首页 > 最新文献

Agrosystems, Geosciences & Environment最新文献

英文 中文
Tillage and cover cropping influence phosphorus dynamics in soil and water pools 耕作和覆盖种植影响土壤和水池中磷的动态变化
IF 1.3 Q3 AGRONOMY Pub Date : 2024-10-08 DOI: 10.1002/agg2.20570
Harpreet Kaur, Gurbir Singh, Karl Williard, Jon Schoonover, Kelly A. Nelson, Gurpreet Kaur

Winter cover crops (CCs) have the potential to reduce phosphorus (P) loss by temporarily fixing P into CC biomass. A field experiment with no-tillage (NT) and conventional tillage (CT) was used to study the ability of different CC species planted after corn (Zea mays L.) and soybean (Glycine max L.) harvests to reduce the P availability in soil solution. The effect of three crop rotations (corn–no CC–soybean–no CC [C–S], corn–cereal rye (Secale cereale)–soybean–hairy vetch (Vicia villosa) [C–R–S–HV], corn–cereal rye–soybean–oats (Avena sativa)+ radish (Raphanus sativus L.) [C–R–S–OR]) and two tillage (NT and CT) treatments was determined on soil available P and soil solution P content through pan (A horizon) and tension (100-cm depth) cup lysimeters. The experiment was set up as a randomized complete block design with tillage as a split factor with three replicates. Over the study period, incorporating hairy vetch in C–R–S–HV rotation reduced the Mehlich-3 P content in soil by 26%–29% compared to the C–S and C–R–S–OR rotation. Both CC rotations (C–R–S–HV and C–R–S–OR) were effective in reducing dissolved reactive P (DRP) concentration in pan and tension cup lysimeters compared to the C–S in both CT and NT systems. However, these results varied with CC species grown and seasonal variability in precipitation. A significantly lower DRP load with crop rotation and tillage treatments was observed mainly during the CC growing season. During the study period, crop rotations with reduced labile soil P content and DRP loss were ranked in an order of C–R–S–HV > C–R–S–OR > C–S. Overall, this study showed that CCs have the potential in both CT and NT systems to significantly reduce P in soil and soil solution, and these effects are resilient to a wide range of precipitation conditions.

冬季覆盖作物(CC)可将磷暂时固定在CC生物量中,从而减少磷的流失。一项采用免耕(NT)和常规耕作(CT)的田间试验被用来研究在玉米(Zea mays L.)和大豆(Glycine max L.)收获后种植的不同CC品种降低土壤溶液中可利用磷的能力。三种作物轮作(玉米-无 CC-大豆-无 CC [C-S]、玉米-黑麦(Secale cereale)-大豆-毛薇菜(Vicia villosa)[C-R-S-HV]、玉米-黑麦-大豆-燕麦(Avena sativa)+萝卜(Raphanus sativus L.C-R-S-OR])和两种耕作(NT 和 CT)处理对土壤可利用钾和土壤溶液钾含量的影响。试验采用随机完全区组设计,以耕作为分割因子,设三个重复。在研究期间,与 C-S 和 C-R-S-OR 轮作相比,在 C-R-S-HV 轮作中种植毛茸茸的 vetch 可使土壤中的 Mehlich-3 P 含量减少 26%-29%。在 CT 和 NT 系统中,与 C-S 轮作相比,CC 轮作(C-R-S-HV 和 C-R-S-OR)都能有效降低盘式和张力杯式溶液池中的溶解性活性磷(DRP)浓度。然而,这些结果随种植的 CC 种类和降水的季节性变化而变化。主要在 CC 生长季节,轮作和耕作处理的 DRP 负荷明显降低。在研究期间,轮作减少了土壤中的易失性 P 含量和 DRP 损失,轮作顺序为 C-R-S-HV > C-R-S-OR > C-S。总之,这项研究表明,在CT和NT系统中,CC都有可能显著减少土壤和土壤溶液中的钾,而且这些效果能够适应各种降水条件。
{"title":"Tillage and cover cropping influence phosphorus dynamics in soil and water pools","authors":"Harpreet Kaur,&nbsp;Gurbir Singh,&nbsp;Karl Williard,&nbsp;Jon Schoonover,&nbsp;Kelly A. Nelson,&nbsp;Gurpreet Kaur","doi":"10.1002/agg2.20570","DOIUrl":"https://doi.org/10.1002/agg2.20570","url":null,"abstract":"<p>Winter cover crops (CCs) have the potential to reduce phosphorus (P) loss by temporarily fixing P into CC biomass. A field experiment with no-tillage (NT) and conventional tillage (CT) was used to study the ability of different CC species planted after corn (<i>Zea mays</i> L.) and soybean (<i>Glycine max</i> L.) harvests to reduce the P availability in soil solution. The effect of three crop rotations (corn–no CC–soybean–no CC [C–S], corn–cereal rye (<i>Secale cereale</i>)–soybean–hairy vetch (<i>Vicia villosa</i>) [C–R–S–HV], corn–cereal rye–soybean–oats (<i>Avena sativa</i>)+ radish (<i>Raphanus sativus</i> L.) [C–R–S–OR]) and two tillage (NT and CT) treatments was determined on soil available P and soil solution P content through pan (A horizon) and tension (100-cm depth) cup lysimeters. The experiment was set up as a randomized complete block design with tillage as a split factor with three replicates. Over the study period, incorporating hairy vetch in C–R–S–HV rotation reduced the Mehlich-3 P content in soil by 26%–29% compared to the C–S and C–R–S–OR rotation. Both CC rotations (C–R–S–HV and C–R–S–OR) were effective in reducing dissolved reactive P (DRP) concentration in pan and tension cup lysimeters compared to the C–S in both CT and NT systems. However, these results varied with CC species grown and seasonal variability in precipitation. A significantly lower DRP load with crop rotation and tillage treatments was observed mainly during the CC growing season. During the study period, crop rotations with reduced labile soil P content and DRP loss were ranked in an order of C–R–S–HV &gt; C–R–S–OR &gt; C–S. Overall, this study showed that CCs have the potential in both CT and NT systems to significantly reduce P in soil and soil solution, and these effects are resilient to a wide range of precipitation conditions.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of soil spatial variability on young almond trees: A case study on heavy clay soils 土壤空间变化对杏树幼苗的影响:重粘土案例研究
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-26 DOI: 10.1002/agg2.20572
Carlos Ballester, Rodrigo Filev-Maia, John Hornbuckle

The viability of modern horticulture heavily relies on adopting sustainable practices. Understanding soil spatial variability on heavy clay soils and its impact on young trees is crucial to design suitable soil and water management strategies that guarantee the sustainability of orchards. The objective of this study was to assess in an orchard with heavy clay soils of the Riverine Plain, NSW, the impact of soil spatial variability on the development of young almond (Prunus dulcis (Mill.) D. A. Webb) trees and evaluate the use of remote and proximal sensing tools for identifying threatening factors for the sustainability of the crop. Soil and aerial surveys were used to assess the soil and crop spatial variability in an 8.3-ha irrigation block. The site was divided into five areas based on apparent electrical conductivity (ECa) measurements where soil samples were collected. Tree growth, soil, and plant water status were monitored in two contrasting areas in ECa. In the first year of study, a significant and positive correlation was found between ECa and percentage of ground canopy cover. Soil analysis and soil moisture monitoring revealed that high values of exchangeable sodium percentage, which are indicative of sodic soils prone to dispersion, and limited water infiltration were the cause of the reduced tree growth in areas with low ECa. The impact of soil spatial variability on tree growth decreased in the second growing season due to weather and water management factors that influenced soil water content. This study showcases the usefulness of remote and proximal sensing in assessing potential soil-spatial-related issues in newly established orchards as well as the impact soil spatial variability can have on tree development in the first years after planting.

现代园艺的生存在很大程度上依赖于采用可持续的实践方法。了解重粘土的土壤空间变异性及其对幼树的影响,对于设计合适的水土管理策略以保证果园的可持续性至关重要。本研究的目的是评估新南威尔士州河岸平原重粘土果园中土壤空间变异性对杏仁(Prunus dulcis (Mill.) D. A. Webb)幼树生长的影响,并评估遥感和近距离传感工具的使用情况,以确定威胁作物可持续性的因素。在一个 8.3 公顷的灌溉区,利用土壤和航空勘测来评估土壤和作物的空间变异性。根据表观电导率(ECa)测量结果将灌溉区划分为五个区域,并采集了土壤样本。在 ECa 值对比强烈的两个区域监测树木生长、土壤和植物水分状况。第一年的研究发现,ECa 与地面树冠覆盖率之间存在显著的正相关关系。土壤分析和土壤水分监测结果表明,可交换钠百分比值高(表明土壤含钠量高、易流失)和水分渗透受限是导致低 ECa 地区树木生长量下降的原因。在第二个生长季,由于天气和水管理因素影响了土壤含水量,土壤空间变化对树木生长的影响有所减弱。这项研究展示了遥感和近距离传感在评估新建果园中潜在的土壤空间相关问题方面的实用性,以及土壤空间变异性在种植后最初几年对树木生长的影响。
{"title":"Impact of soil spatial variability on young almond trees: A case study on heavy clay soils","authors":"Carlos Ballester,&nbsp;Rodrigo Filev-Maia,&nbsp;John Hornbuckle","doi":"10.1002/agg2.20572","DOIUrl":"https://doi.org/10.1002/agg2.20572","url":null,"abstract":"<p>The viability of modern horticulture heavily relies on adopting sustainable practices. Understanding soil spatial variability on heavy clay soils and its impact on young trees is crucial to design suitable soil and water management strategies that guarantee the sustainability of orchards. The objective of this study was to assess in an orchard with heavy clay soils of the Riverine Plain, NSW, the impact of soil spatial variability on the development of young almond (<i>Prunus dulcis</i> (Mill.) D. A. Webb) trees and evaluate the use of remote and proximal sensing tools for identifying threatening factors for the sustainability of the crop. Soil and aerial surveys were used to assess the soil and crop spatial variability in an 8.3-ha irrigation block. The site was divided into five areas based on apparent electrical conductivity (EC<sub>a</sub>) measurements where soil samples were collected. Tree growth, soil, and plant water status were monitored in two contrasting areas in EC<sub>a</sub>. In the first year of study, a significant and positive correlation was found between EC<sub>a</sub> and percentage of ground canopy cover. Soil analysis and soil moisture monitoring revealed that high values of exchangeable sodium percentage, which are indicative of sodic soils prone to dispersion, and limited water infiltration were the cause of the reduced tree growth in areas with low EC<sub>a</sub>. The impact of soil spatial variability on tree growth decreased in the second growing season due to weather and water management factors that influenced soil water content. This study showcases the usefulness of remote and proximal sensing in assessing potential soil-spatial-related issues in newly established orchards as well as the impact soil spatial variability can have on tree development in the first years after planting.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the use of native rhizobia to improve nitrogen fixation under abiotic stress 评估利用本地根瘤菌改善非生物胁迫下的固氮作用
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-26 DOI: 10.1002/agg2.20573
Jesus Loya, Sen Subramanian, Audrey Kalil, Clair Keene, Debankur Sanyal, Jed Eberly, Christopher Graham

Biological nitrogen fixation by rhizobia bacteria plays a pivotal role in sustainable agriculture by converting atmospheric nitrogen into a form that plants can assimilate, thereby reducing the need for synthetic fertilizers. This process can be dramatically reduced by various abiotic stressors. Native rhizobia strains, which are naturally occurring, may be better adapted to the local soil and climatic conditions, making them more resilient to stress factors such as drought, salinity, temperature extremes, and pH variations compared to commercial strains that may have been developed in and for different environments. This study aimed to compare the efficacy of native rhizobia species with a commercial inoculant and uninoculated controls in maintaining nitrogen fixation under induced stress by delayed planting in field peas over two growing seasons (2021 and 2022) in central South Dakota. Our findings indicate that native rhizobia, while not outperforming the commercial inoculant, demonstrated competitive nitrogen fixation capacities. Overall, total nitrogen fixation was not statistically different between a commercial inoculant and native rhizobia formulations. Planting date emerged as a significant factor influencing nitrogen fixation, with later planting substantially reducing overall effectiveness. These results highlight the potential of native rhizobia as an alternative to commercial inoculants and underscore the need for increased screening throughput and improved methods to assess rhizobia efficacy and nodule competition in field settings.

根瘤菌的生物固氮作用可将大气中的氮转化为植物可以吸收的形式,从而减少对合成肥料的需求,在可持续农业中发挥着举足轻重的作用。这一过程会因各种非生物胁迫因素而大幅减少。天然存在的本地根瘤菌菌株可能更适应当地的土壤和气候条件,与在不同环境中开发的商业菌株相比,它们对干旱、盐度、极端温度和 pH 值变化等胁迫因素的适应能力更强。本研究旨在比较本地根瘤菌与商业接种剂和未接种对照在南达科他州中部大田豌豆延迟种植两个生长季(2021 年和 2022 年)的诱导胁迫下维持固氮作用的效果。我们的研究结果表明,本地根瘤菌的固氮能力虽然没有超过商业接种剂,但表现出了竞争性固氮能力。总体而言,商业接种剂和本地根瘤菌配方之间的总固氮量没有统计学差异。种植日期是影响固氮的一个重要因素,较晚的种植日期会大大降低固氮的总体效果。这些结果凸显了本地根瘤菌作为商业接种剂替代品的潜力,并强调需要提高筛选能力和改进方法,以评估根瘤菌在田间环境中的功效和结核竞争。
{"title":"Assessing the use of native rhizobia to improve nitrogen fixation under abiotic stress","authors":"Jesus Loya,&nbsp;Sen Subramanian,&nbsp;Audrey Kalil,&nbsp;Clair Keene,&nbsp;Debankur Sanyal,&nbsp;Jed Eberly,&nbsp;Christopher Graham","doi":"10.1002/agg2.20573","DOIUrl":"https://doi.org/10.1002/agg2.20573","url":null,"abstract":"<p>Biological nitrogen fixation by rhizobia bacteria plays a pivotal role in sustainable agriculture by converting atmospheric nitrogen into a form that plants can assimilate, thereby reducing the need for synthetic fertilizers. This process can be dramatically reduced by various abiotic stressors. Native rhizobia strains, which are naturally occurring, may be better adapted to the local soil and climatic conditions, making them more resilient to stress factors such as drought, salinity, temperature extremes, and pH variations compared to commercial strains that may have been developed in and for different environments. This study aimed to compare the efficacy of native rhizobia species with a commercial inoculant and uninoculated controls in maintaining nitrogen fixation under induced stress by delayed planting in field peas over two growing seasons (2021 and 2022) in central South Dakota. Our findings indicate that native rhizobia, while not outperforming the commercial inoculant, demonstrated competitive nitrogen fixation capacities. Overall, total nitrogen fixation was not statistically different between a commercial inoculant and native rhizobia formulations. Planting date emerged as a significant factor influencing nitrogen fixation, with later planting substantially reducing overall effectiveness. These results highlight the potential of native rhizobia as an alternative to commercial inoculants and underscore the need for increased screening throughput and improved methods to assess rhizobia efficacy and nodule competition in field settings.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of polyester microplastics and naproxen on lettuce growth and development and soil abiotic factors 聚酯微塑料和萘普生对莴苣生长发育和土壤非生物因素的影响
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-25 DOI: 10.1002/agg2.20561
Andy Chen, Pamela Jane Victoria A. Barroso, Jennifer Tran, Ashley K. Gance, Miranda A. Kearney

Microplastics (MPs), formed from the physical breakdown of larger plastics, have been found across a variety of ecosystems. Much research has been done on the effects of MPs in aquatic ecosystems, but fewer studies have explored their effects in terrestrial environments, particularly in agroecosystems where modern practices contribute strongly to MP soil pollution (e.g., plasticulture, fertilization with contaminated biosolids, and composts). Aquatic pharmaceutical contamination is also considered an emerging pollutant threat. Naproxen, a commonly used drug, has been found in wastewater and natural freshwater bodies globally. Thus, crops may be exposed to multiple pollutants simultaneously through soil and water inputs. Our research provides insight into the individual and interactive effects of soil MP pollution intensity and exposure to naproxen-contaminated water on growth and development of Lactuca sativa (lettuce). Soil abiotic factors (pH, electrical conductivity, and rates of soil moisture loss) are also reported. We found that 7% polyester MP-contaminated soil significantly reduced total aboveground biomass and coarse root biomass, while both 0.03% and 7% polyester MP-contaminated soil significantly reduced leaf count and average leaf size. However, 1 mg/L naproxen had no effect on plant growth or development, and there were no interactive effects of naproxen with MPs. MPs also significantly increased rates of soil moisture loss, but we found no effects of MPs or naproxen on soil pH or electrical conductivity. Predicted global increases in soil MP contamination levels will potentially have negative consequences for food systems.

微塑料(MPs)是大型塑料物理分解后形成的,在各种生态系统中都有发现。有关 MPs 对水生生态系统影响的研究很多,但探讨其对陆地环境影响的研究较少,尤其是在农业生态系统中,因为在农业生态系统中,现代做法(如塑料栽培、用受污染的生物固体和堆肥施肥)对 MPs 造成了严重的土壤污染。水生药物污染也被认为是一种新出现的污染物威胁。萘普生是一种常用药物,已在全球废水和天然淡水水体中发现。因此,农作物可能会通过土壤和水的输入同时接触到多种污染物。我们的研究深入探讨了土壤 MP 污染强度和接触萘普生污染水对莴苣(Lactuca sativa)生长发育的单独和交互影响。同时还报告了土壤非生物因素(pH 值、导电率和土壤水分流失率)。我们发现,7% 的聚酯 MP 污染土壤会显著降低地上生物总量和粗根生物量,而 0.03% 和 7% 的聚酯 MP 污染土壤会显著降低叶片数量和平均叶片大小。不过,1 毫克/升的萘普生对植物的生长和发育没有影响,而且萘普生与 MPs 之间也没有交互作用。多溴联苯醚还会明显增加土壤水分流失率,但我们没有发现多溴联苯醚或萘普生对土壤 pH 值或导电率有任何影响。预计全球土壤中 MP 污染水平的增加将对粮食系统产生潜在的负面影响。
{"title":"Effects of polyester microplastics and naproxen on lettuce growth and development and soil abiotic factors","authors":"Andy Chen,&nbsp;Pamela Jane Victoria A. Barroso,&nbsp;Jennifer Tran,&nbsp;Ashley K. Gance,&nbsp;Miranda A. Kearney","doi":"10.1002/agg2.20561","DOIUrl":"https://doi.org/10.1002/agg2.20561","url":null,"abstract":"<p>Microplastics (MPs), formed from the physical breakdown of larger plastics, have been found across a variety of ecosystems. Much research has been done on the effects of MPs in aquatic ecosystems, but fewer studies have explored their effects in terrestrial environments, particularly in agroecosystems where modern practices contribute strongly to MP soil pollution (e.g., plasticulture, fertilization with contaminated biosolids, and composts). Aquatic pharmaceutical contamination is also considered an emerging pollutant threat. Naproxen, a commonly used drug, has been found in wastewater and natural freshwater bodies globally. Thus, crops may be exposed to multiple pollutants simultaneously through soil and water inputs. Our research provides insight into the individual and interactive effects of soil MP pollution intensity and exposure to naproxen-contaminated water on growth and development of <i>Lactuca sativa</i> (lettuce). Soil abiotic factors (pH, electrical conductivity, and rates of soil moisture loss) are also reported. We found that 7% polyester MP-contaminated soil significantly reduced total aboveground biomass and coarse root biomass, while both 0.03% and 7% polyester MP-contaminated soil significantly reduced leaf count and average leaf size. However, 1 mg/L naproxen had no effect on plant growth or development, and there were no interactive effects of naproxen with MPs. MPs also significantly increased rates of soil moisture loss, but we found no effects of MPs or naproxen on soil pH or electrical conductivity. Predicted global increases in soil MP contamination levels will potentially have negative consequences for food systems.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20561","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting spatiotemporal patterns of productivity and grazing from multispectral data using neural network analysis based on system complexity 利用基于系统复杂性的神经网络分析方法,从多光谱数据中预测生产力和放牧的时空模式
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-13 DOI: 10.1002/agg2.20571
A. J. Ashworth, A. Avila, H. Smith, T. E. Winzeler, P. Owens, C. Flynn, P. O'Brien, D. Philipp, J. Su

Remote sensing tools, along with Global Navigation Satellite System cattle collars and digital soil maps, may help elucidate spatiotemporal relationships among soils, terrain, forages, and animals. However, standard computational procedures preclude systems-level evaluations across this continuum due to data inoperability and processing limitations. Deep learning, a subset of neural network, may elucidate efficiency of livestock production and linkages within the livestock-grazing environment. Consequently, we applied deep learning to environmental remote sensing data to (1) develop predictive models for yield and forage nutrition based on vegetation indices and (2) at a pixel-level (per 55 m2), identify how grazing is linked to soil properties, forage growth and nutrition, and terrain attributes in silvopasture and pasture-only systems. Remotely sensed data rapidly and non-destructively estimated herbage mass and nutritive value for enhanced net and primary productivity management in livestock and grazing systems. Cattle grazed big bluestem (Andropogon gerardii ‘Vitman’) with 182% greater frequency than orchardgrass (Dactylis glomerata L.) in the pasture-only system. Real-time estimates of vegetative bands may assist in predicting grazing pressure for more efficient pasture resource management. Cattle grazing followed distinct soil-landscape patterns, namely reduced cattle grazing preference occurred in areas of water accumulation, which highlights linkages among terrain, soil-water movement, soil properties, forage nutrition, and animal grazing response spatially and temporally. Results from this study could be scaled up to improve grazing management among the largest land-use category in the United States, that is, grasslands, which would allow for sustainable intensification of forage-based livestock production to meet growing demands for environmentally responsible protein.

遥感工具以及全球导航卫星系统牛圈和数字土壤地图可帮助阐明土壤、地形、牧草和动物之间的时空关系。然而,由于数据的不可操作性和处理的局限性,标准计算程序无法对这一连续过程进行系统级评估。深度学习作为神经网络的一个子集,可以阐明畜牧生产的效率和畜牧环境中的联系。因此,我们将深度学习应用于环境遥感数据,以(1)开发基于植被指数的产量和牧草营养预测模型;(2)在像素级(每 55 平方米)确定放牧如何与土壤特性、牧草生长和营养以及造林牧场和纯牧场系统中的地形属性相关联。遥感数据可快速、无损地估算草料质量和营养价值,以加强畜牧业和放牧系统的净生产力和初级生产力管理。在纯牧草系统中,牛吃大蓝花蓼(Andropogon gerardii 'Vitman')的频率比吃果园草(Dactylis glomerata L.)的频率高出 182%。对植被带的实时估计有助于预测放牧压力,从而更有效地管理牧场资源。牛的放牧遵循独特的土壤-景观模式,即在积水区域牛的放牧偏好降低,这突出了地形、土壤-水运动、土壤特性、牧草营养和动物放牧反应之间的时空联系。这项研究的结果可用于改善美国最大的土地利用类别(即草原)的放牧管理,从而实现以牧草为基础的畜牧业生产的可持续集约化,以满足对环境负责的蛋白质日益增长的需求。
{"title":"Predicting spatiotemporal patterns of productivity and grazing from multispectral data using neural network analysis based on system complexity","authors":"A. J. Ashworth,&nbsp;A. Avila,&nbsp;H. Smith,&nbsp;T. E. Winzeler,&nbsp;P. Owens,&nbsp;C. Flynn,&nbsp;P. O'Brien,&nbsp;D. Philipp,&nbsp;J. Su","doi":"10.1002/agg2.20571","DOIUrl":"https://doi.org/10.1002/agg2.20571","url":null,"abstract":"<p>Remote sensing tools, along with Global Navigation Satellite System cattle collars and digital soil maps, may help elucidate spatiotemporal relationships among soils, terrain, forages, and animals. However, standard computational procedures preclude systems-level evaluations across this continuum due to data inoperability and processing limitations. Deep learning, a subset of neural network, may elucidate efficiency of livestock production and linkages within the livestock-grazing environment. Consequently, we applied deep learning to environmental remote sensing data to (1) develop predictive models for yield and forage nutrition based on vegetation indices and (2) at a pixel-level (per 55 m<sup>2</sup>), identify how grazing is linked to soil properties, forage growth and nutrition, and terrain attributes in silvopasture and pasture-only systems. Remotely sensed data rapidly and non-destructively estimated herbage mass and nutritive value for enhanced net and primary productivity management in livestock and grazing systems. Cattle grazed big bluestem (<i>Andropogon gerardii</i> ‘Vitman’) with 182% greater frequency than orchardgrass (<i>Dactylis glomerata</i> L.) in the pasture-only system. Real-time estimates of vegetative bands may assist in predicting grazing pressure for more efficient pasture resource management. Cattle grazing followed distinct soil-landscape patterns, namely reduced cattle grazing preference occurred in areas of water accumulation, which highlights linkages among terrain, soil-water movement, soil properties, forage nutrition, and animal grazing response spatially and temporally. Results from this study could be scaled up to improve grazing management among the largest land-use category in the United States, that is, grasslands, which would allow for sustainable intensification of forage-based livestock production to meet growing demands for environmentally responsible protein.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20571","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing crop geometry for enhanced growth and yield of soybean [Glycine max L. (Merrill)] maturity groups in western Ethiopia 优化埃塞俄比亚西部大豆[Glycine max L. (Merrill)]成熟度组的作物几何形状以提高其生长和产量
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-12 DOI: 10.1002/agg2.20567
Alemayehu Dabessa, Feyera Takele, Chala Debala, Zerihun Abebe

Increasing soybean [Glycine max L. (Merrill)] productivity relies heavily on optimizing crop geometry, encompassing both inter- and intra-row spacing. This crucial agronomic practice directly impacts the productivity of soybean crops, making it vital for farmers to consider soybean maturity group when determining optimal crop geometry. Hence, the study was conducted to determine the effect of inter- and intra-row spacing on yield and yield components of soybean varieties and to determine appropriate plant spacing for each maturity group of soybean varieties to achieve a high yield of soybean in the study area. Two soybean varieties from each maturity group, four inter-row spacing (30, 40, 50, and 60 cm), and two intra-row spacing (5 and 10 cm) were arranged in factorial combinations in randomized complete block design with three replications. The results showed that days to flowering, days to maturity, plant height, number of seeds/pod, number of pods/plant, and 100-seed weight were significantly influenced by the main effect of varieties, inter- and intra-row spacing for each maturity group of soybean varieties. The highest grain yield was recorded from narrow inter-row spacing for early and medium maturity groups regardless of intra-row spacing while the highest grain yield was obtained from 50-cm inter-row spacing for late maturing groups. Thus, it can be concluded that 40-cm inter-row spacing is recommended for early and medium soybean varieties, while 50-cm inter-row spacing is recommended for late-maturing soybean varieties for western parts of Oromia and similar agroecologies.

提高大豆 [Glycine max L. (Merrill)] 的产量在很大程度上依赖于优化作物的几何形状,包括行间距和行内距。这一重要的农艺实践直接影响大豆作物的产量,因此农民在确定最佳作物几何形状时,必须考虑大豆成熟度组别。因此,本研究旨在确定行间距和行内距对大豆品种产量和产量成分的影响,并为每个大豆品种成熟度组确定适当的株距,以实现研究区大豆的高产。在随机完全区组设计中,每个成熟度组的两个大豆品种、四种行间距(30、40、50 和 60 厘米)和两种行内距(5 和 10 厘米)按因子组合排列,三次重复。结果表明,大豆品种各成熟组的开花天数、成熟天数、株高、每荚种子数、每荚株数和百粒重受品种、行间距和行内距主效应的显著影响。早熟组和中熟组窄行距的谷物产量最高,而晚熟组 50 厘米行距的谷物产量最高。因此,在奥罗米亚西部地区和类似的农业生态中,早熟和中熟大豆品种建议采用 40 厘米的行距,晚熟大豆品种建议采用 50 厘米的行距。
{"title":"Optimizing crop geometry for enhanced growth and yield of soybean [Glycine max L. (Merrill)] maturity groups in western Ethiopia","authors":"Alemayehu Dabessa,&nbsp;Feyera Takele,&nbsp;Chala Debala,&nbsp;Zerihun Abebe","doi":"10.1002/agg2.20567","DOIUrl":"https://doi.org/10.1002/agg2.20567","url":null,"abstract":"<p>Increasing soybean [<i>Glycine max</i> L. (Merrill)] productivity relies heavily on optimizing crop geometry, encompassing both inter- and intra-row spacing. This crucial agronomic practice directly impacts the productivity of soybean crops, making it vital for farmers to consider soybean maturity group when determining optimal crop geometry. Hence, the study was conducted to determine the effect of inter- and intra-row spacing on yield and yield components of soybean varieties and to determine appropriate plant spacing for each maturity group of soybean varieties to achieve a high yield of soybean in the study area. Two soybean varieties from each maturity group, four inter-row spacing (30, 40, 50, and 60 cm), and two intra-row spacing (5 and 10 cm) were arranged in factorial combinations in randomized complete block design with three replications. The results showed that days to flowering, days to maturity, plant height, number of seeds/pod, number of pods/plant, and 100-seed weight were significantly influenced by the main effect of varieties, inter- and intra-row spacing for each maturity group of soybean varieties. The highest grain yield was recorded from narrow inter-row spacing for early and medium maturity groups regardless of intra-row spacing while the highest grain yield was obtained from 50-cm inter-row spacing for late maturing groups. Thus, it can be concluded that 40-cm inter-row spacing is recommended for early and medium soybean varieties, while 50-cm inter-row spacing is recommended for late-maturing soybean varieties for western parts of Oromia and similar agroecologies.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistence of dicamba residue in harvested soybeans 麦草畏在收获大豆中残留的持久性
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-12 DOI: 10.1002/agg2.20564
Jerri Lynn Henry, Chung-Ho Lin, Jason W. Weirich, Reid J. Smeda

Adoption of dicamba-tolerant soybeans contributed to widespread reports of chemical trespassing on adjacent, sensitive soybeans. Reports of the impact of dicamba on sensitive soybeans (Glycine max L.) have been well documented; however, the potential for dicamba carryover into harvested beans from sensitive plants has largely been overlooked. Field trials in central Missouri focused on assessing the injury and yield response of sensitive soybeans to concentrations of dicamba as low as 0.25% of the use rate (10 µL L−1 dicamba). In both 2018 and 2019, dicamba-sensitive soybeans were planted in conventional row spacing and treated with 10–300 µL L−1 dicamba at both V3 and R1 soybeans. Dicamba symptoms were visible in less than 7 days after application (DAA); significant injury was observed at 10 µL L−1 and persisted through the duration of the study (28 DAA). Injury levels reached almost 50% with 300 µL L−1 dicamba. Step-wise increases in soybean yield losses occurred with increasing dicamba concentrations and reached 50% with 300 µL L−1 dicamba. Yield losses were up to 10% greater for R1 versus V3 soybeans treated with the same dicamba concentration. Dicamba residues in bean tissue ranged from 0.72 to 0.81 mg kg−1 for 150 to 300 µL L−1 dicamba, and residues were similar for beans at both V3 and R1. Dicamba persisted in beans harvested up to 122 days after plant exposure to dicamba. Although dicamba residues were within limits established by the EPA (10 mg kg−1), residues exceeded that allowed in marketed, organic soybeans (0.5 mg kg−1).

耐麦草畏大豆的采用导致了有关化学品侵入邻近敏感大豆的广泛报道。有关麦草畏对敏感大豆(Glycine max L.)的影响的报告已被详细记录;然而,麦草畏从敏感植物带入收获大豆的可能性却在很大程度上被忽视了。密苏里州中部的田间试验侧重于评估敏感大豆对低至 0.25% 使用量(10 µL L-1 麦草畏)的麦草畏浓度的伤害和产量反应。2018 年和 2019 年,麦草畏敏感大豆均以常规行距种植,并在 V3 和 R1 大豆上使用 10-300 µL L-1 麦草畏处理。麦草畏症状在施用后不到 7 天(DAA)就能看到;在 10 µL L-1 时观察到明显的伤害,并在研究期间(28 DAA)持续存在。300 µL L-1 麦草畏的伤害程度几乎达到 50%。随着麦草畏浓度的增加,大豆产量损失逐步增加,300 µL L-1 麦草畏的产量损失达到 50%。在麦草畏浓度相同的情况下,R1 大豆的产量损失比 V3 大豆高出 10%。150 至 300 µL L-1 麦草畏在大豆组织中的残留量为 0.72 至 0.81 mg kg-1,V3 和 R1 大豆的残留量相似。麦草畏在植物接触麦草畏 122 天后收获的豆类中仍有残留。虽然麦草畏的残留量在美国环保局规定的限量范围内(10 毫克/千克-1),但残留量超过了市场上销售的有机大豆允许的限量(0.5 毫克/千克-1)。
{"title":"Persistence of dicamba residue in harvested soybeans","authors":"Jerri Lynn Henry,&nbsp;Chung-Ho Lin,&nbsp;Jason W. Weirich,&nbsp;Reid J. Smeda","doi":"10.1002/agg2.20564","DOIUrl":"https://doi.org/10.1002/agg2.20564","url":null,"abstract":"<p>Adoption of dicamba-tolerant soybeans contributed to widespread reports of chemical trespassing on adjacent, sensitive soybeans. Reports of the impact of dicamba on sensitive soybeans (<i>Glycine max</i> L.) have been well documented; however, the potential for dicamba carryover into harvested beans from sensitive plants has largely been overlooked. Field trials in central Missouri focused on assessing the injury and yield response of sensitive soybeans to concentrations of dicamba as low as 0.25% of the use rate (10 µL L<sup>−1</sup> dicamba). In both 2018 and 2019, dicamba-sensitive soybeans were planted in conventional row spacing and treated with 10–300 µL L<sup>−1</sup> dicamba at both V3 and R1 soybeans. Dicamba symptoms were visible in less than 7 days after application (DAA); significant injury was observed at 10 µL L<sup>−1</sup> and persisted through the duration of the study (28 DAA). Injury levels reached almost 50% with 300 µL L<sup>−1</sup> dicamba. Step-wise increases in soybean yield losses occurred with increasing dicamba concentrations and reached 50% with 300 µL L<sup>−1</sup> dicamba. Yield losses were up to 10% greater for R1 versus V3 soybeans treated with the same dicamba concentration. Dicamba residues in bean tissue ranged from 0.72 to 0.81 mg kg<sup>−1</sup> for 150 to 300 µL L<sup>−1</sup> dicamba, and residues were similar for beans at both V3 and R1. Dicamba persisted in beans harvested up to 122 days after plant exposure to dicamba. Although dicamba residues were within limits established by the EPA (10 mg kg<sup>−1</sup>), residues exceeded that allowed in marketed, organic soybeans (0.5 mg kg<sup>−1</sup>).</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20564","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purple nutsedge management in tomato plasticulture: A study on the effectiveness of preemergence herbicide S-metolachlor and its co-application with fertilizer enhancer and chelated iron 番茄塑料栽培中的紫穗病管理:芽前除草剂 S-甲草胺及其与肥料增效剂和螯合铁联合施用的效果研究
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-12 DOI: 10.1002/agg2.20563
Ruby Tiwari, Anish Sapkota, Nathan Boyd, Ramdas Kanissery

Purple nutsedge (Cyperus rotundus L.) poses a significant challenge to Florida tomato (Solanum lycopersicum L.) producers due to its ability to puncture plastic mulch, resilient tubers, and rapid rhizome proliferation. Preemergence herbicides effectively suppress purple nutsedge in tomatoes under plastic mulch. Although the impact of co-application of herbicides with fertilizers has been studied in row crops, its potential in vegetable plasticulture systems remains unexplored. This study aimed to evaluate the effectiveness and crop safety of the preemergence herbicide S-metolachlor, both as a standalone treatment and in combination with a fertilizer enhancer or chelated iron in tomato plasticulture. Field trials at the University of Florida's Southwest Florida Research and Education Center, Immokalee, FL, involved applying S-metolachlor at the recommended rate of 1 kg a.i. ha−1 on raised beds before installing plastic mulch. The herbicide was applied as a blanket spray alone, mixed with fertilizer enhancer, and coated on chelated iron fertilizer. Results indicate that using S-metolachlor alone effectively reduced purple nutsedge density compared to the nontreated control in both trials I and II. Combining S-metolachlor with fertilizer enhancer or chelated iron resulted in a >30% and 57% reduction in purple nutsedge density, respectively, compared to the nontreated control in trial II. These treatments did not adversely impact chlorophyll content or crop yield (p > 0.05) compared to the nontreated control. Notably, tomato yield significantly (p < 0.05) decreased with increased purple nutsedge density at 4, 8, and 12 weeks after transplanting. Overall, the results from both trials suggest that using S-metolachlor is an effective approach to reduce purple nutsedge infestation in plastic-mulched raised beds without negatively impacting tomato health and productivity.

紫花地丁(Cyperus rotundus L.)对佛罗里达州的番茄(Solanum lycopersicum L.)生产者构成了巨大的挑战,因为它能够刺穿塑料地膜,块茎生命力顽强,根茎繁殖迅速。萌芽前除草剂能有效抑制塑料地膜下番茄中的紫椰子穗病。虽然对除草剂与肥料共同施用对行列作物的影响进行了研究,但其在蔬菜塑料栽培系统中的潜力仍有待探索。本研究旨在评估萌芽前除草剂 S-metolachlor 在番茄塑料栽培中单独使用以及与肥料增效剂或螯合铁结合使用的效果和作物安全性。在佛罗里达州伊莫卡利的佛罗里达大学西南佛罗里达研究与教育中心进行的田间试验包括,在铺设塑料地膜之前,按建议的 1 kg a.i. ha-1 的剂量在高床上施用 S-甲草胺。除草剂的施用方式包括单独喷洒、与肥料增效剂混合施用以及涂在螯合铁肥上。结果表明,在试验 I 和 II 中,与未处理的对照组相比,单独使用 S-甲草胺能有效降低紫花地丁的密度。在试验 II 中,将 S-甲草胺与肥料增效剂或螯合铁结合使用,与未处理的对照组相比,紫坚果穗草的密度分别降低了 30% 和 57%。与未处理的对照组相比,这些处理对叶绿素含量和作物产量没有不利影响(p > 0.05)。值得注意的是,在移栽后 4、8 和 12 周,番茄产量随着紫坚果蕨密度的增加而明显下降(p < 0.05)。总之,这两项试验的结果表明,使用 S-metolachlor 是减少塑料覆盖高床紫坚果穗草侵扰的有效方法,不会对番茄的健康和产量产生负面影响。
{"title":"Purple nutsedge management in tomato plasticulture: A study on the effectiveness of preemergence herbicide S-metolachlor and its co-application with fertilizer enhancer and chelated iron","authors":"Ruby Tiwari,&nbsp;Anish Sapkota,&nbsp;Nathan Boyd,&nbsp;Ramdas Kanissery","doi":"10.1002/agg2.20563","DOIUrl":"https://doi.org/10.1002/agg2.20563","url":null,"abstract":"<p>Purple nutsedge (<i>Cyperus rotundus</i> L.) poses a significant challenge to Florida tomato (<i>Solanum lycopersicum</i> L.) producers due to its ability to puncture plastic mulch, resilient tubers, and rapid rhizome proliferation. Preemergence herbicides effectively suppress purple nutsedge in tomatoes under plastic mulch. Although the impact of co-application of herbicides with fertilizers has been studied in row crops, its potential in vegetable plasticulture systems remains unexplored. This study aimed to evaluate the effectiveness and crop safety of the preemergence herbicide <i>S</i>-metolachlor, both as a standalone treatment and in combination with a fertilizer enhancer or chelated iron in tomato plasticulture. Field trials at the University of Florida's Southwest Florida Research and Education Center, Immokalee, FL, involved applying <i>S</i>-metolachlor at the recommended rate of 1 kg a.i. ha<sup>−1</sup> on raised beds before installing plastic mulch. The herbicide was applied as a blanket spray alone, mixed with fertilizer enhancer, and coated on chelated iron fertilizer. Results indicate that using <i>S</i>-metolachlor alone effectively reduced purple nutsedge density compared to the nontreated control in both trials I and II. Combining <i>S</i>-metolachlor with fertilizer enhancer or chelated iron resulted in a &gt;30% and 57% reduction in purple nutsedge density, respectively, compared to the nontreated control in trial II. These treatments did not adversely impact chlorophyll content or crop yield (<i>p</i> &gt; 0.05) compared to the nontreated control. Notably, tomato yield significantly (<i>p</i> &lt; 0.05) decreased with increased purple nutsedge density at 4, 8, and 12 weeks after transplanting. Overall, the results from both trials suggest that using <i>S</i>-metolachlor is an effective approach to reduce purple nutsedge infestation in plastic-mulched raised beds without negatively impacting tomato health and productivity.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20563","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined inoculation of arbuscular mycorrhiza fungi with Meso-rhizobium improves nutrient uptake, growth performance, and moisture stress tolerance of chickpea (Cicer arietinum L.) 将丛枝菌根真菌与中生根瘤菌联合接种可提高鹰嘴豆(Cicer arietinum L.)的养分吸收、生长表现和水分胁迫耐受性
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-12 DOI: 10.1002/agg2.20562
Tigist Yimer, Girma Abera, Sheleme Beyene, Beyene Bono, Frank Rasche

Biofertilizers can be better alternatives to chemical fertilizers to enhance plant nutrition and productivity as they improve the soil fertility and crop productivity in an eco-friendly and cost-effective manner. A pot experiment was conducted between December 2018 and March 2019 in southern Ethiopia to evaluate the combined inoculation of arbuscular mycorrhizal fungi (AMF) and Meso-rhizobium (MR) on biomass yield, nutrient uptake, and moisture stress tolerance of chickpea (Cicer arietinum L.) (variety: Habru). The experiment was executed as a factorial arrangement using a completely randomized design with three replications. The treatments were control (non-fertilized), sole AM fungi inoculation, AM fungi inoculation with phosphorus fertilizer (20 kg P ha−1) and MR, and sole inorganic fertilizers (20 kg P;10 kg N ha−1) at four different moisture levels (optimum throughout the growing season, stressed at vegetative, flowering, and seed filling stages). The results demonstrated that biomass yields were limited by moisture stress, especially at vegetative and flowering stages of chickpea. Sole and co-application of AMF with MR and inorganic P increased biomass yields on average by 19%, 39%, and 33% under water stress conditions, respectively, compared to the non-inoculated control. The application of AMF with MR and inorganic P also significantly increased nodulation, AMF colonization, and nutrient uptake, but these effects were dependent on soil moisture status. In conclusion, there are potential advantages to be gained from sole and combined AMF application with rhizobium to improve growth and productivity of chickpea through enhanced nutrient and water uptake, though the results of this pot experiment should be validated through field trials.

生物肥料可以更好地替代化肥,以生态友好和具有成本效益的方式改善土壤肥力和作物产量,从而提高植物营养和生产力。2018 年 12 月至 2019 年 3 月期间,在埃塞俄比亚南部进行了一项盆栽实验,以评估接种丛枝菌根真菌(AMF)和中生根瘤菌(MR)对鹰嘴豆(Cicer arietinum L.)(品种:Habru)的生物量产量、养分吸收和水分胁迫耐受性的影响。试验采用完全随机设计的因子排列,三次重复。处理包括对照(不施肥)、单一 AM 真菌接种、AM 真菌接种与磷肥(20 千克 P 公顷-1)和 MR 以及单一无机肥料(20 千克 P;10 千克 N 公顷-1)在四种不同湿度水平(整个生长期为最佳湿度,在植株期、开花期和种子灌浆期为胁迫湿度)下的处理。结果表明,生物量产量受到水分胁迫的限制,尤其是在鹰嘴豆的无性期和开花期。与未接种的对照组相比,在水分胁迫条件下,单独施用或同时施用 AMF 与 MR 和无机磷的生物量产量平均分别提高了 19%、39% 和 33%。施用含有 MR 和无机钾的 AMF 还能显著提高结瘤率、AMF 定殖率和养分吸收率,但这些效果取决于土壤水分状况。总之,单独施用或与根瘤菌联合施用 AMF 有潜在优势,可通过提高养分和水分吸收来改善鹰嘴豆的生长和产量,但本盆栽实验的结果应通过田间试验来验证。
{"title":"Combined inoculation of arbuscular mycorrhiza fungi with Meso-rhizobium improves nutrient uptake, growth performance, and moisture stress tolerance of chickpea (Cicer arietinum L.)","authors":"Tigist Yimer,&nbsp;Girma Abera,&nbsp;Sheleme Beyene,&nbsp;Beyene Bono,&nbsp;Frank Rasche","doi":"10.1002/agg2.20562","DOIUrl":"https://doi.org/10.1002/agg2.20562","url":null,"abstract":"<p>Biofertilizers can be better alternatives to chemical fertilizers to enhance plant nutrition and productivity as they improve the soil fertility and crop productivity in an eco-friendly and cost-effective manner. A pot experiment was conducted between December 2018 and March 2019 in southern Ethiopia to evaluate the combined inoculation of arbuscular mycorrhizal fungi (AMF) and Meso-rhizobium (MR) on biomass yield, nutrient uptake, and moisture stress tolerance of chickpea (<i>Cicer arietinum</i> L.) (variety: Habru). The experiment was executed as a factorial arrangement using a completely randomized design with three replications. The treatments were control (non-fertilized), sole AM fungi inoculation, AM fungi inoculation with phosphorus fertilizer (20 kg P ha<sup>−1</sup>) and MR, and sole inorganic fertilizers (20 kg P;10 kg N ha<sup>−1</sup>) at four different moisture levels (optimum throughout the growing season, stressed at vegetative, flowering, and seed filling stages). The results demonstrated that biomass yields were limited by moisture stress, especially at vegetative and flowering stages of chickpea. Sole and co-application of AMF with MR and inorganic P increased biomass yields on average by 19%, 39%, and 33% under water stress conditions, respectively, compared to the non-inoculated control. The application of AMF with MR and inorganic P also significantly increased nodulation, AMF colonization, and nutrient uptake, but these effects were dependent on soil moisture status. In conclusion, there are potential advantages to be gained from sole and combined AMF application with rhizobium to improve growth and productivity of chickpea through enhanced nutrient and water uptake, though the results of this pot experiment should be validated through field trials.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Chinese fiber hemp (Cannabis sativa L.) varieties and planting dates in North Carolina 评估北卡罗来纳州的中国纤维麻(大麻)品种和种植日期
IF 1.3 Q3 AGRONOMY Pub Date : 2024-09-10 DOI: 10.1002/agg2.20569
China Allissa P. Halker, Alex L. Woodley, S. Chris Reberg-Horton, Shannon Henriquez Inoa, David H. Suchoff

Field trials were conducted in 2021 and 2022 to evaluate the effects of planting date (mid-March, mid-April, and mid-May) on 11 fiber hemp (Cannabis sativa L. <0.3% total tetrahydrocannabinol) varieties. Trials were conducted in Goldsboro, Kinston, and Salisbury, NC. Each location followed a split-plot randomized complete block design with at least three blocks where planting date was the main-plot and variety the sub-plot. Varieties investigated originated from China and Australia (2021 only). Data collection included flowering time, end of season stand counts, stem height, diameter, and final retted dry straw yield. We found differences among the varieties investigated in both years; however, no distinct trend was observed across years. All varieties investigated flowered at the end of August and beginning of September, allowing for a long growing season and ability to produce abundant biomass. In general, the Chinese genetics yielded higher stem biomass compared to previously reported European genetics. Stem thickness was >7.5 mm, which is generally considered the maximum width for textile-grade fiber production. To achieve thinner stems from the varieties investigated, harvesting prior to male-flower initiation may be required. The crop experienced temperatures below freezing in both years with no signs of damage. Taken together, farmers seeking to plant fiber hemp in North Carolina have a wide planting window from mid-March to mid-May using these Chinese varieties.

2021 年和 2022 年进行了田间试验,以评估种植日期(3 月中旬、4 月中旬和 5 月中旬)对 11 个纤维大麻(Cannabis sativa L. <0.3%总四氢大麻酚)品种的影响。试验在北卡罗来纳州戈兹伯勒、金斯敦和索尔兹伯里进行。每个地点都采用了分块随机完全区组设计,至少有三个区组,其中种植日期为主区组,品种为副区组。调查的品种来自中国和澳大利亚(仅 2021 年)。数据收集包括开花时间、季末株数、茎高、直径和最终干稻草产量。我们发现这两年调查的品种之间存在差异,但没有观察到明显的跨年趋势。所有调查的品种都在 8 月底 9 月初开花,因此生长期较长,能够产生丰富的生物量。总体而言,与之前报道的欧洲品种相比,中国品种的茎秆生物量更高。茎的厚度为 7.5 毫米,一般认为这是生产纺织级纤维的最大宽度。要使所调查的品种的茎秆更细,可能需要在雄花萌发前收割。这两年的气温都在零度以下,作物没有受损迹象。综上所述,希望在北卡罗来纳州种植纤维麻的农民可以利用这些中国品种在三月中旬到五月中旬之间进行广泛种植。
{"title":"Evaluating Chinese fiber hemp (Cannabis sativa L.) varieties and planting dates in North Carolina","authors":"China Allissa P. Halker,&nbsp;Alex L. Woodley,&nbsp;S. Chris Reberg-Horton,&nbsp;Shannon Henriquez Inoa,&nbsp;David H. Suchoff","doi":"10.1002/agg2.20569","DOIUrl":"https://doi.org/10.1002/agg2.20569","url":null,"abstract":"<p>Field trials were conducted in 2021 and 2022 to evaluate the effects of planting date (mid-March, mid-April, and mid-May) on 11 fiber hemp (<i>Cannabis sativa</i> L. &lt;0.3% total tetrahydrocannabinol) varieties. Trials were conducted in Goldsboro, Kinston, and Salisbury, NC. Each location followed a split-plot randomized complete block design with at least three blocks where planting date was the main-plot and variety the sub-plot. Varieties investigated originated from China and Australia (2021 only). Data collection included flowering time, end of season stand counts, stem height, diameter, and final retted dry straw yield. We found differences among the varieties investigated in both years; however, no distinct trend was observed across years. All varieties investigated flowered at the end of August and beginning of September, allowing for a long growing season and ability to produce abundant biomass. In general, the Chinese genetics yielded higher stem biomass compared to previously reported European genetics. Stem thickness was &gt;7.5 mm, which is generally considered the maximum width for textile-grade fiber production. To achieve thinner stems from the varieties investigated, harvesting prior to male-flower initiation may be required. The crop experienced temperatures below freezing in both years with no signs of damage. Taken together, farmers seeking to plant fiber hemp in North Carolina have a wide planting window from mid-March to mid-May using these Chinese varieties.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20569","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Agrosystems, Geosciences & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1