Pub Date : 2021-11-21eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.13
Jan Babič, Matteo Laffranchi, Federico Tessari, Tom Verstraten, Domen Novak, Nejc Šarabon, Barkan Ugurlu, Luka Peternel, Diego Torricelli, Jan F Veneman
The science and technology of wearable robots are steadily advancing, and the use of such robots in our everyday life appears to be within reach. Nevertheless, widespread adoption of wearable robots should not be taken for granted, especially since many recent attempts to bring them to real-life applications resulted in mixed outcomes. The aim of this article is to address the current challenges that are limiting the application and wider adoption of wearable robots that are typically worn over the human body. We categorized the challenges into mechanical layout, actuation, sensing, body interface, control, human-robot interfacing and coadaptation, and benchmarking. For each category, we discuss specific challenges and the rationale for why solving them is important, followed by an overview of relevant recent works. We conclude with an opinion that summarizes possible solutions that could contribute to the wider adoption of wearable robots.
{"title":"Challenges and solutions for application and wider adoption of wearable robots.","authors":"Jan Babič, Matteo Laffranchi, Federico Tessari, Tom Verstraten, Domen Novak, Nejc Šarabon, Barkan Ugurlu, Luka Peternel, Diego Torricelli, Jan F Veneman","doi":"10.1017/wtc.2021.13","DOIUrl":"10.1017/wtc.2021.13","url":null,"abstract":"<p><p>The science and technology of wearable robots are steadily advancing, and the use of such robots in our everyday life appears to be within reach. Nevertheless, widespread adoption of wearable robots should not be taken for granted, especially since many recent attempts to bring them to real-life applications resulted in mixed outcomes. The aim of this article is to address the current challenges that are limiting the application and wider adoption of wearable robots that are typically worn over the human body. We categorized the challenges into mechanical layout, actuation, sensing, body interface, control, human-robot interfacing and coadaptation, and benchmarking. For each category, we discuss specific challenges and the rationale for why solving them is important, followed by an overview of relevant recent works. We conclude with an opinion that summarizes possible solutions that could contribute to the wider adoption of wearable robots.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46458635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.12
Giorgos Marinou, Matthew Millard, Nejc Šarabon, Katja Mombaur
Although wearable robotic systems are designed to reduce the risk of low-back injury, it is unclear how effective assistance is, compared to improvements in lifting technique. We use a two-factor block study design to simulate how effective exoskeleton assistance and technical improvements are at reducing the risk of low-back injury when compared to a typical adult lifting a box. The effects of assistance are examined by simulating two different models: a model of just the human participant, and a model of the human participant wearing the SPEXOR exoskeleton. The effects of lifting technique are investigated by formulating two different types of optimal control problems: a least-squares problem which tracks the human participant's lifting technique, and a minimization problem where the model is free to use a different movement. Different lifting techniques are considered using three different cost functions related to risk factors for low-back injury: cumulative low-back load (CLBL), peak low-back load (PLBL), and a combination of both CLBL and PLBL (HYB). The results of our simulations indicate that an exoskeleton alone can make modest reductions in both CLBL and PLBL. In contrast, technical improvements alone are effective at reducing CLBL, but not PLBL. The largest reductions in both CLBL and PLBL occur when both an exoskeleton and technical improvements are used. While all three of the lifting technique cost functions reduce both CLBL and PLBL, the HYB cost function offers the most balanced reduction in both CLBL and PLBL.
{"title":"Comparing the risk of low-back injury using model-based optimization: Improved technique versus exoskeleton assistance.","authors":"Giorgos Marinou, Matthew Millard, Nejc Šarabon, Katja Mombaur","doi":"10.1017/wtc.2021.12","DOIUrl":"10.1017/wtc.2021.12","url":null,"abstract":"<p><p>Although wearable robotic systems are designed to reduce the risk of low-back injury, it is unclear how effective assistance is, compared to improvements in lifting technique. We use a two-factor block study design to simulate how effective exoskeleton assistance and technical improvements are at reducing the risk of low-back injury when compared to a typical adult lifting a box. The effects of assistance are examined by simulating two different models: a model of just the human participant, and a model of the human participant wearing the SPEXOR exoskeleton. The effects of lifting technique are investigated by formulating two different types of optimal control problems: a least-squares problem which tracks the human participant's lifting technique, and a minimization problem where the model is free to use a different movement. Different lifting techniques are considered using three different cost functions related to risk factors for low-back injury: cumulative low-back load (CLBL), peak low-back load (PLBL), and a combination of both CLBL and PLBL (HYB). The results of our simulations indicate that an exoskeleton alone can make modest reductions in both CLBL and PLBL. In contrast, technical improvements alone are effective at reducing CLBL, but not PLBL. The largest reductions in both CLBL and PLBL occur when both an exoskeleton and technical improvements are used. While all three of the lifting technique cost functions reduce both CLBL and PLBL, the HYB cost function offers the most balanced reduction in both CLBL and PLBL.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42517514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.9
Tommaso Poliero, Matteo Sposito, Stefano Toxiri, Christian Di Natali, Matteo Iurato, Vittorio Sanguineti, Darwin G Caldwell, Jesús Ortiz
Assistive strategies for occupational back-support exoskeletons have focused, mostly, on lifting tasks. However, in occupational scenarios, it is important to account not only for lifting but also for other activities. This can be done exploiting human activity recognition algorithms that can identify which task the user is performing and trigger the appropriate assistive strategy. We refer to this ability as exoskeleton versatility. To evaluate versatility, we propose to focus both on the ability of the device to reduce muscle activation (efficacy) and on its interaction with the user (dynamic fit). To this end, we performed an experimental study involving healthy subjects replicating the working activities of a manufacturing plant. To compare versatile and non-versatile exoskeletons, our device, XoTrunk, was controlled with two different strategies. Correspondingly, we collected muscle activity, kinematic variables and users' subjective feedbacks. Also, we evaluated the task recognition performance of the device. The results show that XoTrunk is capable of reducing muscle activation by up to in lifting and in carrying. However, the non-versatile control strategy hindered the users' natural gait (e.g., reduction of hip flexion), which could potentially lower the exoskeleton acceptance. Detecting carrying activities and adapting the control strategy, resulted in a more natural gait (e.g., increase of hip flexion). The classifier analyzed in this work, showed promising performance (online accuracy > 91%). Finally, we conducted 9 hours of field testing, involving four users. Initial subjective feedbacks on the exoskeleton versatility, are presented at the end of this work.
{"title":"Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies.","authors":"Tommaso Poliero, Matteo Sposito, Stefano Toxiri, Christian Di Natali, Matteo Iurato, Vittorio Sanguineti, Darwin G Caldwell, Jesús Ortiz","doi":"10.1017/wtc.2021.9","DOIUrl":"10.1017/wtc.2021.9","url":null,"abstract":"<p><p>Assistive strategies for occupational back-support exoskeletons have focused, mostly, on lifting tasks. However, in occupational scenarios, it is important to account not only for lifting but also for other activities. This can be done exploiting human activity recognition algorithms that can identify which task the user is performing and trigger the appropriate assistive strategy. We refer to this ability as exoskeleton versatility. To evaluate versatility, we propose to focus both on the ability of the device to reduce muscle activation (efficacy) and on its interaction with the user (dynamic fit). To this end, we performed an experimental study involving healthy subjects replicating the working activities of a manufacturing plant. To compare versatile and non-versatile exoskeletons, our device, XoTrunk, was controlled with two different strategies. Correspondingly, we collected muscle activity, kinematic variables and users' subjective feedbacks. Also, we evaluated the task recognition performance of the device. The results show that XoTrunk is capable of reducing muscle activation by up to in lifting and in carrying. However, the non-versatile control strategy hindered the users' natural gait (e.g., reduction of hip flexion), which could potentially lower the exoskeleton acceptance. Detecting carrying activities and adapting the control strategy, resulted in a more natural gait (e.g., increase of hip flexion). The classifier analyzed in this work, showed promising performance (online accuracy > 91%). Finally, we conducted 9 hours of field testing, involving four users. Initial subjective feedbacks on the exoskeleton versatility, are presented at the end of this work.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49200982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-17eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.11
Simona Crea, Philipp Beckerle, Michiel De Looze, Kevin De Pauw, Lorenzo Grazi, Tjaša Kermavnar, Jawad Masood, Leonard W O'Sullivan, Ilaria Pacifico, Carlos Rodriguez-Guerrero, Nicola Vitiello, Danijela Ristić-Durrant, Jan Veneman
The large-scale adoption of occupational exoskeletons (OEs) will only happen if clear evidence of effectiveness of the devices is available. Performing product-specific field validation studies would allow the stakeholders and decision-makers (e.g., employers, ergonomists, health, and safety departments) to assess OEs' effectiveness in their specific work contexts and with experienced workers, who could further provide useful insights on practical issues related to exoskeleton daily use. This paper reviews present-day scientific methods for assessing the effectiveness of OEs in laboratory and field studies, and presents the vision of the authors on a roadmap that could lead to large-scale adoption of this technology. The analysis of the state-of-the-art shows methodological differences between laboratory and field studies. While the former are more extensively reported in scientific papers, they exhibit limited generalizability of the findings to real-world scenarios. On the contrary, field studies are limited in sample sizes and frequently focused only on subjective metrics. We propose a roadmap to promote large-scale knowledge-based adoption of OEs. It details that the analysis of the costs and benefits of this technology should be communicated to all stakeholders to facilitate informed decision making, so that each stakeholder can develop their specific role regarding this innovation. Large-scale field studies can help identify and monitor the possible side-effects related to exoskeleton use in real work situations, as well as provide a comprehensive scientific knowledge base to support the revision of ergonomics risk-assessment methods, safety standards and regulations, and the definition of guidelines and practices for the selection and use of OEs.
{"title":"Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces.","authors":"Simona Crea, Philipp Beckerle, Michiel De Looze, Kevin De Pauw, Lorenzo Grazi, Tjaša Kermavnar, Jawad Masood, Leonard W O'Sullivan, Ilaria Pacifico, Carlos Rodriguez-Guerrero, Nicola Vitiello, Danijela Ristić-Durrant, Jan Veneman","doi":"10.1017/wtc.2021.11","DOIUrl":"10.1017/wtc.2021.11","url":null,"abstract":"<p><p>The large-scale adoption of occupational exoskeletons (OEs) will only happen if clear evidence of effectiveness of the devices is available. Performing product-specific field validation studies would allow the stakeholders and decision-makers (e.g., employers, ergonomists, health, and safety departments) to assess OEs' effectiveness in their specific work contexts and with experienced workers, who could further provide useful insights on practical issues related to exoskeleton daily use. This paper reviews present-day scientific methods for assessing the effectiveness of OEs in laboratory and field studies, and presents the vision of the authors on a roadmap that could lead to large-scale adoption of this technology. The analysis of the state-of-the-art shows methodological differences between laboratory and field studies. While the former are more extensively reported in scientific papers, they exhibit limited generalizability of the findings to real-world scenarios. On the contrary, field studies are limited in sample sizes and frequently focused only on subjective metrics. We propose a roadmap to promote large-scale knowledge-based adoption of OEs. It details that the analysis of the costs and benefits of this technology should be communicated to all stakeholders to facilitate informed decision making, so that each stakeholder can develop their specific role regarding this innovation. Large-scale field studies can help identify and monitor the possible side-effects related to exoskeleton use in real work situations, as well as provide a comprehensive scientific knowledge base to support the revision of ergonomics risk-assessment methods, safety standards and regulations, and the definition of guidelines and practices for the selection and use of OEs.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43680949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-07eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.10
Sandra M Siedl, Martina Mara
Objective: This field study aimed to explore the effects of exoskeleton use on task-specific self-efficacy beliefs of logistics workers and to relate these effects to usefulness perceptions and technology acceptance.
Background: A growing number of industrial companies have shown interest in having employees wearing exoskeletons to support their physical health. However, psychological consequences of exoskeleton use and mechanisms associated with workers' acceptance or rejection of exoskeletons are not yet sufficiently understood.
Methods: A total of 31 logistics workers of a vehicle manufacturing company reported on their work-related self-efficacy, that is, how capable they felt of performing tasks related to their job well, before partaking in half-hour trials of a passive lift-assistive exoskeleton (Laevo V2.5) during their normal work. Afterward, they completed a questionnaire on their exoskeleton-supported self-efficacy and indicated how useful they found the exoskeleton, how much physical relief they felt from wearing it, and how willing they were to continue with its use.
Results: Overall, wearing the exoskeleton did not lead to increased work-specific self-efficacy. However, indications of interaction effects were found between baseline self-efficacy, perceived physical relief, and perceived usefulness in such a way that workers who experienced the exoskeleton as more strain-relieving or more useful were also more likely to report a post-trial growth in their self-efficacy beliefs. A positive change in self-efficacy, in turn, was associated with a greater willingness to further use the exoskeleton at the workplace.
{"title":"Exoskeleton acceptance and its relationship to self-efficacy enhancement, perceived usefulness, and physical relief: A field study among logistics workers.","authors":"Sandra M Siedl, Martina Mara","doi":"10.1017/wtc.2021.10","DOIUrl":"10.1017/wtc.2021.10","url":null,"abstract":"<p><strong>Objective: </strong>This field study aimed to explore the effects of exoskeleton use on task-specific self-efficacy beliefs of logistics workers and to relate these effects to usefulness perceptions and technology acceptance.</p><p><strong>Background: </strong>A growing number of industrial companies have shown interest in having employees wearing exoskeletons to support their physical health. However, psychological consequences of exoskeleton use and mechanisms associated with workers' acceptance or rejection of exoskeletons are not yet sufficiently understood.</p><p><strong>Methods: </strong>A total of 31 logistics workers of a vehicle manufacturing company reported on their work-related self-efficacy, that is, how capable they felt of performing tasks related to their job well, before partaking in half-hour trials of a passive lift-assistive exoskeleton (Laevo V2.5) during their normal work. Afterward, they completed a questionnaire on their exoskeleton-supported self-efficacy and indicated how useful they found the exoskeleton, how much physical relief they felt from wearing it, and how willing they were to continue with its use.</p><p><strong>Results: </strong>Overall, wearing the exoskeleton did not lead to increased work-specific self-efficacy. However, indications of interaction effects were found between baseline self-efficacy, perceived physical relief, and perceived usefulness in such a way that workers who experienced the exoskeleton as more strain-relieving or more useful were also more likely to report a post-trial growth in their self-efficacy beliefs. A positive change in self-efficacy, in turn, was associated with a greater willingness to further use the exoskeleton at the workplace.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48484350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-28eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.7
Hashim A Quraishi, Max K Shepherd, Leo McManus, Jaap Harlaar, Dick H Plettenburg, Elliott J Rouse
Individuals with lower limb amputation experience reduced ankle push-off work in the absence of functional muscles spanning the joint, leading to decreased walking performance. Conventional energy storage and return (ESR) prostheses partially compensate by storing mechanical energy during midstance and returning this energy during the terminal stance phase of gait. These prostheses can provide approximately 30% of the push-off work performed by a healthy ankle-foot during walking. Novel prostheses that return more normative levels of mechanical energy may improve walking performance. In this work, we designed a Decoupled ESR (DESR) prosthesis which stores energy usually dissipated at heel-strike and loading response, and returns this energy during terminal stance, thus increasing the mechanical push-off work done by the prosthesis. This decoupling is achieved by switching between two different cam profiles that produce distinct, nonlinear torque-angle mechanics. The cams automatically interchange at key points in the gait cycle via a custom magnetic switching system. Benchtop characterization demonstrated the successful decoupling of energy storage and return. The DESR mechanism was able to capture energy at heel-strike and loading response, and return it later in the gait cycle, but this recycling was not sufficient to overcome mechanical losses. In addition to its potential for recycling energy, the DESR mechanism also enables unique mechanical customizability, such as dorsiflexion during swing phase for toe clearance, or increasing the rate of energy release at push-off.
{"title":"A passive mechanism for decoupling energy storage and return in ankle-foot prostheses: A case study in recycling collision energy.","authors":"Hashim A Quraishi, Max K Shepherd, Leo McManus, Jaap Harlaar, Dick H Plettenburg, Elliott J Rouse","doi":"10.1017/wtc.2021.7","DOIUrl":"10.1017/wtc.2021.7","url":null,"abstract":"<p><p>Individuals with lower limb amputation experience reduced ankle push-off work in the absence of functional muscles spanning the joint, leading to decreased walking performance. Conventional energy storage and return (ESR) prostheses partially compensate by storing mechanical energy during midstance and returning this energy during the terminal stance phase of gait. These prostheses can provide approximately 30% of the push-off work performed by a healthy ankle-foot during walking. Novel prostheses that return more normative levels of mechanical energy may improve walking performance. In this work, we designed a Decoupled ESR (DESR) prosthesis which stores energy usually dissipated at heel-strike and loading response, and returns this energy during terminal stance, thus increasing the mechanical push-off work done by the prosthesis. This decoupling is achieved by switching between two different cam profiles that produce distinct, nonlinear torque-angle mechanics. The cams automatically interchange at key points in the gait cycle via a custom magnetic switching system. Benchtop characterization demonstrated the successful decoupling of energy storage and return. The DESR mechanism was able to capture energy at heel-strike and loading response, and return it later in the gait cycle, but this recycling was not sufficient to overcome mechanical losses. In addition to its potential for recycling energy, the DESR mechanism also enables unique mechanical customizability, such as dorsiflexion during swing phase for toe clearance, or increasing the rate of energy release at push-off.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44332163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-12eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.8
Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H Troob, Sunil K Agrawal
Objective: This article introduces a dynamic neck brace to measure the full range of motion (RoM) of the head-neck. This easy-to-wear brace was used, along with surface electromyography (EMG), to study changes in movement characteristics after neck dissection (ND) in a clinical setting.
Methods: The brace was inspired by the head-neck anatomy and was designed based on the head-neck movement of 10 healthy individuals. A 6 degrees-of-freedom open-chain structure was adopted to allow full RoM of the head-neck with respect to the shoulders. The physical model was realized by 3D printed materials and inexpensive sensors. Five subjects, who underwent unilateral selective ND, were assessed preoperative and postoperative using this prototype during the head-neck motions. Concurrent EMG measurements of their sternocleidomastoid, splenius capitis, and trapezius muscles were made.
Results: Reduced RoM during lateral bending on both sides of the neck was observed after surgery, with a mean angle change of 8.03° on the dissected side (95% confidence intervals [CI], 3.11-12.94) and 9.29° on the nondissected side (95% CI, 4.88-13.69), where CI denotes the confidence interval. Axial rotation showed a reduction in the RoM by 5.37° (95% CI, 2.34-8.39) on the nondissection side. Neck extension showed a slight increase in the RoM by 3.15° (95% CI, 0.81-5.49) postoperatively.
Conclusions: This brace may serve as a simple but useful tool in the clinic to document head-neck RoM changes in patients undergoing ND. Such a characterization may help clinicians evaluate the surgical procedure and guide the recovery of patients.
{"title":"A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients.","authors":"Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H Troob, Sunil K Agrawal","doi":"10.1017/wtc.2021.8","DOIUrl":"10.1017/wtc.2021.8","url":null,"abstract":"<p><strong>Objective: </strong>This article introduces a dynamic neck brace to measure the full range of motion (RoM) of the head-neck. This easy-to-wear brace was used, along with surface electromyography (EMG), to study changes in movement characteristics after neck dissection (ND) in a clinical setting.</p><p><strong>Methods: </strong>The brace was inspired by the head-neck anatomy and was designed based on the head-neck movement of 10 healthy individuals. A 6 degrees-of-freedom open-chain structure was adopted to allow full RoM of the head-neck with respect to the shoulders. The physical model was realized by 3D printed materials and inexpensive sensors. Five subjects, who underwent unilateral selective ND, were assessed preoperative and postoperative using this prototype during the head-neck motions. Concurrent EMG measurements of their sternocleidomastoid, splenius capitis, and trapezius muscles were made.</p><p><strong>Results: </strong>Reduced RoM during lateral bending on both sides of the neck was observed after surgery, with a mean angle change of 8.03° on the dissected side (95% confidence intervals [CI], 3.11-12.94) and 9.29° on the nondissected side (95% CI, 4.88-13.69), where CI denotes the confidence interval. Axial rotation showed a reduction in the RoM by 5.37° (95% CI, 2.34-8.39) on the nondissection side. Neck extension showed a slight increase in the RoM by 3.15° (95% CI, 0.81-5.49) postoperatively.</p><p><strong>Conclusions: </strong>This brace may serve as a simple but useful tool in the clinic to document head-neck RoM changes in patients undergoing ND. Such a characterization may help clinicians evaluate the surgical procedure and guide the recovery of patients.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46175348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Passive wearable exoskeletons are desirable as they can provide assistance during user movements while still maintaining a simple and low-profile design. These can be useful in industrial tasks where an ergonomic device could aid in load lifting without inconveniencing them and reducing fatigue and stress in the lower limbs. The SpringExo is a coil-spring design that aids in knee extension. In this paper, we describe the muscle activation of the knee flexors and extensors from seven healthy participants during repeated squats. The outcome measures are the timings of the key events during squat, flexion angle, muscle activation of rectus femoris and bicep femoris, and foot pressure characteristics of the participants. These outcome measures assess the possible effects of the device during lifting operations where reduced effort in the muscles is desired during ascent phase of the squat, without changing the knee and foot kinematics. The results show that the SpringExo significantly decreased rectus femoris activation during ascent (-2%) without significantly affecting either the bicep femoris or rectus femoris muscle activations in descent. This implies that the user could perform a descent without added effort and ascent with reduced effort. The exoskeleton showed other effects on the biomechanics of the user, increasing average squat time (+0.02 s) and maximum squat time (+0.1 s), and decreasing average knee flexion angle (-4°). The exoskeleton has no effect on foot loading or placement, that is, the user did not have to revise their stance while using the device.
{"title":"Passive knee exoskeletons in functional tasks: Biomechanical effects of a <i>SpringExo</i> coil-spring on squats.","authors":"Rand Hidayah, Dongbao Sui, Kennedi A Wade, Biing-Chwen Chang, Sunil Agrawal","doi":"10.1017/wtc.2021.6","DOIUrl":"10.1017/wtc.2021.6","url":null,"abstract":"<p><p>Passive wearable exoskeletons are desirable as they can provide assistance during user movements while still maintaining a simple and low-profile design. These can be useful in industrial tasks where an ergonomic device could aid in load lifting without inconveniencing them and reducing fatigue and stress in the lower limbs. The <i>SpringExo</i> is a coil-spring design that aids in knee extension. In this paper, we describe the muscle activation of the knee flexors and extensors from seven healthy participants during repeated squats. The outcome measures are the timings of the key events during squat, flexion angle, muscle activation of rectus femoris and bicep femoris, and foot pressure characteristics of the participants. These outcome measures assess the possible effects of the device during lifting operations where reduced effort in the muscles is desired during ascent phase of the squat, without changing the knee and foot kinematics. The results show that the <i>SpringExo</i> significantly decreased rectus femoris activation during ascent (-2%) without significantly affecting either the bicep femoris or rectus femoris muscle activations in descent. This implies that the user could perform a descent without added effort and ascent with reduced effort. The exoskeleton showed other effects on the biomechanics of the user, increasing average squat time (+0.02 s) and maximum squat time (+0.1 s), and decreasing average knee flexion angle (-4°). The exoskeleton has no effect on foot loading or placement, that is, the user did not have to revise their stance while using the device.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47811174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.5
Lars Fritzsche, Pavel E Galibarov, Christian Gärtner, Jonas Bornmann, Michael Damsgaard, Rudolf Wall, Benjamin Schirrmeister, Jose Gonzalez-Vargas, Daniele Pucci, Pauline Maurice, Serena Ivaldi, Jan Babič
Introduction: Recently, many industrial exoskeletons for supporting workers in heavy physical tasks have been developed. However, the efficiency of exoskeletons with regard to physical strain reduction has not been fully proved, yet. Several laboratory and field studies have been conducted, but still more data, that cannot be obtained solely by behavioral experiments, are needed to investigate effects on the human body.
Methods: This paper presents an approach to extend laboratory and field research with biomechanical simulations using the AnyBody Modeling System. Based on a dataset recorded in a laboratory experiment with 12 participants using the exoskeleton Paexo Shoulder in an overhead task, the same situation was reproduced in a virtual environment and analyzed with biomechanical simulation.
Results: Simulation results indicate that the exoskeleton substantially reduces muscle activity and joint reaction forces in relevant body areas. Deltoid muscle activity and glenohumeral joint forces in the shoulder were decreased between 54 and 87%. Simultanously, no increases of muscle activity and forces in other body areas were observed.
Discussion: This study demonstrates how a simulation framework could be used to evaluate changes in internal body loads as a result of wearing exoskeletons. Biomechanical simulation results widely agree with experimental measurements in the previous laboratory experiment and supplement such by providing an insight into effects on the human musculoskeletal system. They confirm that Paexo Shoulder is an effective device to reduce physical strain in overhead tasks. The framework can be extended with further parameters, allowing investigations for product design and evaluation.
{"title":"Assessing the efficiency of exoskeletons in physical strain reduction by biomechanical simulation with AnyBody Modeling System.","authors":"Lars Fritzsche, Pavel E Galibarov, Christian Gärtner, Jonas Bornmann, Michael Damsgaard, Rudolf Wall, Benjamin Schirrmeister, Jose Gonzalez-Vargas, Daniele Pucci, Pauline Maurice, Serena Ivaldi, Jan Babič","doi":"10.1017/wtc.2021.5","DOIUrl":"10.1017/wtc.2021.5","url":null,"abstract":"<p><strong>Introduction: </strong>Recently, many industrial exoskeletons for supporting workers in heavy physical tasks have been developed. However, the efficiency of exoskeletons with regard to physical strain reduction has not been fully proved, yet. Several laboratory and field studies have been conducted, but still more data, that cannot be obtained solely by behavioral experiments, are needed to investigate effects on the human body.</p><p><strong>Methods: </strong>This paper presents an approach to extend laboratory and field research with biomechanical simulations using the AnyBody Modeling System. Based on a dataset recorded in a laboratory experiment with 12 participants using the exoskeleton Paexo Shoulder in an overhead task, the same situation was reproduced in a virtual environment and analyzed with biomechanical simulation.</p><p><strong>Results: </strong>Simulation results indicate that the exoskeleton substantially reduces muscle activity and joint reaction forces in relevant body areas. Deltoid muscle activity and glenohumeral joint forces in the shoulder were decreased between 54 and 87%. Simultanously, no increases of muscle activity and forces in other body areas were observed.</p><p><strong>Discussion: </strong>This study demonstrates how a simulation framework could be used to evaluate changes in internal body loads as a result of wearing exoskeletons. Biomechanical simulation results widely agree with experimental measurements in the previous laboratory experiment and supplement such by providing an insight into effects on the human musculoskeletal system. They confirm that Paexo Shoulder is an effective device to reduce physical strain in overhead tasks. The framework can be extended with further parameters, allowing investigations for product design and evaluation.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47909767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-14eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.4
Marco Laghi, Manuel G Catalano, Giorgio Grioli, Antonio Bicchi
Force feedback is often beneficial for robotic teleoperation, as it enhances the user's remote perception. Over the years, many kinesthetic haptic displays (KHDs) have been proposed for this purpose, which have different types of interaction and feedback, depending on their kinematics and their interface with the operator, including, for example, grounded and wearable devices acting either at the joint or operational space (OS) level. Most KHDs in the literature are for the upper limb, with a majority acting at the shoulder/elbow level, and others focusing on hand movements. A minority exists which addresses wrist motions. In this paper, we present the Wearable Delta (W), a proof-of-concept wearable wrist interface with hybrid parallel-serial kinematics acting in the OS, able to render a desired force directly to the hand involving just the forearm-hand subsystem. It has six degrees of freedom (DoFs), three of which are actuated, and is designed to reduce the obstruction of the range of the user's wrist. Integrated with positions/inertial sensors at the elbow and upper arm, the W allows the remote control of a full articulated robotic arm. The paper covers the whole designing process, from the concept to the validation, as well as a multisubject experimental campaign that investigates its usability. Finally, it presents a section that, starting from the experimental results, aims to discuss and summarize the W advantages and limitations and look for possible future improvements and research directions.
{"title":"A wearable wrist haptic display for motion tracking and force feedback in the operational space.","authors":"Marco Laghi, Manuel G Catalano, Giorgio Grioli, Antonio Bicchi","doi":"10.1017/wtc.2021.4","DOIUrl":"10.1017/wtc.2021.4","url":null,"abstract":"<p><p>Force feedback is often beneficial for robotic teleoperation, as it enhances the user's remote perception. Over the years, many kinesthetic haptic displays (KHDs) have been proposed for this purpose, which have different types of interaction and feedback, depending on their kinematics and their interface with the operator, including, for example, grounded and wearable devices acting either at the joint or operational space (OS) level. Most KHDs in the literature are for the upper limb, with a majority acting at the shoulder/elbow level, and others focusing on hand movements. A minority exists which addresses wrist motions. In this paper, we present the Wearable Delta (W), a proof-of-concept wearable wrist interface with hybrid parallel-serial kinematics acting in the OS, able to render a desired force directly to the hand involving just the forearm-hand subsystem. It has six degrees of freedom (DoFs), three of which are actuated, and is designed to reduce the obstruction of the range of the user's wrist. Integrated with positions/inertial sensors at the elbow and upper arm, the W allows the remote control of a full articulated robotic arm. The paper covers the whole designing process, from the concept to the validation, as well as a multisubject experimental campaign that investigates its usability. Finally, it presents a section that, starting from the experimental results, aims to discuss and summarize the W advantages and limitations and look for possible future improvements and research directions.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44790513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}