首页 > 最新文献

Nature computational science最新文献

英文 中文
Deep-learning electronic structure calculations 深度学习电子结构计算
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-22 DOI: 10.1038/s43588-025-00932-4
Zechen Tang, Haoxiang Chen, Yang Li, Yubing Qian, Yuxiang Wang, Weizhong Fu, Jialin Li, Chen Si, Wenhui Duan, Ji Chen, Yong Xu
First-principles electronic structure calculations have profoundly advanced research in physics, chemistry and materials science, yet their further development remains constrained by the accuracy–efficiency dilemma. Here we highlight recent breakthroughs in deep-learning methodologies that address this challenge, including the deep-learning quantum Monte Carlo method for the accurate study of correlated electrons and deep-learning density functional theory for efficient large-scale material simulations. These advances extend the reach of first-principles calculations to unprecedented scales and complexity, enhancing the impact of quantum mechanics in scientific discovery. This Review explores the integration of deep learning in first-principles electronic structure calculations, addressing the accuracy–efficiency dilemma of traditional algorithms and extending first-principles methods to unprecedented scales and complexity.
第一性原理电子结构计算在物理、化学和材料科学领域具有深远的推动作用,但其进一步发展仍然受到精度-效率困境的制约。在这里,我们重点介绍了解决这一挑战的深度学习方法的最新突破,包括用于精确研究相关电子的深度学习量子蒙特卡罗方法和用于高效大规模材料模拟的深度学习密度泛函理论。这些进步将第一性原理计算的范围扩展到前所未有的规模和复杂性,增强了量子力学在科学发现中的影响。本综述探讨了深度学习在第一性原理电子结构计算中的集成,解决了传统算法的准确性和效率难题,并将第一性原理方法扩展到前所未有的规模和复杂性。
{"title":"Deep-learning electronic structure calculations","authors":"Zechen Tang, Haoxiang Chen, Yang Li, Yubing Qian, Yuxiang Wang, Weizhong Fu, Jialin Li, Chen Si, Wenhui Duan, Ji Chen, Yong Xu","doi":"10.1038/s43588-025-00932-4","DOIUrl":"10.1038/s43588-025-00932-4","url":null,"abstract":"First-principles electronic structure calculations have profoundly advanced research in physics, chemistry and materials science, yet their further development remains constrained by the accuracy–efficiency dilemma. Here we highlight recent breakthroughs in deep-learning methodologies that address this challenge, including the deep-learning quantum Monte Carlo method for the accurate study of correlated electrons and deep-learning density functional theory for efficient large-scale material simulations. These advances extend the reach of first-principles calculations to unprecedented scales and complexity, enhancing the impact of quantum mechanics in scientific discovery. This Review explores the integration of deep learning in first-principles electronic structure calculations, addressing the accuracy–efficiency dilemma of traditional algorithms and extending first-principles methods to unprecedented scales and complexity.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 12","pages":"1133-1146"},"PeriodicalIF":18.3,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145802621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pitfalls and prospects of quantum machine learning 量子机器学习的陷阱和前景
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-22 DOI: 10.1038/s43588-025-00914-6
Weikang Li, Yixuan Ma, Dong-Ling Deng
Quantum machine learning is being actively explored to assess whether quantum resources can enhance learning and inference, yet major obstacles remain. Here, we discuss pressing challenges and outline potential pathways toward future practical applications.
人们正在积极探索量子机器学习,以评估量子资源是否可以增强学习和推理,但主要障碍仍然存在。在这里,我们讨论了紧迫的挑战,并概述了未来实际应用的潜在途径。
{"title":"Pitfalls and prospects of quantum machine learning","authors":"Weikang Li, Yixuan Ma, Dong-Ling Deng","doi":"10.1038/s43588-025-00914-6","DOIUrl":"10.1038/s43588-025-00914-6","url":null,"abstract":"Quantum machine learning is being actively explored to assess whether quantum resources can enhance learning and inference, yet major obstacles remain. Here, we discuss pressing challenges and outline potential pathways toward future practical applications.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 12","pages":"1095-1097"},"PeriodicalIF":18.3,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145802620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The afterlife of 20 million AI chips 2000万个人工智能芯片的来世。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-18 DOI: 10.1038/s43588-025-00940-4
Sophia Chen
Data-center operators try to recycle retired hardware, but a broken global recycling infrastructure stands in the way.
数据中心运营商试图回收退役硬件,但全球回收基础设施的缺陷阻碍了这一进程。
{"title":"The afterlife of 20 million AI chips","authors":"Sophia Chen","doi":"10.1038/s43588-025-00940-4","DOIUrl":"10.1038/s43588-025-00940-4","url":null,"abstract":"Data-center operators try to recycle retired hardware, but a broken global recycling infrastructure stands in the way.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"2-5"},"PeriodicalIF":18.3,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145783912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-guided molecular design with recipes included 人工智能引导的分子设计,包括食谱。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-18 DOI: 10.1038/s43588-025-00928-0
Jeremie Alexander, Jonathan M. Stokes
SynGFN integrates synthesis constraints directly into the chemical design process. The result is a generative framework that produces diverse, high-quality molecules that can be readily synthesized in the laboratory.
SynGFN将合成约束直接集成到化学设计过程中。结果是一个生成框架,可以产生多种高质量的分子,这些分子可以在实验室中很容易地合成。
{"title":"AI-guided molecular design with recipes included","authors":"Jeremie Alexander, Jonathan M. Stokes","doi":"10.1038/s43588-025-00928-0","DOIUrl":"10.1038/s43588-025-00928-0","url":null,"abstract":"SynGFN integrates synthesis constraints directly into the chemical design process. The result is a generative framework that produces diverse, high-quality molecules that can be readily synthesized in the laboratory.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"13-14"},"PeriodicalIF":18.3,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145783857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the balance of trade-offs in multi-objective optimization with quantum computing 用量子计算改进多目标优化中的权衡平衡。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-16 DOI: 10.1038/s43588-025-00936-0
Vishwanathan Akshay, Mile Gu
A recent study demonstrates the applicability of quantum computers for multi-objective optimization, bringing quantum computing a step closer towards practical applications.
最近的一项研究证明了量子计算机对多目标优化的适用性,使量子计算向实际应用更近了一步。
{"title":"Improving the balance of trade-offs in multi-objective optimization with quantum computing","authors":"Vishwanathan Akshay, Mile Gu","doi":"10.1038/s43588-025-00936-0","DOIUrl":"10.1038/s43588-025-00936-0","url":null,"abstract":"A recent study demonstrates the applicability of quantum computers for multi-objective optimization, bringing quantum computing a step closer towards practical applications.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 12","pages":"1102-1103"},"PeriodicalIF":18.3,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145770272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a domain-grounded AI collaborator with SciSciGPT. 与SciSciGPT一起实现基于领域的AI协作。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-16 DOI: 10.1038/s43588-025-00935-1
{"title":"Toward a domain-grounded AI collaborator with SciSciGPT.","authors":"","doi":"10.1038/s43588-025-00935-1","DOIUrl":"https://doi.org/10.1038/s43588-025-00935-1","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145770292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing LLMs to decode genetic perturbations 利用llm来解码遗传扰动。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-16 DOI: 10.1038/s43588-025-00910-w
Zijing Gao, Rui Jiang
Scouter, a deep learning approach, predicts transcriptional responses to genetic perturbations by integrating large language model (LLM)-based gene embeddings with a lightweight compressor–generator neural network, providing valuable insights into the application of LLMs to biological research.
Scouter是一种深度学习方法,通过将基于大型语言模型(LLM)的基因嵌入与轻量级压缩-生成器神经网络相结合,预测遗传扰动的转录反应,为LLM在生物学研究中的应用提供了有价值的见解。
{"title":"Harnessing LLMs to decode genetic perturbations","authors":"Zijing Gao, Rui Jiang","doi":"10.1038/s43588-025-00910-w","DOIUrl":"10.1038/s43588-025-00910-w","url":null,"abstract":"Scouter, a deep learning approach, predicts transcriptional responses to genetic perturbations by integrating large language model (LLM)-based gene embeddings with a lightweight compressor–generator neural network, providing valuable insights into the application of LLMs to biological research.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"11-12"},"PeriodicalIF":18.3,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145770173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning accelerates discovery of complex nanomaterials 深度学习加速了复杂纳米材料的发现。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-15 DOI: 10.1038/s43588-025-00918-2
A physics-infused heterogeneous graph neural network has been developed to address challenges in designing complex nanomaterials with spatially varying compositions. This fully differentiable model enables the rapid optimization and discovery of photon upconverting nanoparticle heterostructures that are 6.5-fold brighter than any nanoparticle in the training set.
一种物理注入的异构图神经网络已经被开发出来,以解决设计具有空间变化成分的复杂纳米材料的挑战。这个完全可微分的模型能够快速优化和发现光子上转换的纳米颗粒异质结构,其亮度是训练集中任何纳米颗粒的6.5倍。
{"title":"Deep learning accelerates discovery of complex nanomaterials","authors":"","doi":"10.1038/s43588-025-00918-2","DOIUrl":"10.1038/s43588-025-00918-2","url":null,"abstract":"A physics-infused heterogeneous graph neural network has been developed to address challenges in designing complex nanomaterials with spatially varying compositions. This fully differentiable model enables the rapid optimization and discovery of photon upconverting nanoparticle heterostructures that are 6.5-fold brighter than any nanoparticle in the training set.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"19-20"},"PeriodicalIF":18.3,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145764732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting physics efficiently with hybrid hardware 用混合硬件有效地预测物理。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-10 DOI: 10.1038/s43588-025-00922-6
Luca Manneschi, Matthew O. A. Ellis
A recent study demonstrates the efficiency of quantum-mechanical modeling of material properties by mapping the problem onto neuromorphic device architectures.
最近的一项研究通过将问题映射到神经形态器件架构上,证明了材料特性量子力学建模的效率。
{"title":"Predicting physics efficiently with hybrid hardware","authors":"Luca Manneschi, Matthew O. A. Ellis","doi":"10.1038/s43588-025-00922-6","DOIUrl":"10.1038/s43588-025-00922-6","url":null,"abstract":"A recent study demonstrates the efficiency of quantum-mechanical modeling of material properties by mapping the problem onto neuromorphic device architectures.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 12","pages":"1104-1105"},"PeriodicalIF":18.3,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145727761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding omics via representation learning 通过表征学习解码组学。
IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-09 DOI: 10.1038/s43588-025-00909-3
Dinghao Wang, Qingrun Zhang
A framework called AUTOENCODIX benchmarks diverse autoencoder architectures in biological molecular profiling data, enabling insights from complex, multi-layered data.
一个名为AUTOENCODIX的框架对生物分子分析数据中的各种自编码器架构进行了基准测试,从而能够从复杂的多层数据中获得见解。
{"title":"Decoding omics via representation learning","authors":"Dinghao Wang, Qingrun Zhang","doi":"10.1038/s43588-025-00909-3","DOIUrl":"10.1038/s43588-025-00909-3","url":null,"abstract":"A framework called AUTOENCODIX benchmarks diverse autoencoder architectures in biological molecular profiling data, enabling insights from complex, multi-layered data.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"6 1","pages":"17-18"},"PeriodicalIF":18.3,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature computational science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1