Pub Date : 2024-11-08DOI: 10.1164/rccm.202407-1394OC
Matthew J Cummings, Julius J Lutwama, Nicholas Owor, Alin S Tomoiaga, Jesse E Ross, Moses Muwanga, Christopher Nsereko, Irene Nayiga, Stephen Kyebambe, Joseph Shinyale, Thomas Ochar, Moses Kiwubeyi, Rittah Nankwanga, Kai Nie, Hui Xie, Sam Miake-Lye, Bryan Villagomez, Jingjing Qi, Steven J Reynolds, Martina Cathy Nakibuuka, Xuan Lu, John Kayiwa, Mercy Haumba, Joweria Nakaseegu, Xiaoyu Che, Misaki Wayengera, Sankar Ghosh, Seunghee Kim-Schulze, W Ian Lipkin, Barnabas Bakamutumaho, Max R O'Donnell
Rationale: The global burden of sepsis is concentrated in sub-Saharan Africa, where inciting pathogens are diverse and HIV co-infection is a major driver of poor outcomes. Biological heterogeneity inherent to sepsis in this setting is poorly defined.
Objectives: To identify dominant pathobiological signatures of sepsis in sub-Saharan Africa and their relationship to clinical phenotypes, patient outcomes, and biological classifications of sepsis identified in high-income-countries (HICs).
Methods: We analyzed two prospective cohorts of adults hospitalized with sepsis (severe infection with qSOFA score≥1) at disparate settings in Uganda (discovery cohort [Entebbe,urban], N=242; validation cohort [Tororo,rural], N=253). To identify pathobiological signatures in the discovery cohort, we applied unsupervised clustering to 173 soluble proteins reflecting key domains of the host response to severe infection. A random forest-derived classifier was used to predict signature assignment in the validation cohort.
Measurements and main results: Two signatures (Uganda Sepsis Signature [USS]-1 and USS-2) were identified in the discovery cohort, distinguished by expression of proteins involved in myeloid cell and inflammasome activation, T cell co-stimulation and exhaustion, and endothelial barrier dysfunction. A five-protein classifier (AUROC 0.97) reproduced two signatures in the validation cohort with similar biological profiles. In both cohorts, USS-2 mapped to a more severe clinical phenotype associated with HIV and related immunosuppression, severe tuberculosis, and increased risk of 30-day mortality. Substantial biological overlap was observed between USS-2 and hyperinflammatory and reactive sepsis phenotypes identified in HICs.
Conclusions: We identified prognostically-enriched pathobiological signatures among sepsis patients with diverse infections and high HIV prevalence in Uganda. Globally inclusive investigations are needed to define generalizable and context-specific mechanisms of sepsis pathobiology, with the goal of improving access to precision medicine treatment strategies.
{"title":"Unsupervised Classification of the Host Response Identifies Dominant Pathobiological Signatures of Sepsis in Sub-Saharan Africa.","authors":"Matthew J Cummings, Julius J Lutwama, Nicholas Owor, Alin S Tomoiaga, Jesse E Ross, Moses Muwanga, Christopher Nsereko, Irene Nayiga, Stephen Kyebambe, Joseph Shinyale, Thomas Ochar, Moses Kiwubeyi, Rittah Nankwanga, Kai Nie, Hui Xie, Sam Miake-Lye, Bryan Villagomez, Jingjing Qi, Steven J Reynolds, Martina Cathy Nakibuuka, Xuan Lu, John Kayiwa, Mercy Haumba, Joweria Nakaseegu, Xiaoyu Che, Misaki Wayengera, Sankar Ghosh, Seunghee Kim-Schulze, W Ian Lipkin, Barnabas Bakamutumaho, Max R O'Donnell","doi":"10.1164/rccm.202407-1394OC","DOIUrl":"https://doi.org/10.1164/rccm.202407-1394OC","url":null,"abstract":"<p><strong>Rationale: </strong>The global burden of sepsis is concentrated in sub-Saharan Africa, where inciting pathogens are diverse and HIV co-infection is a major driver of poor outcomes. Biological heterogeneity inherent to sepsis in this setting is poorly defined.</p><p><strong>Objectives: </strong>To identify dominant pathobiological signatures of sepsis in sub-Saharan Africa and their relationship to clinical phenotypes, patient outcomes, and biological classifications of sepsis identified in high-income-countries (HICs).</p><p><strong>Methods: </strong>We analyzed two prospective cohorts of adults hospitalized with sepsis (severe infection with qSOFA score≥1) at disparate settings in Uganda (discovery cohort [Entebbe,urban], N=242; validation cohort [Tororo,rural], N=253). To identify pathobiological signatures in the discovery cohort, we applied unsupervised clustering to 173 soluble proteins reflecting key domains of the host response to severe infection. A random forest-derived classifier was used to predict signature assignment in the validation cohort.</p><p><strong>Measurements and main results: </strong>Two signatures (Uganda Sepsis Signature [USS]-1 and USS-2) were identified in the discovery cohort, distinguished by expression of proteins involved in myeloid cell and inflammasome activation, T cell co-stimulation and exhaustion, and endothelial barrier dysfunction. A five-protein classifier (AUROC 0.97) reproduced two signatures in the validation cohort with similar biological profiles. In both cohorts, USS-2 mapped to a more severe clinical phenotype associated with HIV and related immunosuppression, severe tuberculosis, and increased risk of 30-day mortality. Substantial biological overlap was observed between USS-2 and hyperinflammatory and reactive sepsis phenotypes identified in HICs.</p><p><strong>Conclusions: </strong>We identified prognostically-enriched pathobiological signatures among sepsis patients with diverse infections and high HIV prevalence in Uganda. Globally inclusive investigations are needed to define generalizable and context-specific mechanisms of sepsis pathobiology, with the goal of improving access to precision medicine treatment strategies.</p>","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":""},"PeriodicalIF":19.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1164/rccm.202409-1809LE
Guanyu Yang
{"title":"Lung Protective Mechanical Ventilation in Severe Acute Brain Injured Patients.","authors":"Guanyu Yang","doi":"10.1164/rccm.202409-1809LE","DOIUrl":"https://doi.org/10.1164/rccm.202409-1809LE","url":null,"abstract":"","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":""},"PeriodicalIF":19.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1164/rccm.202410-1926LE
Luciana Mascia, Tommaso Tonetti
{"title":"Reply to Yang and to Xie and Wang.","authors":"Luciana Mascia, Tommaso Tonetti","doi":"10.1164/rccm.202410-1926LE","DOIUrl":"https://doi.org/10.1164/rccm.202410-1926LE","url":null,"abstract":"","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":""},"PeriodicalIF":19.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1164/rccm.202409-1878ED
Lucile Regard, Pierre-Régis Burgel
{"title":"CFTR Modulators for the Treatment of COPD: The Jury Is Still Out!","authors":"Lucile Regard, Pierre-Régis Burgel","doi":"10.1164/rccm.202409-1878ED","DOIUrl":"https://doi.org/10.1164/rccm.202409-1878ED","url":null,"abstract":"","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":""},"PeriodicalIF":19.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1164/rccm.202310-1759OC
Rosa Peltrini, Rebecca L Cordell, Michael Wilde, Shahd Abuhelal, Eleanor Quek, Nazanin Zounemat-Kermani, Wadah Ibrahim, Matthew Richardson, Paul Brinkman, Florence Schleich, Pierre-Hugues Stefanuto, Hnin Aung, Neil Greening, Sven Erik Dahlen, Ratko Djukanovic, Ian M Adcock, Christopher Brightling, Paul Monks, Salman Siddiqui
Rationale: Volatile organic compounds (VOCs) in asthmatic breath may be associated with sputum eosinophilia. We developed a volatile biomarker signature to predict sputum eosinophilia in asthma. Methods: VOCs emitted into the space above sputum samples (headspace) from patients with severe asthma (n = 36) were collected onto sorbent tubes and analyzed using thermal desorption gas chromatography-mass spectrometry (GC-MS). Elastic net regression identified stable VOCs associated with sputum eosinophilia ⩾ 3% and generated a volatile biomarker signature. This VOC signature was validated in breath samples from: 1) patients with acute asthma according to blood eosinophilia ⩾0.3 × 109cells/L or sputum eosinophilia of ⩾3% in the UK EMBER (East Midlands Breathomics Pathology Node) consortium (n = 65) and 2) U-BIOPRED-IMI (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes Innovative Medicines Initiative) consortium (n = 42). Breath samples were collected onto sorbent tubes (EMBER) or Tedlar bags (U-BIOPRED) and analyzed by GC-MS (GC × GC-MS for EMBER or GC-MS for U-BIOPRED). Measurements and Main Results: The in vitro headspace identified 19 VOCs associated with sputum eosinophilia, and the derived VOC signature yielded good diagnostic accuracy for sputum eosinophilia ⩾3% in headspace (area under the receiver operating characteristic curve [AUROC] 0.90; 95% confidence interval [CI], 0.80-0.99; P < 0.0001), correlated inversely with sputum eosinophil percentage (rs = -0.71; P < 0.0001), and outperformed fractional exhaled nitric oxide (AUROC 0.61; 95% CI, 0.35-0.86). Analysis of exhaled breath in replication cohorts yielded a VOC signature AUROC (95% CI) for acute asthma exacerbations of 0.89 (0.76-1.0) (EMBER cohort) with sputum eosinophilia and 0.90 (0.75-1.0) in U-BIOPRED, again outperforming fractional exhaled nitric oxide in U-BIOPRED (0.62 [0.33-0.90]). Conclusions: We have discovered and provided early-stage clinical validation of a volatile biomarker signature associated with eosinophilic airway inflammation. Further work is needed to translate our discovery using point-of-care clinical sensors.
{"title":"Discovery and Validation of a Volatile Signature of Eosinophilic Airway Inflammation in Asthma.","authors":"Rosa Peltrini, Rebecca L Cordell, Michael Wilde, Shahd Abuhelal, Eleanor Quek, Nazanin Zounemat-Kermani, Wadah Ibrahim, Matthew Richardson, Paul Brinkman, Florence Schleich, Pierre-Hugues Stefanuto, Hnin Aung, Neil Greening, Sven Erik Dahlen, Ratko Djukanovic, Ian M Adcock, Christopher Brightling, Paul Monks, Salman Siddiqui","doi":"10.1164/rccm.202310-1759OC","DOIUrl":"10.1164/rccm.202310-1759OC","url":null,"abstract":"<p><p><b>Rationale:</b> Volatile organic compounds (VOCs) in asthmatic breath may be associated with sputum eosinophilia. We developed a volatile biomarker signature to predict sputum eosinophilia in asthma. <b>Methods:</b> VOCs emitted into the space above sputum samples (headspace) from patients with severe asthma (<i>n</i> = 36) were collected onto sorbent tubes and analyzed using thermal desorption gas chromatography-mass spectrometry (GC-MS). Elastic net regression identified stable VOCs associated with sputum eosinophilia ⩾ 3% and generated a volatile biomarker signature. This VOC signature was validated in breath samples from: <i>1</i>) patients with acute asthma according to blood eosinophilia ⩾0.3 × 10<sup>9</sup>cells/L or sputum eosinophilia of ⩾3% in the UK EMBER (East Midlands Breathomics Pathology Node) consortium (<i>n</i> = 65) and <i>2</i>) U-BIOPRED-IMI (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes Innovative Medicines Initiative) consortium (<i>n</i> = 42). Breath samples were collected onto sorbent tubes (EMBER) or Tedlar bags (U-BIOPRED) and analyzed by GC-MS (GC × GC-MS for EMBER or GC-MS for U-BIOPRED). <b>Measurements and Main Results:</b> The <i>in vitro</i> headspace identified 19 VOCs associated with sputum eosinophilia, and the derived VOC signature yielded good diagnostic accuracy for sputum eosinophilia ⩾3% in headspace (area under the receiver operating characteristic curve [AUROC] 0.90; 95% confidence interval [CI], 0.80-0.99; <i>P</i> < 0.0001), correlated inversely with sputum eosinophil percentage (<i>r</i><sub>s</sub> = -0.71; <i>P</i> < 0.0001), and outperformed fractional exhaled nitric oxide (AUROC 0.61; 95% CI, 0.35-0.86). Analysis of exhaled breath in replication cohorts yielded a VOC signature AUROC (95% CI) for acute asthma exacerbations of 0.89 (0.76-1.0) (EMBER cohort) with sputum eosinophilia and 0.90 (0.75-1.0) in U-BIOPRED, again outperforming fractional exhaled nitric oxide in U-BIOPRED (0.62 [0.33-0.90]). <b>Conclusions:</b> We have discovered and provided early-stage clinical validation of a volatile biomarker signature associated with eosinophilic airway inflammation. Further work is needed to translate our discovery using point-of-care clinical sensors.</p>","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":"1101-1112"},"PeriodicalIF":19.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1164/rccm.202401-0235IM
Jason Katz, Daniel Schimmel, Marysa Leya, Alan Betensley, Mrinalini Subramani, Catherine Myers, Rade Tomic, Chitaru Kurihara, Ambalavanan Arunachalam
{"title":"Suction Thrombectomy and Pulmonary Artery Stenting for Pulmonary Embolism in a Single Lung Transplant.","authors":"Jason Katz, Daniel Schimmel, Marysa Leya, Alan Betensley, Mrinalini Subramani, Catherine Myers, Rade Tomic, Chitaru Kurihara, Ambalavanan Arunachalam","doi":"10.1164/rccm.202401-0235IM","DOIUrl":"10.1164/rccm.202401-0235IM","url":null,"abstract":"","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":"e12-e13"},"PeriodicalIF":19.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1164/rccm.202406-1109ED
Rebecca R Vanderpool
{"title":"Imaging the Intersection of Parenchymal Abnormalities and Pulmonary Vascular Pathways.","authors":"Rebecca R Vanderpool","doi":"10.1164/rccm.202406-1109ED","DOIUrl":"10.1164/rccm.202406-1109ED","url":null,"abstract":"","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":"1075-1077"},"PeriodicalIF":19.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1164/rccm.202402-0271IM
Lu Chen, Kui Li, Hong Wen
{"title":"Unusual Cause of Hypoxemia during Pregnancy: New Diagnosis of Pulmonary Arteriovenous Malformations.","authors":"Lu Chen, Kui Li, Hong Wen","doi":"10.1164/rccm.202402-0271IM","DOIUrl":"10.1164/rccm.202402-0271IM","url":null,"abstract":"","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":"1152-1154"},"PeriodicalIF":19.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}