首页 > 最新文献

Nature computational science最新文献

英文 中文
Publisher Correction: On the compatibility of generative AI and generative linguistics 发布者更正:关于生成人工智能与生成语言学的兼容性。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-24 DOI: 10.1038/s43588-025-00937-z
Eva Portelance, Masoud Jasbi
{"title":"Publisher Correction: On the compatibility of generative AI and generative linguistics","authors":"Eva Portelance, Masoud Jasbi","doi":"10.1038/s43588-025-00937-z","DOIUrl":"10.1038/s43588-025-00937-z","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"109-109"},"PeriodicalIF":18.3,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00937-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145597461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viability of using LLMs as models of human language processing. 使用llm作为人类语言处理模型的可行性。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-21 DOI: 10.1038/s43588-025-00913-7
Alex Murphy
{"title":"Viability of using LLMs as models of human language processing.","authors":"Alex Murphy","doi":"10.1038/s43588-025-00913-7","DOIUrl":"https://doi.org/10.1038/s43588-025-00913-7","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145575062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering physical laws with parallel symbolic enumeration 用并行符号枚举法发现物理定律。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-21 DOI: 10.1038/s43588-025-00904-8
Kai Ruan, Yilong Xu, Ze-Feng Gao, Yang Liu, Yike Guo, Ji-Rong Wen, Hao Sun
Symbolic regression has a crucial role in modern scientific research owing to its capability of discovering concise and interpretable mathematical expressions from data. A key challenge lies in the search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. Here, to this end, we introduce parallel symbolic enumeration (PSE) to efficiently distill generic mathematical expressions from limited data. Experiments show that PSE achieves higher accuracy and faster computation compared with the state-of-the-art baseline algorithms across over 200 synthetic and experimental problem sets (for example, improving the recovery accuracy by up to 99% and reducing runtime by an order of magnitude). PSE represents an advance in accurate and efficient data-driven discovery of symbolic, interpretable models (for example, underlying physical laws), and improves the scalability of symbolic learning. In this work, the authors introduce parallel symbolic enumeration (PSE), a model that discovers physical laws from data with improved accuracy and speed. By evaluating millions of expressions in parallel and reusing computations, PSE outperforms the state-of-the-art methods.
符号回归能够从数据中发现简洁、可解释的数学表达式,在现代科学研究中发挥着至关重要的作用。一个关键的挑战在于在无限搜索空间中寻找简洁和可推广的数学公式,同时打算拟合训练数据。近十年来,符号回归算法在处理复杂问题时面临着精度和效率的瓶颈,这从根本上阻碍了符号回归在跨学科领域科学探索中的应用。为此,我们引入并行符号枚举(PSE)来从有限的数据中有效地提取通用的数学表达式。实验表明,与最先进的基线算法相比,PSE在超过200个合成和实验问题集上实现了更高的精度和更快的计算速度(例如,将恢复精度提高了99%,并将运行时间缩短了一个数量级)。PSE代表了对符号的、可解释的模型(例如,潜在的物理定律)的准确和有效的数据驱动发现的进步,并且提高了符号学习的可伸缩性。
{"title":"Discovering physical laws with parallel symbolic enumeration","authors":"Kai Ruan, Yilong Xu, Ze-Feng Gao, Yang Liu, Yike Guo, Ji-Rong Wen, Hao Sun","doi":"10.1038/s43588-025-00904-8","DOIUrl":"10.1038/s43588-025-00904-8","url":null,"abstract":"Symbolic regression has a crucial role in modern scientific research owing to its capability of discovering concise and interpretable mathematical expressions from data. A key challenge lies in the search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. Here, to this end, we introduce parallel symbolic enumeration (PSE) to efficiently distill generic mathematical expressions from limited data. Experiments show that PSE achieves higher accuracy and faster computation compared with the state-of-the-art baseline algorithms across over 200 synthetic and experimental problem sets (for example, improving the recovery accuracy by up to 99% and reducing runtime by an order of magnitude). PSE represents an advance in accurate and efficient data-driven discovery of symbolic, interpretable models (for example, underlying physical laws), and improves the scalability of symbolic learning. In this work, the authors introduce parallel symbolic enumeration (PSE), a model that discovers physical laws from data with improved accuracy and speed. By evaluating millions of expressions in parallel and reusing computations, PSE outperforms the state-of-the-art methods.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"53-66"},"PeriodicalIF":18.3,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00904-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145575035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to respond to reviewers 如何回应审稿人
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-21 DOI: 10.1038/s43588-025-00931-5
We provide recommendations on how to write an effective point-by-point response document.
我们就如何撰写有效的逐点回应文件提供建议。
{"title":"How to respond to reviewers","authors":"","doi":"10.1038/s43588-025-00931-5","DOIUrl":"10.1038/s43588-025-00931-5","url":null,"abstract":"We provide recommendations on how to write an effective point-by-point response document.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 11","pages":"975-975"},"PeriodicalIF":18.3,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00931-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient methods for facilitating topological photonics and acoustics computation 促进拓扑光子学和声学计算的有效方法。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-21 DOI: 10.1038/s43588-025-00921-7
Zhaohui Dong, Luqi Yuan
A recent study proposes efficient numerical algorithms to reduce the required computational resources for solving the edge states in large-scale photonic or acoustic structures.
最近的一项研究提出了有效的数值算法来减少求解大规模光子或声学结构中边缘态所需的计算资源。
{"title":"Efficient methods for facilitating topological photonics and acoustics computation","authors":"Zhaohui Dong, Luqi Yuan","doi":"10.1038/s43588-025-00921-7","DOIUrl":"10.1038/s43588-025-00921-7","url":null,"abstract":"A recent study proposes efficient numerical algorithms to reduce the required computational resources for solving the edge states in large-scale photonic or acoustic structures.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 12","pages":"1106-1107"},"PeriodicalIF":18.3,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145575069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How LLMs generate judgments 法学硕士是如何做出判断的
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-20 DOI: 10.1038/s43588-025-00925-3
Fernando Chirigati
{"title":"How LLMs generate judgments","authors":"Fernando Chirigati","doi":"10.1038/s43588-025-00925-3","DOIUrl":"10.1038/s43588-025-00925-3","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 11","pages":"987-987"},"PeriodicalIF":18.3,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The feasibility of zeolite intergrowths 沸石共生的可行性
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-20 DOI: 10.1038/s43588-025-00926-2
Kaitlin McCardle
{"title":"The feasibility of zeolite intergrowths","authors":"Kaitlin McCardle","doi":"10.1038/s43588-025-00926-2","DOIUrl":"10.1038/s43588-025-00926-2","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 11","pages":"988-988"},"PeriodicalIF":18.3,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodicity-aware deep learning for polymers 聚合物周期感知深度学习。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-20 DOI: 10.1038/s43588-025-00903-9
Yuhui Wu, Cong Wang, Xintian Shen, Tianyi Zhang, Peng Zhang, Jian Ji
Deep learning has revolutionized chemical research by accelerating the discovery and understanding of complex chemical systems. However, polymer chemistry lacks a unified deep learning framework owing to the complexity of polymer structures. Existing self-supervised learning methods simplify polymers into repeating units and neglect their inherent periodicity, thereby limiting the models’ ability to generalize across tasks. To address this, we propose a periodicity-aware deep learning framework for polymers, PerioGT. In pre-training, a chemical knowledge-driven periodicity prior is constructed and incorporated into the model through contrastive learning. Then, periodicity prompts are learned in fine-tuning based on the prior. Additionally, a graph augmentation strategy is employed, which integrates additional conditions via virtual nodes to model complex chemical interactions. PerioGT achieves state-of-the-art performance on 16 downstream tasks. Wet-lab experiments highlight PerioGT’s potential in the real world, identifying two polymers with potent antimicrobial properties. Our results demonstrate that introducing the periodicity prior effectively enhances model performance. PerioGT is a self-supervised learning framework for polymer property prediction, integrating periodicity priors and additional conditions to enhance generalization under data scarcity and enable broad applicability.
深度学习通过加速对复杂化学系统的发现和理解,彻底改变了化学研究。然而,由于聚合物结构的复杂性,聚合物化学缺乏统一的深度学习框架。现有的自监督学习方法将聚合物简化为重复单元,忽略了其固有的周期性,从而限制了模型跨任务的泛化能力。为了解决这个问题,我们提出了一个周期感知的聚合物深度学习框架,PerioGT。在预训练中,构建了化学知识驱动的周期性先验,并通过对比学习将其纳入模型。然后,在基于先验的微调中学习周期性提示。此外,采用图形增强策略,通过虚拟节点集成附加条件来模拟复杂的化学相互作用。PerioGT在16个下游任务上实现了最先进的性能。湿实验室实验突出了PerioGT在现实世界中的潜力,确定了两种具有强效抗菌性能的聚合物。结果表明,引入周期性先验可以有效地提高模型的性能。
{"title":"Periodicity-aware deep learning for polymers","authors":"Yuhui Wu, Cong Wang, Xintian Shen, Tianyi Zhang, Peng Zhang, Jian Ji","doi":"10.1038/s43588-025-00903-9","DOIUrl":"10.1038/s43588-025-00903-9","url":null,"abstract":"Deep learning has revolutionized chemical research by accelerating the discovery and understanding of complex chemical systems. However, polymer chemistry lacks a unified deep learning framework owing to the complexity of polymer structures. Existing self-supervised learning methods simplify polymers into repeating units and neglect their inherent periodicity, thereby limiting the models’ ability to generalize across tasks. To address this, we propose a periodicity-aware deep learning framework for polymers, PerioGT. In pre-training, a chemical knowledge-driven periodicity prior is constructed and incorporated into the model through contrastive learning. Then, periodicity prompts are learned in fine-tuning based on the prior. Additionally, a graph augmentation strategy is employed, which integrates additional conditions via virtual nodes to model complex chemical interactions. PerioGT achieves state-of-the-art performance on 16 downstream tasks. Wet-lab experiments highlight PerioGT’s potential in the real world, identifying two polymers with potent antimicrobial properties. Our results demonstrate that introducing the periodicity prior effectively enhances model performance. PerioGT is a self-supervised learning framework for polymer property prediction, integrating periodicity priors and additional conditions to enhance generalization under data scarcity and enable broad applicability.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 12","pages":"1214-1226"},"PeriodicalIF":18.3,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145566635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal physics meets quantum computing 热物理与量子计算相结合
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-20 DOI: 10.1038/s43588-025-00927-1
Jie Pan
{"title":"Thermal physics meets quantum computing","authors":"Jie Pan","doi":"10.1038/s43588-025-00927-1","DOIUrl":"10.1038/s43588-025-00927-1","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 11","pages":"989-989"},"PeriodicalIF":18.3,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aligning brains into a shared space improves their alignment with large language models. 将大脑整合到一个共享空间中可以提高它们与大型语言模型的一致性。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-11-18 DOI: 10.1038/s43588-025-00900-y
Arnab Bhattacharjee, Zaid Zada, Haocheng Wang, Bobbi Aubrey, Werner Doyle, Patricia Dugan, Daniel Friedman, Orrin Devinsky, Adeen Flinker, Peter J Ramadge, Uri Hasson, Ariel Goldstein, Samuel A Nastase

Recent research demonstrates that large language models can predict neural activity recorded via electrocorticography during natural language processing. To predict word-by-word neural activity, most prior work evaluates encoding models within individual electrodes and participants, limiting generalizability. Here we analyze electrocorticography data from eight participants listening to the same 30-min podcast. Using a shared response model, we estimate a common information space across participants. This shared space substantially enhances large language model-based encoding performance and enables denoising of individual brain responses by projecting back into participant-specific electrode spaces-yielding a 37% average improvement in encoding accuracy (from r = 0.188 to r = 0.257). The greatest gains occur in brain areas specialized for language comprehension, particularly the superior temporal gyrus and inferior frontal gyrus. Our findings highlight that estimating a shared space allows us to construct encoding models that better generalize across individuals.

最近的研究表明,大型语言模型可以预测在自然语言处理过程中通过皮质电图记录的神经活动。为了预测逐字的神经活动,大多数先前的工作都是在单个电极和参与者中评估编码模型,限制了通用性。在这里,我们分析了8名参与者听同样的30分钟播客的皮质电图数据。使用共享响应模型,我们估计了参与者之间的公共信息空间。这种共享空间极大地增强了基于大型语言模型的编码性能,并通过投射回参与者特定的电极空间来实现个体大脑反应的去噪——编码精度平均提高37%(从r = 0.188到r = 0.257)。最大的收获发生在专门负责语言理解的大脑区域,特别是颞上回和额下回。我们的研究结果强调,估计共享空间使我们能够构建编码模型,从而更好地在个体之间进行推广。
{"title":"Aligning brains into a shared space improves their alignment with large language models.","authors":"Arnab Bhattacharjee, Zaid Zada, Haocheng Wang, Bobbi Aubrey, Werner Doyle, Patricia Dugan, Daniel Friedman, Orrin Devinsky, Adeen Flinker, Peter J Ramadge, Uri Hasson, Ariel Goldstein, Samuel A Nastase","doi":"10.1038/s43588-025-00900-y","DOIUrl":"https://doi.org/10.1038/s43588-025-00900-y","url":null,"abstract":"<p><p>Recent research demonstrates that large language models can predict neural activity recorded via electrocorticography during natural language processing. To predict word-by-word neural activity, most prior work evaluates encoding models within individual electrodes and participants, limiting generalizability. Here we analyze electrocorticography data from eight participants listening to the same 30-min podcast. Using a shared response model, we estimate a common information space across participants. This shared space substantially enhances large language model-based encoding performance and enables denoising of individual brain responses by projecting back into participant-specific electrode spaces-yielding a 37% average improvement in encoding accuracy (from r = 0.188 to r = 0.257). The greatest gains occur in brain areas specialized for language comprehension, particularly the superior temporal gyrus and inferior frontal gyrus. Our findings highlight that estimating a shared space allows us to construct encoding models that better generalize across individuals.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145552206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature computational science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1