We introduce SciSciGPT, an open-source, prototype artificial intelligence (AI) collaborator that uses the domain of science of science as a testbed to explore the potential of large language model-powered research tools. SciSciGPT automates complex workflows, supports diverse analytical approaches, accelerates research prototyping and iteration and facilitates reproducibility. Through case studies, we demonstrate its ability to streamline a wide range of empirical and analytical research tasks while highlighting its broader potential to advance research. We further propose a large language model agent capability maturity model for human-AI collaboration, envisioning a roadmap to further improve and expand upon frameworks such as SciSciGPT. As AI capabilities continue to evolve, frameworks such as SciSciGPT may play increasingly pivotal roles in scientific research and discovery. At the same time, these new advances also raise critical challenges, from ensuring transparency and ethical use to balancing human and AI contributions. Addressing these issues may shape the future of scientific inquiry and inform how we train the next generation of scientists to thrive in an increasingly AI-integrated research ecosystem.
The asymmetric hydrogenation of olefins is one of the most important asymmetric transformations in molecular synthesis. While other machine learning models have successfully predicted stereoselectivity for reactions with a single prochiral site, existing models face limitations including narrow substrate-catalyst applicability, an inability to simultaneously predict stereoselectivity and absolute configurations in asymmetric hydrogenation of olefins with two prochiral sites, and a reliance on predefined descriptors. Here, to overcome these challenges, we introduce Chemistry-Informed Asymmetric Hydrogenation Network (ChemAHNet), a deep learning model based on the reaction mechanism of olefin asymmetric hydrogenation. By leveraging three structure-aware modules, ChemAHNet accurately predicts the absolute configuration of major enantiomers across diverse catalysts and substrates. It also defines the of asymmetric hydrogenation via catalyst-olefin interactions, enabling concurrent prediction of stereoselectivity and absolute configuration. Notably, ChemAHNet extends to other asymmetric catalytic reactions. By operating solely on simplified molecular-input line-entry system inputs, it captures atomic-level spatial and electronic interactions, offering a robust tool for target-directed molecular engineering.

