The asymmetric hydrogenation of olefins is one of the most important asymmetric transformations in molecular synthesis. While other machine learning models have successfully predicted stereoselectivity for reactions with a single prochiral site, existing models face limitations including narrow substrate-catalyst applicability, an inability to simultaneously predict stereoselectivity and absolute configurations in asymmetric hydrogenation of olefins with two prochiral sites, and a reliance on predefined descriptors. Here, to overcome these challenges, we introduce Chemistry-Informed Asymmetric Hydrogenation Network (ChemAHNet), a deep learning model based on the reaction mechanism of olefin asymmetric hydrogenation. By leveraging three structure-aware modules, ChemAHNet accurately predicts the absolute configuration of major enantiomers across diverse catalysts and substrates. It also defines the of asymmetric hydrogenation via catalyst-olefin interactions, enabling concurrent prediction of stereoselectivity and absolute configuration. Notably, ChemAHNet extends to other asymmetric catalytic reactions. By operating solely on simplified molecular-input line-entry system inputs, it captures atomic-level spatial and electronic interactions, offering a robust tool for target-directed molecular engineering.
扫码关注我们
求助内容:
应助结果提醒方式:
