Pub Date : 2022-05-05eCollection Date: 2022-01-01DOI: 10.1017/wtc.2022.3
Jan Schacher
Gesture-based musical performance with on-body sensing represents a particular case of wearable connection. Gloves and hand-sensing interfaces connected to real-time digital sound production and transformation processes enable empty-handed, expressive musical performance styles. In this article, the origins and developments of this practice as well as a specific use case are investigated. By taking the technical, cognitive, and cultural dimensions of this media performance as foundation, a reflection on the value, limitations, and opportunities of computational approaches to movement translation and analysis is carried out. The insights uncover how the multilayered, complex artistic situations produced by these performances are rich in intersections and represent potent amplifiers for investigating corporeal presence and affective engagement. This allows to identify problems and opportunities of existing research approaches and core issues to be solved in the domain of movement, music, interaction technology, and performance research.
{"title":"Capture and express, question and understand: Gloves in gestural electronic music performance.","authors":"Jan Schacher","doi":"10.1017/wtc.2022.3","DOIUrl":"10.1017/wtc.2022.3","url":null,"abstract":"<p><p>Gesture-based musical performance with on-body sensing represents a particular case of wearable connection. Gloves and hand-sensing interfaces connected to real-time digital sound production and transformation processes enable empty-handed, expressive musical performance styles. In this article, the origins and developments of this practice as well as a specific use case are investigated. By taking the technical, cognitive, and cultural dimensions of this media performance as foundation, a reflection on the value, limitations, and opportunities of computational approaches to movement translation and analysis is carried out. The insights uncover how the multilayered, complex artistic situations produced by these performances are rich in intersections and represent potent amplifiers for investigating corporeal presence and affective engagement. This allows to identify problems and opportunities of existing research approaches and core issues to be solved in the domain of movement, music, interaction technology, and performance research.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46017008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-25eCollection Date: 2022-01-01DOI: 10.1017/wtc.2022.1
Max Böhme, Felix Weiske, Jens Jäkel, Johannes Zentner, Maren Witt
Climbing stairs can become a daily obstacle for elderly people, and an exoskeleton can assist here. However, the exoskeletons that are designed to assist stair climbing are actuated in different ways. To find a minimal actuation configuration, we identify the assist phases by evaluating the power deficit of 11 healthy but weak elderly people (72.4 ± 2.1 years; 69-76 years; 1.67 ± 0.10 m; 74.88 ± 14.54 kg) compared to 13 younger people (24.0 ± 1.8 years; 22-28 years; 1.74 ± 0.10 m; 70.85 ± 11.91 kg) in a biomechanical study and discuss moment characteristics. Three-dimensional kinematics and ground reaction forces were collected, and kinematics, kinetics, and power characteristics of each subject for ascent and descent were calculated using inverse dynamics. Significant differences for power between both groups were assessed with statistical parametric mapping method using dynamic time warping. During ascent, the largest significant power deficit of the elderly subjects occurs in the single stance phase (SSP) during pull-up in the knee joint. During descent, significant mean power deficits of 0.2 and 0.8 W/kg for the highest deficit occur in the ankle joint in the beginning of the SSP and also in the knee joint in the same phase. Therefore, an exoskeleton should address the power deficit for knee extension (ascent: 1.0 ± 0.9 W/kg; descent: 0.3 ± 0.2 W/kg) and could assist the ankle during ascent and descent by an additional plantar flexion moment of 0.2 Nm/kg each.
{"title":"Evaluation of the power deficit of elderly people during stair negotiation: Which joints should be assisted at least by an exoskeleton and with what amount?","authors":"Max Böhme, Felix Weiske, Jens Jäkel, Johannes Zentner, Maren Witt","doi":"10.1017/wtc.2022.1","DOIUrl":"10.1017/wtc.2022.1","url":null,"abstract":"<p><p>Climbing stairs can become a daily obstacle for elderly people, and an exoskeleton can assist here. However, the exoskeletons that are designed to assist stair climbing are actuated in different ways. To find a minimal actuation configuration, we identify the assist phases by evaluating the power deficit of 11 healthy but weak elderly people (72.4 ± 2.1 years; 69-76 years; 1.67 ± 0.10 m; 74.88 ± 14.54 kg) compared to 13 younger people (24.0 ± 1.8 years; 22-28 years; 1.74 ± 0.10 m; 70.85 ± 11.91 kg) in a biomechanical study and discuss moment characteristics. Three-dimensional kinematics and ground reaction forces were collected, and kinematics, kinetics, and power characteristics of each subject for ascent and descent were calculated using inverse dynamics. Significant differences for power between both groups were assessed with statistical parametric mapping method using dynamic time warping. During ascent, the largest significant power deficit of the elderly subjects occurs in the single stance phase (SSP) during pull-up in the knee joint. During descent, significant mean power deficits of 0.2 and 0.8 W/kg for the highest deficit occur in the ankle joint in the beginning of the SSP and also in the knee joint in the same phase. Therefore, an exoskeleton should address the power deficit for knee extension (ascent: 1.0 ± 0.9 W/kg; descent: 0.3 ± 0.2 W/kg) and could assist the ankle during ascent and descent by an additional plantar flexion moment of 0.2 Nm/kg each.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46296833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-24eCollection Date: 2022-01-01DOI: 10.1017/wtc.2021.19
Seth D Thorn, Halley L Willcox
We present two practice-situated participatory investigations using networked wearable sensors to develop movement-responsive collectively playable musical instruments: a series of four collocated workshops for expert dancers and a distance learning course in which students use wearable technology to enhance embodied learning and feelings of connectedness telematically. We reflect on our exploration of techniques for structuring ensemble improvisations augmented with bespoke digital musical instruments using aggregate statistical measures, such as variance of participants' physical orientation as an index of group intention. Participatory design exchanges top-down design methodologies with bottom-up approaches consulting actors' interests. We follow this approach by evolving our instruments through abductive experiments and trial-and-error tinkering, without strong theories, methods, or models, using elementary signal processing techniques that are meaningfully understood and modified by participants. Our experiences suggest useful scaffolding techniques for educational transdisciplinary research-creation communities seeking to explore relational ensemble dynamics in telematic and/or physically collocated settings using accessible wearable technologies. Through creative inquiry and participation, technical objects can become bearers of sense and meaning rather than instating mystifying or alienating relations for the participants.
{"title":"Collectively playable wearable music: Practice-situated approaches to participatory relational inquiry.","authors":"Seth D Thorn, Halley L Willcox","doi":"10.1017/wtc.2021.19","DOIUrl":"10.1017/wtc.2021.19","url":null,"abstract":"<p><p>We present two practice-situated participatory investigations using networked wearable sensors to develop movement-responsive collectively playable musical instruments: a series of four collocated workshops for expert dancers and a distance learning course in which students use wearable technology to enhance embodied learning and feelings of connectedness telematically. We reflect on our exploration of techniques for structuring ensemble improvisations augmented with bespoke digital musical instruments using aggregate statistical measures, such as variance of participants' physical orientation as an index of group intention. Participatory design exchanges top-down design methodologies with bottom-up approaches consulting actors' interests. We follow this approach by evolving our instruments through abductive experiments and trial-and-error tinkering, without strong theories, methods, or models, using elementary signal processing techniques that are meaningfully understood and modified by participants. Our experiences suggest useful scaffolding techniques for educational transdisciplinary research-creation communities seeking to explore relational ensemble dynamics in telematic and/or physically collocated settings using accessible wearable technologies. Through creative inquiry and participation, technical objects can become bearers of sense and meaning rather than instating mystifying or alienating relations for the participants.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47983438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-18eCollection Date: 2022-01-01DOI: 10.1017/wtc.2021.20
Manoli Moriaty, Lucie Sykes
The performative installation DeviceD utilizes a network of systems toward facilitating interaction between dancer, digital media, and audience. Central to the work is a wearable haptic feedback system able to wirelessly deliver vibrotactile stimuli, with the latter initiated by the audience through posting on Twitter social media platform; the system in use searches for specific mentions, hashtags, and keywords, with positive results causing the system to trigger patterns of haptic biofeedback across the wearable's four actuator motors. The system acts as the intermediator between the audience's online actions and the dancer receiving physical stimuli; the dancer interprets these biofeedback signals according to Laban's Effort movement qualities, with the interpretation informing different states of habitual and conscious choreographic performance. In this article, the authors reflect on their collaborative process while developing DeviceD alongside a multidisciplinary team of technologists, detailing their experience of refining the technology and methodology behind the work while presenting it in three different settings. A literature review is used to situate the work among contemporary research on interaction over internet and haptics in performance practice; haptic feedback devices have been widely used within artistic work for the past 25 years, with more recent practice and research outputs suggesting an increased interest for haptics in the field of dance research. The authors detail both technological and performative elements making up the work, and provide a transparent evaluation of the system, as means of providing a foundation for further research on wearable haptic devices.
{"title":"<i>DeviceD</i>: Audience-dancer interaction via social media posts and wearable for haptic feedback.","authors":"Manoli Moriaty, Lucie Sykes","doi":"10.1017/wtc.2021.20","DOIUrl":"10.1017/wtc.2021.20","url":null,"abstract":"<p><p>The performative installation <i>DeviceD</i> utilizes a network of systems toward facilitating interaction between dancer, digital media, and audience. Central to the work is a wearable haptic feedback system able to wirelessly deliver vibrotactile stimuli, with the latter initiated by the audience through posting on Twitter social media platform; the system in use searches for specific mentions, hashtags, and keywords, with positive results causing the system to trigger patterns of haptic biofeedback across the wearable's four actuator motors. The system acts as the intermediator between the audience's online actions and the dancer receiving physical stimuli; the dancer interprets these biofeedback signals according to Laban's Effort movement qualities, with the interpretation informing different states of habitual and conscious choreographic performance. In this article, the authors reflect on their collaborative process while developing <i>DeviceD</i> alongside a multidisciplinary team of technologists, detailing their experience of refining the technology and methodology behind the work while presenting it in three different settings. A literature review is used to situate the work among contemporary research on interaction over internet and haptics in performance practice; haptic feedback devices have been widely used within artistic work for the past 25 years, with more recent practice and research outputs suggesting an increased interest for haptics in the field of dance research. The authors detail both technological and performative elements making up the work, and provide a transparent evaluation of the system, as means of providing a foundation for further research on wearable haptic devices.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48187643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-07eCollection Date: 2022-01-01DOI: 10.1017/wtc.2021.18
W Brandon Martin, Alexander Boehler, Kevin W Hollander, Darren Kinney, Joseph K Hitt, Jay Kudva, Thomas G Sugar
Back pain is one of the largest drivers of workplace injury and lost productivity in industries around the world. Back injuries were one of the leading reasons in resulting in days away from work at 38.5% across all occupations, increasing for manual laborers to 43%. While the cause of the back pain can vary across occupations, for materiel movers it is often caused from repetitive poor lifting. To reduce the issues, the Aerial Porter Exoskeleton (APEx) was created. The APEx uses a hip-mounted, powered exoskeleton attached to an adjustable vest. An onboard computer calculates the configuration of the user to determine when to activate. Lift form is assisted by using a novel lumbar brace mounted on the sides of the hips. Properly worn, the APEx holds the user upright while providing additional hip torque through a lift. This was tested by having participants complete a lifting test with the exoskeleton worn in the "on" configuration compared with the exoskeleton not worn. The APEx has been shown to deliver 30 Nm of torque in lab testing. The activity recognition algorithm has also been shown to be accurate in 95% of tested conditions. When worn by subjects, testing has shown average peak reductions of 14.9% BPM, 8% in VO2 consumption, and an 8% change in perceived effort favoring the APEx.
{"title":"Development and testing of the aerial porter exoskeleton.","authors":"W Brandon Martin, Alexander Boehler, Kevin W Hollander, Darren Kinney, Joseph K Hitt, Jay Kudva, Thomas G Sugar","doi":"10.1017/wtc.2021.18","DOIUrl":"10.1017/wtc.2021.18","url":null,"abstract":"<p><p>Back pain is one of the largest drivers of workplace injury and lost productivity in industries around the world. Back injuries were one of the leading reasons in resulting in days away from work at 38.5% across all occupations, increasing for manual laborers to 43%. While the cause of the back pain can vary across occupations, for materiel movers it is often caused from repetitive poor lifting. To reduce the issues, the Aerial Porter Exoskeleton (APEx) was created. The APEx uses a hip-mounted, powered exoskeleton attached to an adjustable vest. An onboard computer calculates the configuration of the user to determine when to activate. Lift form is assisted by using a novel lumbar brace mounted on the sides of the hips. Properly worn, the APEx holds the user upright while providing additional hip torque through a lift. This was tested by having participants complete a lifting test with the exoskeleton worn in the \"on\" configuration compared with the exoskeleton not worn. The APEx has been shown to deliver 30 Nm of torque in lab testing. The activity recognition algorithm has also been shown to be accurate in 95% of tested conditions. When worn by subjects, testing has shown average peak reductions of 14.9% BPM, 8% in VO2 consumption, and an 8% change in perceived effort favoring the APEx.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48418770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-07-01DOI: 10.1017/wtc.2022.12
Ying Fang, Karl Harshe, Jason R Franz, Zachary F Lerner
Background: Age-related deficits in plantar flexor muscle function during the push-off phase of walking likely contribute to the decline in mobility that affects many older adults. Isolated strengthening of the plantar flexor muscles has failed to improve push-off power or walking economy in this population. New mobility aids and/or functional training interventions may help slow or prevent ambulatory decline in the elderly.
Objective: The overarching objective of this study was to explore the feasibility of using an untethered, dual-mode ankle exoskeleton for treating walking disability in the elderly; testing the device in assistance mode as a mobility aid to reduce energy consumption, and as a resistive gait training tool to facilitate functional recruitment of the plantar flexor muscles.
Methods: We recruited 6 older adults between the ages of 68 to 83 years to evaluate the feasibility of the dual-mode exoskeleton across two visits. On the first visit, we quantified acute metabolic and neuromuscular adaption to ankle exoskeleton assistance during walking in older adults, and subsequently determined if higher baseline energy cost was related to an individual's potential to benefit from untethered assistance. On the second visit, we validated the potential for push-off phase ankle resistance combined with plantar pressure biofeedback to facilitate functional utilization of the ankle plantar flexors during walking. We also conducted a twelve-session ankle resistance training protocol with one pilot participant to explore the effects of gait training with wearable ankle resistance on mobility and plantar flexor strength.
Results: Participants reached the lowest net metabolic power, soleus variance ratio, and soleus iEMG at 6.6 ± 1.6, 19.8 ± 1.6, and 5.8 ± 4.9 minutes, respectively, during the 30-minute exoskeleton assistance adaptation trial. Four of five participants exhibited a reduction (up to 19%) in metabolic power during walking with assistance relative to baseline, but there was no group-level change. Participants who had greater baseline metabolic power exhibited a greater reduction during walking with assistance. Walking with resistance increased stance-phase soleus iEMG by 18 - 186% and stance-phase average positive ankle power by 9 - 88% compared to baseline. Following ankle resistance gait training, the participant exhibited a 5% increase in self-selected walking speed, a 15% increase in fast walking speed, a 36% increase in 6-min-walk-test distance, and a 31% increase in plantar flexor strength compared to pre-intervention measurements.
Conclusions: Our results suggest that dual-mode ankle exoskeletons appear highly applicable to treating plantar flexor dysfunction in the elderly, with assistance holding potential as a mobility aid and resistance holding potential as a functional gait training tool. We used an untethered de
{"title":"Feasibility evaluation of a dual-mode ankle exoskeleton to assist and restore community ambulation in older adults.","authors":"Ying Fang, Karl Harshe, Jason R Franz, Zachary F Lerner","doi":"10.1017/wtc.2022.12","DOIUrl":"10.1017/wtc.2022.12","url":null,"abstract":"<p><strong>Background: </strong>Age-related deficits in plantar flexor muscle function during the push-off phase of walking likely contribute to the decline in mobility that affects many older adults. Isolated strengthening of the plantar flexor muscles has failed to improve push-off power or walking economy in this population. New mobility aids and/or functional training interventions may help slow or prevent ambulatory decline in the elderly.</p><p><strong>Objective: </strong>The overarching objective of this study was to explore the feasibility of using an untethered, dual-mode ankle exoskeleton for treating walking disability in the elderly; testing the device in assistance mode as a mobility aid to reduce energy consumption, and as a resistive gait training tool to facilitate functional recruitment of the plantar flexor muscles.</p><p><strong>Methods: </strong>We recruited 6 older adults between the ages of 68 to 83 years to evaluate the feasibility of the dual-mode exoskeleton across two visits. On the first visit, we quantified acute metabolic and neuromuscular adaption to ankle exoskeleton assistance during walking in older adults, and subsequently determined if higher baseline energy cost was related to an individual's potential to benefit from untethered assistance. On the second visit, we validated the potential for push-off phase ankle resistance combined with plantar pressure biofeedback to facilitate functional utilization of the ankle plantar flexors during walking. We also conducted a twelve-session ankle resistance training protocol with one pilot participant to explore the effects of gait training with wearable ankle resistance on mobility and plantar flexor strength.</p><p><strong>Results: </strong>Participants reached the lowest net metabolic power, soleus variance ratio, and soleus iEMG at 6.6 ± 1.6, 19.8 ± 1.6, and 5.8 ± 4.9 minutes, respectively, during the 30-minute exoskeleton assistance adaptation trial. Four of five participants exhibited a reduction (up to 19%) in metabolic power during walking with assistance relative to baseline, but there was no group-level change. Participants who had greater baseline metabolic power exhibited a greater reduction during walking with assistance. Walking with resistance increased stance-phase soleus iEMG by 18 - 186% and stance-phase average positive ankle power by 9 - 88% compared to baseline. Following ankle resistance gait training, the participant exhibited a 5% increase in self-selected walking speed, a 15% increase in fast walking speed, a 36% increase in 6-min-walk-test distance, and a 31% increase in plantar flexor strength compared to pre-intervention measurements.</p><p><strong>Conclusions: </strong>Our results suggest that dual-mode ankle exoskeletons appear highly applicable to treating plantar flexor dysfunction in the elderly, with assistance holding potential as a mobility aid and resistance holding potential as a functional gait training tool. We used an untethered de","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673997/pdf/nihms-1824633.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10807869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-09-28DOI: 10.1017/wtc.2022.19
Minjae Kim, Ann M Simon, Levi J Hargrove
Powered prosthetic legs are becoming a promising option for amputee patients. However, developing safe, robust, and intuitive control strategies for powered legs remains one of the greatest challenges. Although a variety of control strategies have been proposed, creating and fine-tuning the system parameters is time-intensive and complicated when more activities need to be restored. In this study, we developed a deep neural network (DNN) model that facilitates seamless and intuitive gait generation and transitions across five ambulation modes: level-ground walking, ascending/descending ramps, and ascending/descending stairs. The combination of latent and time sequence features generated the desired impedance parameters within the ambulation modes and allowed seamless transitions between ambulation modes. The model was applied to the open-source bionic leg and tested on unilateral transfemoral users. It achieved the overall coefficient of determination of 0.72 with the state machine-based impedance parameters in the offline testing session. In addition, users were able to perform in-laboratory ambulation modes with an overall success rate of 96% during the online testing session. The results indicate that the DNN model is a promising candidate for subject-independent and tuning-free prosthetic leg control for transfemoral amputees.
{"title":"Seamless and intuitive control of a powered prosthetic leg using deep neural network for transfemoral amputees.","authors":"Minjae Kim, Ann M Simon, Levi J Hargrove","doi":"10.1017/wtc.2022.19","DOIUrl":"10.1017/wtc.2022.19","url":null,"abstract":"<p><p>Powered prosthetic legs are becoming a promising option for amputee patients. However, developing safe, robust, and intuitive control strategies for powered legs remains one of the greatest challenges. Although a variety of control strategies have been proposed, creating and fine-tuning the system parameters is time-intensive and complicated when more activities need to be restored. In this study, we developed a deep neural network (DNN) model that facilitates seamless and intuitive gait generation and transitions across five ambulation modes: level-ground walking, ascending/descending ramps, and ascending/descending stairs. The combination of latent and time sequence features generated the desired impedance parameters within the ambulation modes and allowed seamless transitions between ambulation modes. The model was applied to the open-source bionic leg and tested on unilateral transfemoral users. It achieved the overall coefficient of determination of 0.72 with the state machine-based impedance parameters in the offline testing session. In addition, users were able to perform in-laboratory ambulation modes with an overall success rate of 96% during the online testing session. The results indicate that the DNN model is a promising candidate for subject-independent and tuning-free prosthetic leg control for transfemoral amputees.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9301090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-08-01DOI: 10.1017/wtc.2022.14
Carly M Thalman, Tiffany Hertzell, Marielle Debeurre, Hyunglae Lee
This paper presents the design, modeling, analysis, fabrication, and experimental characterization of the Soft Robotic Ankle-Foot Orthosis (SR-AFO), which is a wearable soft robot designed for ankle assistance, and a pilot human study of its use. Using two novel pneumatically-powered soft actuators, the SR-AFO is designed to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments was performed with able-bodied participants to evaluate: 1) lateral ankle support during quiet standing, 2) lateral ankle support during walking over compliant surfaces, and 3) plantarflexion assistance during push-off in treadmill walking. Group results revealed increased lateral ankle stiffness during quiet standing with the MAVS active, reduced lateral ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort in ankle platarflexors during 40-60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with able-bodied participants, which suggests a potential to help restore the gait of impaired users in future trials.
{"title":"Multi-degrees-of-freedom soft robotic ankle-foot orthosis for gait assistance and variable ankle support.","authors":"Carly M Thalman, Tiffany Hertzell, Marielle Debeurre, Hyunglae Lee","doi":"10.1017/wtc.2022.14","DOIUrl":"10.1017/wtc.2022.14","url":null,"abstract":"<p><p>This paper presents the design, modeling, analysis, fabrication, and experimental characterization of the Soft Robotic Ankle-Foot Orthosis (SR-AFO), which is a wearable soft robot designed for ankle assistance, and a pilot human study of its use. Using two novel pneumatically-powered soft actuators, the SR-AFO is designed to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments was performed with able-bodied participants to evaluate: 1) lateral ankle support during quiet standing, 2) lateral ankle support during walking over compliant surfaces, and 3) plantarflexion assistance during push-off in treadmill walking. Group results revealed increased lateral ankle stiffness during quiet standing with the MAVS active, reduced lateral ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort in ankle platarflexors during 40-60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with able-bodied participants, which suggests a potential to help restore the gait of impaired users in future trials.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10599913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-29eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.16
Annemarijn Steijlen, Bastiaan Burgers, Erik Wilmes, Jeroen Bastemeijer, Bram Bastiaansen, Patrick French, Andre Bossche, Kaspar Jansen
This article presents a novel smart sensor garment with integrated miniaturized inertial measurements units (IMUs) that can be used to monitor lower body kinematics during daily training activities, without the need of extensive technical assistance throughout the measurements. The smart sensor tights enclose five ultra-light sensor modules that measure linear accelerations, angular velocities, and the earth magnetic field in three directions. The modules are located at the pelvis, thighs, and shanks. The garment enables continuous measurement in the field at high sample rates (250 Hz) and the sensors have a large measurement range (32 g, 4,000°/s). They are read out by a central processing unit through an SPI bus, and connected to a centralized battery in the waistband. A fully functioning prototype was built to perform validation studies in a lab setting and in a field setting. In the lab validation study, the IMU data (converted to limb orientation data) were compared with the kinematic data of an optoelectronic measurement system and good validity (CMCs >0.8) was shown. In the field tests, participants experienced the tights as comfortable to wear and they did not feel restricted in their movements. These results show the potential of using the smart sensor tights on a regular base to derive lower limb kinematics in the field.
{"title":"Smart sensor tights: Movement tracking of the lower limbs in football.","authors":"Annemarijn Steijlen, Bastiaan Burgers, Erik Wilmes, Jeroen Bastemeijer, Bram Bastiaansen, Patrick French, Andre Bossche, Kaspar Jansen","doi":"10.1017/wtc.2021.16","DOIUrl":"10.1017/wtc.2021.16","url":null,"abstract":"<p><p>This article presents a novel smart sensor garment with integrated miniaturized inertial measurements units (IMUs) that can be used to monitor lower body kinematics during daily training activities, without the need of extensive technical assistance throughout the measurements. The smart sensor tights enclose five ultra-light sensor modules that measure linear accelerations, angular velocities, and the earth magnetic field in three directions. The modules are located at the pelvis, thighs, and shanks. The garment enables continuous measurement in the field at high sample rates (250 Hz) and the sensors have a large measurement range (32 g, 4,000°/s). They are read out by a central processing unit through an SPI bus, and connected to a centralized battery in the waistband. A fully functioning prototype was built to perform validation studies in a lab setting and in a field setting. In the lab validation study, the IMU data (converted to limb orientation data) were compared with the kinematic data of an optoelectronic measurement system and good validity (CMCs >0.8) was shown. In the field tests, participants experienced the tights as comfortable to wear and they did not feel restricted in their movements. These results show the potential of using the smart sensor tights on a regular base to derive lower limb kinematics in the field.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49535800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-22eCollection Date: 2021-01-01DOI: 10.1017/wtc.2021.15
Jo Ghillebert, Joost Geeroms, Louis Flynn, Sander De Bock, Renée Govaerts, Elke Lathouwers, Simona Crea, Nicola Vitiello, Dirk Lefeber, Romain Meeusen, Kevin De Pauw
Background: The CYBERLEGs-gamma (CLs-ɣ) prosthesis has been developed to investigate the possibilities of powerful active prosthetics in restoring human gait capabilities after lower limb amputation.
Objective: The objective of this study was to determine the performance of the CLs-ɣ prosthesis during simulated daily activities.
Methods: Eight participants with a transfemoral amputation (age: 55 ± 15 years, K-level 3, registered under: NCT03376919) performed a familiarization session, an experimental session with their current prosthesis, three training sessions with the CLs-ɣ prosthesis and another experimental session with the CLs-ɣ prosthesis. Participants completed a stair-climbing-test, a timed-up-and-go-test, a sit-to stand-test, a 2-min dual-task and a 6-min treadmill walk test.
Results: Comparisons between the two experimental sessions showed that stride length significantly increased during walking with the CLs-ɣ prosthesis (p = .012) due to a greater step length of the amputated leg (p = .035). Although a training period with the prototype was included, preferred walking speed was significantly slower (p = .018), the metabolic cost of transport was significantly higher (p = .028) and reaction times significantly worsened (p = .012) when walking with the CLs-ɣ compared to the current prosthesis.
Conclusions: It can be stated that a higher physical and cognitive effort were required when wearing the CLs-ɣ prosthesis. Positive outcomes were observed regarding stride length and stair ambulation. Future prosthetics development should minimize the weight of the device and integrate customized control systems. A recommendation for future research is to include several shorter training periods or a prolonged adaptation period.
{"title":"Performance of the CYBERLEGs motorized lower limb prosthetic device during simulated daily activities.","authors":"Jo Ghillebert, Joost Geeroms, Louis Flynn, Sander De Bock, Renée Govaerts, Elke Lathouwers, Simona Crea, Nicola Vitiello, Dirk Lefeber, Romain Meeusen, Kevin De Pauw","doi":"10.1017/wtc.2021.15","DOIUrl":"10.1017/wtc.2021.15","url":null,"abstract":"<p><strong>Background: </strong>The CYBERLEGs-gamma (CLs-ɣ) prosthesis has been developed to investigate the possibilities of powerful active prosthetics in restoring human gait capabilities after lower limb amputation.</p><p><strong>Objective: </strong>The objective of this study was to determine the performance of the CLs-ɣ prosthesis during simulated daily activities.</p><p><strong>Methods: </strong>Eight participants with a transfemoral amputation (age: 55 ± 15 years, <i>K</i>-level 3, registered under: NCT03376919) performed a familiarization session, an experimental session with their current prosthesis, three training sessions with the CLs-ɣ prosthesis and another experimental session with the CLs-ɣ prosthesis. Participants completed a stair-climbing-test, a timed-up-and-go-test, a sit-to stand-test, a 2-min dual-task and a 6-min treadmill walk test.</p><p><strong>Results: </strong>Comparisons between the two experimental sessions showed that stride length significantly increased during walking with the CLs-ɣ prosthesis (<i>p</i> = .012) due to a greater step length of the amputated leg (<i>p</i> = .035). Although a training period with the prototype was included, preferred walking speed was significantly slower (<i>p</i> = .018), the metabolic cost of transport was significantly higher (<i>p</i> = .028) and reaction times significantly worsened (<i>p</i> = .012) when walking with the CLs-ɣ compared to the current prosthesis.</p><p><strong>Conclusions: </strong>It can be stated that a higher physical and cognitive effort were required when wearing the CLs-ɣ prosthesis. Positive outcomes were observed regarding stride length and stair ambulation. Future prosthetics development should minimize the weight of the device and integrate customized control systems. A recommendation for future research is to include several shorter training periods or a prolonged adaptation period.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41455429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}