of vitreous sections (CEMOVIS).","authors":"","doi":"10.1093/jmicro/dfae053","DOIUrl":"https://doi.org/10.1093/jmicro/dfae053","url":null,"abstract":"","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optimum bright-field scanning transmission electron microscopy (OBF STEM) is a recently developed low-dose imaging technique that uses a segmented or pixelated detector. While we previously reported that OBF STEM with a segmented detector has a higher efficiency than conventional STEM techniques such as annular bright field (ABF), the imaging efficiency is expected to be further improved by using a pixelated detector. In this study, we adopted a pixelated detector for the OBF technique and investigated the imaging characteristics. Because OBF imaging is based on the thick weak phase object approximation (tWPOA), a non-zero crystalline sample thickness is considered in addition to the conventional WPOA, where the pixelated OBF method can be regarded as the theoretical extension of single side band (SSB) ptychography. Thus, we compared these two techniques via signal-to-noise ratio transfer functions (SNRTFs), multi-slice image simulations, and experiments, showing how the OBF technique can improve dose efficiency from the conventional WPOA-based ptychographic imaging.
{"title":"Dose-efficient phase-contrast imaging of thick weak phase objects via OBF STEM using a pixelated detector.","authors":"Kousuke Ooe, Takehito Seki, Mitsuru Nogami, Yuichi Ikuhara, Naoya Shibata","doi":"10.1093/jmicro/dfae051","DOIUrl":"10.1093/jmicro/dfae051","url":null,"abstract":"<p><p>Optimum bright-field scanning transmission electron microscopy (OBF STEM) is a recently developed low-dose imaging technique that uses a segmented or pixelated detector. While we previously reported that OBF STEM with a segmented detector has a higher efficiency than conventional STEM techniques such as annular bright field (ABF), the imaging efficiency is expected to be further improved by using a pixelated detector. In this study, we adopted a pixelated detector for the OBF technique and investigated the imaging characteristics. Because OBF imaging is based on the thick weak phase object approximation (tWPOA), a non-zero crystalline sample thickness is considered in addition to the conventional WPOA, where the pixelated OBF method can be regarded as the theoretical extension of single side band (SSB) ptychography. Thus, we compared these two techniques via signal-to-noise ratio transfer functions (SNRTFs), multi-slice image simulations, and experiments, showing how the OBF technique can improve dose efficiency from the conventional WPOA-based ptychographic imaging.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This report revisits the statistical atom location by channeling enhanced microanalysis (St-ALCHEMI) method, correcting the dopant site occupancy error by applying an appropriate error propagation rule. A revised equation for calculating the uncertainty in the determined dopant fractions is proposed. The revised equation is expected to correct the uncertainty in the determined dopant fractions, which is particularly significant in cases of low dopant concentrations and variable dopant occupancies across inequivalent host atomic sites. The approach is validated using Eu-doped Ca2SnO4 as a typical model system.
本报告重新探讨了沟道强化微分析(St-ALCHEMI)统计原子定位方法,通过应用适当的误差传播规则纠正了掺杂位点占有误差。提出了一个用于计算所确定的掺杂分数不确定性的修订方程。修订后的公式有望修正已确定掺杂分数的不确定性,这在掺杂浓度较低和不等效主原子位点的掺杂占位不稳定的情况下尤为重要。该方法以掺 Eu 的 Ca2SnO4 为典型模型系统进行了验证。
{"title":"Improved Dopant Fraction Variance Estimation in Statistical ALCHEMI Based on Correct Error Propagation Rule.","authors":"Akimitsu Ishizuka, Masahiro Ohtsuka, Shunsuke Muto","doi":"10.1093/jmicro/dfae052","DOIUrl":"https://doi.org/10.1093/jmicro/dfae052","url":null,"abstract":"<p><p>This report revisits the statistical atom location by channeling enhanced microanalysis (St-ALCHEMI) method, correcting the dopant site occupancy error by applying an appropriate error propagation rule. A revised equation for calculating the uncertainty in the determined dopant fractions is proposed. The revised equation is expected to correct the uncertainty in the determined dopant fractions, which is particularly significant in cases of low dopant concentrations and variable dopant occupancies across inequivalent host atomic sites. The approach is validated using Eu-doped Ca2SnO4 as a typical model system.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural observations are essential for the advancement of life science. Volume electron microscopy has recently realized remarkable progress in the three-dimensional analyses of biological specimens for elucidating complex ultrastructures in several fields of life science. The advancements in volume electron microscopy technologies have led to improvements, including higher resolution, more stability, and the ability to handle larger volumes. Although human applications of volume electron microscopy remain limited, the reported applications in various organs have already provided previously unrecognized features of human tissues and also novel insights of human diseases. Simultaneously, the application of volume electron microscopy to human studies faces challenges, including ethical and clinical hurdles, costs of data storage and analysis, and efficient and automated imaging methods for larger volume. Solutions including the use of residual clinical specimens and data analysis based on artificial intelligence would address those issues and establish the role of volume electron microscopy in human structural research. Future advancements in volume electron microscopy are anticipated to lead to transformative discoveries in basic research and clinical practice, deepening our understanding of human health and diseases for better diagnostic and therapeutic strategies.
{"title":"Recent advancement and human tissue applications of volume electron microscopy.","authors":"Makoto Abe, Nobuhiko Ohno","doi":"10.1093/jmicro/dfae047","DOIUrl":"https://doi.org/10.1093/jmicro/dfae047","url":null,"abstract":"<p><p>Structural observations are essential for the advancement of life science. Volume electron microscopy has recently realized remarkable progress in the three-dimensional analyses of biological specimens for elucidating complex ultrastructures in several fields of life science. The advancements in volume electron microscopy technologies have led to improvements, including higher resolution, more stability, and the ability to handle larger volumes. Although human applications of volume electron microscopy remain limited, the reported applications in various organs have already provided previously unrecognized features of human tissues and also novel insights of human diseases. Simultaneously, the application of volume electron microscopy to human studies faces challenges, including ethical and clinical hurdles, costs of data storage and analysis, and efficient and automated imaging methods for larger volume. Solutions including the use of residual clinical specimens and data analysis based on artificial intelligence would address those issues and establish the role of volume electron microscopy in human structural research. Future advancements in volume electron microscopy are anticipated to lead to transformative discoveries in basic research and clinical practice, deepening our understanding of human health and diseases for better diagnostic and therapeutic strategies.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although modern scanning electron microscope (SEM) possess several electron detectors, it is not clear what kind of information is contained in a SEM image taken by a certain detector. Especially the detectors installed in the objective lens are difficult to know their characters. Thus, we propose a simple method to assess the acceptance of electron detector using a stainless-steel sphere. After taking images under certain conditions, say electron beam energy, working distance etc., the image intensity of each pixel point, which is characterized by coordinate (θ, φ), is evaluated. The advantage of this method is the ease of implementation and the whole information of electron emission from the tilted surfaces is contained in the image. Using this information, the acceptance of the detector can be analyzed systematically. In this paper, the traditional Everhart-Thornley detector is analyzed with this method. It is demonstrated how the sphere image changes according to the measurement condition. The ET image quality is strongly governed by working distance but not so much by the electron beam energy. We propose an alternative method to avoid the ambiguity of working distance. Using a needle type specimen stage, the ET image does not vary so much with WD and the reliability of ET image significantly improves.
尽管现代扫描电子显微镜(SEM)拥有多个电子探测器,但人们并不清楚某个探测器拍摄的 SEM 图像中包含何种信息。特别是安装在物镜上的探测器,很难了解其特性。因此,我们提出了一种使用不锈钢球来评估电子探测器接受程度的简单方法。在一定条件下(如电子束能量、工作距离等)拍摄图像后,评估每个像素点的图像强度,其特征是坐标(θ,φ)。这种方法的优点是易于实施,而且倾斜表面电子发射的全部信息都包含在图像中。利用这些信息,可以系统地分析探测器的接受程度。本文采用这种方法对传统的 Everhart-Thornley 检测器进行了分析。本文展示了球面图像如何随测量条件而变化。ET 图像质量受工作距离的影响很大,但与电子束能量的关系不大。我们提出了另一种方法来避免工作距离的模糊性。使用针型试样台,ET 图像不会随工作距离变化太大,ET 图像的可靠性也会显著提高。
{"title":"Acceptance characterization of electron detector in SEM using stainless steel sphere.","authors":"Takashi Sekiguchi, Yuanzhao Yao, Ryosuke Sonoda, Yasunari Sohda","doi":"10.1093/jmicro/dfae050","DOIUrl":"https://doi.org/10.1093/jmicro/dfae050","url":null,"abstract":"<p><p>Although modern scanning electron microscope (SEM) possess several electron detectors, it is not clear what kind of information is contained in a SEM image taken by a certain detector. Especially the detectors installed in the objective lens are difficult to know their characters. Thus, we propose a simple method to assess the acceptance of electron detector using a stainless-steel sphere. After taking images under certain conditions, say electron beam energy, working distance etc., the image intensity of each pixel point, which is characterized by coordinate (θ, φ), is evaluated. The advantage of this method is the ease of implementation and the whole information of electron emission from the tilted surfaces is contained in the image. Using this information, the acceptance of the detector can be analyzed systematically. In this paper, the traditional Everhart-Thornley detector is analyzed with this method. It is demonstrated how the sphere image changes according to the measurement condition. The ET image quality is strongly governed by working distance but not so much by the electron beam energy. We propose an alternative method to avoid the ambiguity of working distance. Using a needle type specimen stage, the ET image does not vary so much with WD and the reliability of ET image significantly improves.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A simple method that improves the resolution of the phase measurement of differential phase-contrast (DPC) scanning transmission electron microscopy for closed-type environmental cell applications was developed and tested using a model sample simulating environmental cell observations. Because the top and bottom membranes of an environmental cell are typically far apart, the images from these membranes are shifted widely by tilt-series acquisition, and averaging the images after alignment can effectively eliminate undesired signals from the membranes while improving the signal from the object of interest. It was demonstrated that a phase precision of 2π/100 rad is well achievable using the proposed method for the sample in an environmental cell.
我们开发了一种简单的方法来提高差分相位对比(DPC)扫描透射电子显微镜在封闭式环境细胞应用中的相位测量分辨率,并使用模拟环境细胞观测的模型样品进行了测试。由于环境细胞的顶部和底部膜通常相距甚远,倾斜系列采集会使这些膜的图像发生较大偏移,而对齐后的图像进行平均可以有效消除来自膜的不需要的信号,同时改善来自感兴趣物体的信号。实验证明,对于环境细胞中的样品,使用所提出的方法可以很好地实现 2π/100 rad 的相位精度。
{"title":"Resolution Improvement of Differential Phase-Contrast Microscopy via Tilt-Series Acquisition for Environmental Cell Application.","authors":"Kazutaka Mitsuishi, Fumiaki Ichihashi, Yoshio Takahashi, Katsuaki Nakazawa, Masaki Takeguchi, Ayako Hashimoto, Toshiaki Tanigaki","doi":"10.1093/jmicro/dfae049","DOIUrl":"https://doi.org/10.1093/jmicro/dfae049","url":null,"abstract":"<p><p>A simple method that improves the resolution of the phase measurement of differential phase-contrast (DPC) scanning transmission electron microscopy for closed-type environmental cell applications was developed and tested using a model sample simulating environmental cell observations. Because the top and bottom membranes of an environmental cell are typically far apart, the images from these membranes are shifted widely by tilt-series acquisition, and averaging the images after alignment can effectively eliminate undesired signals from the membranes while improving the signal from the object of interest. It was demonstrated that a phase precision of 2π/100 rad is well achievable using the proposed method for the sample in an environmental cell.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The anisotropic electronic structure of MgB2C2 was studied using soft X-ray emission spectroscopy electron microscopes. MgB2C2 fragments were selected by examining C K-emission profiles. C and B K-emission and Mg L-emission spectra were obtained, revealing common and distinct structures that reflect the mixing of valence orbitals. Since the material is reported to have two-dimensional B-C honeycomb layers, the orientational dependence of these emission spectra was also examined. Experimental data were compared with theoretically calculated partial density of states of the valence bands of the material. The C K-emission profile showed an apparent orientational dependence, while the B K-emission exhibited minimal dependence. This difference originated from the different energy distributions of C-2pz and B-2pz components in the valence bands. The Mg L-emission intensity was very small, likely due to charge transfer from Mg atoms to B-N layers. The Mg L-emission profile showed a peak related to structures in C-K and B-K. An unexpected intensity was observed just above the valence bands, which also showed orientational dependence, possibly due to a small deviation from the ideal composition of Mg:B:C = 1:2:2.
利用软 X 射线发射光谱电子显微镜研究了 MgB2C2 的各向异性电子结构。通过检查 C K 发射图谱选择了 MgB2C2 片段。获得的 C 和 B K 发射光谱以及 Mg L 发射光谱揭示了反映价轨道混合的常见和独特结构。据报道,这种材料具有二维 B-C 蜂窝层,因此还研究了这些发射光谱的取向依赖性。实验数据与理论计算的材料价带部分状态密度进行了比较。C K 发射曲线显示出明显的方向依赖性,而 B K 发射则显示出最小的依赖性。这种差异源于价带中 C-2pz 和 B-2pz 成分的能量分布不同。镁的 L 发射强度非常小,这可能是由于电荷从镁原子转移到了 B-N 层。镁的 L 发射曲线显示了一个与 C-K 和 B-K 结构有关的峰值。在价带的正上方观察到了一个意想不到的强度,它也显示了取向依赖性,这可能是由于与 Mg:B:C = 1:2:2 的理想组成存在微小偏差。
{"title":"Anisotropic electronic structure study of MgB2C2 using soft X-ray emission 0spectroscopy microscopes.","authors":"Yuki Hada, Masami Terauchi, Tomoya Saito, Yohei K Sato, Masaaki Baba, Masatoshi Takeda","doi":"10.1093/jmicro/dfae048","DOIUrl":"https://doi.org/10.1093/jmicro/dfae048","url":null,"abstract":"<p><p>The anisotropic electronic structure of MgB2C2 was studied using soft X-ray emission spectroscopy electron microscopes. MgB2C2 fragments were selected by examining C K-emission profiles. C and B K-emission and Mg L-emission spectra were obtained, revealing common and distinct structures that reflect the mixing of valence orbitals. Since the material is reported to have two-dimensional B-C honeycomb layers, the orientational dependence of these emission spectra was also examined. Experimental data were compared with theoretically calculated partial density of states of the valence bands of the material. The C K-emission profile showed an apparent orientational dependence, while the B K-emission exhibited minimal dependence. This difference originated from the different energy distributions of C-2pz and B-2pz components in the valence bands. The Mg L-emission intensity was very small, likely due to charge transfer from Mg atoms to B-N layers. The Mg L-emission profile showed a peak related to structures in C-K and B-K. An unexpected intensity was observed just above the valence bands, which also showed orientational dependence, possibly due to a small deviation from the ideal composition of Mg:B:C = 1:2:2.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masami Terauchi, Yohei K Sato, Takaomi D Yokoyama, Takanori Murano
This study proposes a simple evaluation method for deriving L-absorption information from two L-emission spectra of 3d transition metal (TM) elements obtained at two different accelerating voltages. This method realizes a spatial identity for X-ray emission and absorption spectroscopies. This method was evaluated for the Fe L-emission spectra of Fe and its oxides and was applied to the TM L-emission spectra of MnO, Co, CoO and NiO. The derived absorption peak positions were consistent with those obtained previously at synchrotron orbital radiation facilities, which considered the core-hole effect. This simple derivation method could be useful for obtaining X-ray absorption spectroscopy distribution images from X-ray emission spectroscopy mapping data obtained by scanning electron microscopy.
本研究提出了一种简单的评估方法,可从两个不同加速电压下获得的三维过渡金属(TM)元素的两个 L 发射光谱中得出 L 吸收信息。该方法实现了 X 射线发射和吸收光谱的空间识别。对 Fe 及其氧化物的 Fe L 发射光谱进行了评估,并将此方法应用于 MnO、Co、CoO 和 NiO 的 TM L 发射光谱。推导出的吸收峰位置与之前在同步辐射轨道设施上获得的吸收峰位置一致,其中考虑到了核孔效应。这种简单的推导方法可用于从扫描电子显微镜获得的 X 射线发射光谱绘图数据中获取 X 射线吸收光谱分布图像。
{"title":"Simple derivation of L-absorption spectra of 3d transition metal elements by the self-absorption effect observed in soft X-ray emission spectra.","authors":"Masami Terauchi, Yohei K Sato, Takaomi D Yokoyama, Takanori Murano","doi":"10.1093/jmicro/dfae012","DOIUrl":"10.1093/jmicro/dfae012","url":null,"abstract":"<p><p>This study proposes a simple evaluation method for deriving L-absorption information from two L-emission spectra of 3d transition metal (TM) elements obtained at two different accelerating voltages. This method realizes a spatial identity for X-ray emission and absorption spectroscopies. This method was evaluated for the Fe L-emission spectra of Fe and its oxides and was applied to the TM L-emission spectra of MnO, Co, CoO and NiO. The derived absorption peak positions were consistent with those obtained previously at synchrotron orbital radiation facilities, which considered the core-hole effect. This simple derivation method could be useful for obtaining X-ray absorption spectroscopy distribution images from X-ray emission spectroscopy mapping data obtained by scanning electron microscopy.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"451-455"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adapting to environmental changes and formulating behavioral strategies are central to the nervous system, with the prefrontal cortex being crucial. Chronic stress impacts this region, leading to disorders including major depression. This review discusses the roles for prefrontal cortex and the effects of stress, highlighting similarities and differences between human/primates and rodent brains. Notably, the rodent medial prefrontal cortex is analogous to the human subgenual anterior cingulate cortex in terms of emotional regulation, sharing similarities in cytoarchitecture and circuitry, while also performing cognitive functions similar to the human dorsolateral prefrontal cortex. It has been shown that chronic stress induces atrophic changes in the rodent mPFC, which mirrors the atrophy observed in the subgenual anterior cingulate cortex and dorsolateral prefrontal cortex of depression patients. However, the precise alterations in neural circuitry due to chronic stress are yet to be fully unraveled. The use of advanced imaging techniques, particularly volume electron microscopy, is emphasized as critical for the detailed examination of synaptic changes, providing a deeper understanding of stress and depression at the molecular, cellular and circuit levels. This approach offers invaluable insights into the alterations in neuronal circuits within the medial prefrontal cortex caused by chronic stress, significantly enriching our understanding of stress and depression pathologies.
{"title":"Deciphering prefrontal circuits underlying stress and depression: exploring the potential of volume electron microscopy.","authors":"Hirotaka Nagai","doi":"10.1093/jmicro/dfae036","DOIUrl":"10.1093/jmicro/dfae036","url":null,"abstract":"<p><p>Adapting to environmental changes and formulating behavioral strategies are central to the nervous system, with the prefrontal cortex being crucial. Chronic stress impacts this region, leading to disorders including major depression. This review discusses the roles for prefrontal cortex and the effects of stress, highlighting similarities and differences between human/primates and rodent brains. Notably, the rodent medial prefrontal cortex is analogous to the human subgenual anterior cingulate cortex in terms of emotional regulation, sharing similarities in cytoarchitecture and circuitry, while also performing cognitive functions similar to the human dorsolateral prefrontal cortex. It has been shown that chronic stress induces atrophic changes in the rodent mPFC, which mirrors the atrophy observed in the subgenual anterior cingulate cortex and dorsolateral prefrontal cortex of depression patients. However, the precise alterations in neural circuitry due to chronic stress are yet to be fully unraveled. The use of advanced imaging techniques, particularly volume electron microscopy, is emphasized as critical for the detailed examination of synaptic changes, providing a deeper understanding of stress and depression at the molecular, cellular and circuit levels. This approach offers invaluable insights into the alterations in neuronal circuits within the medial prefrontal cortex caused by chronic stress, significantly enriching our understanding of stress and depression pathologies.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"391-404"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}