This work considers a micropolar hybrid nanofluid flow through a resistive porous media between channel walls to study the uncertain effects of thermal radiation and magnetic field on the velocity and thermal profiles by considering distinctly shaped nanoparticles such as copper (Cu) and hybrid nanoparticles such as copper–alumina (Cu–Al(_{2})O(_{3})). Three different forms of the nanoparticles, spherical, cylindrical and blade are examined considering the flow’s heat radiation and magnetic field impact. Here, the volume fractions of nanoparticles are expressed with the triangular fuzzy number ranging from 0 to 2.5% to examine its uncertain effects on the velocity and thermal profiles by employing a double parameter-based homotopy approach. The homotopy analytical approach has proven its efficacy in approximating solutions to diverse nonlinear problems owing to its rapid solution convergence. The obtained results are validated with the available results in crisp cases, and a graphical with numerical illustration has been made to study the behaviour of the fuzzy velocity, microrotation, temperature and concentration profiles under the effect of distinct parameters. The findings of this study indicate that, despite micropolar effects and porosity, the heat transmission rate is improved in hybrid nanofluids and blade-shaped nanoparticles compared to cylindrical and spherical-shaped nanoparticles.