Kenneth S. Kendler, Henrik Ohlsson, Jan Sundquist, Kristina Sundquist
To examine whether the level of genetic risk in psychiatric disorders impacts the social functioning of affected individuals, we examine the relationship between genetic risk factors for major depression (MD), anxiety disorders (AD), bipolar disorder (BD), non-affective psychosis (NAP), alcohol use disorder (AUD), and drug use disorder (DUD) in disordered individuals and five adverse social outcomes: unemployment, residence in areas of social deprivation, social welfare, early retirement, and divorce. We examine all cases with registration for these disorders from 1995 to 2015 in individuals born in Sweden. Genetic risk was assessed by the family genetic risk score (FGRS) and statistical estimates by Cox proportional hazard models. High genetic risk was significantly and modestly associated with poorer social outcomes in 23 of 30 analyses. Overall, genetic risk for MD, AD, AUD, and DUD impacted social functioning more strongly in affected individuals than did genetic risk for BD and NAP. Social welfare had the strongest associations with genetic risk, and residence in areas of high deprivation had the weakest. In individuals suffering from psychiatric and substance use disorders, high levels of genetic risk impact not only clinical features but also diverse measures of social functioning.
为了研究精神障碍的遗传风险水平是否会影响患者的社会功能,我们研究了精神障碍患者中重度抑郁症(MD)、焦虑症(AD)、双相情感障碍(BD)、非情感性精神病(NAP)、酒精使用障碍(AUD)和药物使用障碍(DUD)的遗传风险因素与五种不良社会结果(失业、居住在社会贫困地区、社会福利、提前退休和离婚)之间的关系。我们研究了 1995 年至 2015 年期间在瑞典出生、登记患有这些疾病的所有病例。遗传风险通过家族遗传风险评分(FGRS)进行评估,并通过 Cox 比例危险模型进行统计估算。在 30 项分析中,有 23 项分析显示高遗传风险与较差的社会结果有明显或适度的关联。总体而言,与 BD 和 NAP 的遗传风险相比,MD、AD、AUD 和 DUD 的遗传风险对受影响个体社会功能的影响更大。社会福利与遗传风险的关联性最强,而居住在高度贫困地区与遗传风险的关联性最弱。对于患有精神病和药物使用障碍的人来说,高水平的遗传风险不仅会影响临床特征,还会影响社会功能的各种测量指标。
{"title":"The impact of family-genetic risk scores on social functioning in individuals affected with six major psychiatric and substance use disorders in a Swedish National Sample","authors":"Kenneth S. Kendler, Henrik Ohlsson, Jan Sundquist, Kristina Sundquist","doi":"10.1002/ajmg.b.32996","DOIUrl":"10.1002/ajmg.b.32996","url":null,"abstract":"<p>To examine whether the level of genetic risk in psychiatric disorders impacts the social functioning of affected individuals, we examine the relationship between genetic risk factors for major depression (MD), anxiety disorders (AD), bipolar disorder (BD), non-affective psychosis (NAP), alcohol use disorder (AUD), and drug use disorder (DUD) in disordered individuals and five adverse social outcomes: unemployment, residence in areas of social deprivation, social welfare, early retirement, and divorce. We examine all cases with registration for these disorders from 1995 to 2015 in individuals born in Sweden. Genetic risk was assessed by the family genetic risk score (FGRS) and statistical estimates by Cox proportional hazard models. High genetic risk was significantly and modestly associated with poorer social outcomes in 23 of 30 analyses. Overall, genetic risk for MD, AD, AUD, and DUD impacted social functioning more strongly in affected individuals than did genetic risk for BD and NAP. Social welfare had the strongest associations with genetic risk, and residence in areas of high deprivation had the weakest. In individuals suffering from psychiatric and substance use disorders, high levels of genetic risk impact not only clinical features but also diverse measures of social functioning.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
{"title":"Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance","authors":"Yasaman Arman Fard, Elham Najjar Sadeghi, Zohreh Pajoohesh, Zahra Gharehdaghi, Dorsa Mousavi Khatibi, Shaghayegh Khosravifar, Yasamin Pishkari, Shadi Nozari, Ahmed Hijazi, SeyedAbbas Pakmehr, Sepideh Karkon Shayan","doi":"10.1002/ajmg.b.32986","DOIUrl":"10.1002/ajmg.b.32986","url":null,"abstract":"<p>Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Long Chen, Matilda Naesström, Matthew Halvorsen, Anders Fytagoridis, Stephanie B. Crowley, David Mataix-Cols, Christian Rück, James J. Crowley, Diana Pascal
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.
{"title":"Genomics of severe and treatment-resistant obsessive–compulsive disorder treated with deep brain stimulation: A preliminary investigation","authors":"Long Long Chen, Matilda Naesström, Matthew Halvorsen, Anders Fytagoridis, Stephanie B. Crowley, David Mataix-Cols, Christian Rück, James J. Crowley, Diana Pascal","doi":"10.1002/ajmg.b.32983","DOIUrl":"10.1002/ajmg.b.32983","url":null,"abstract":"<p>Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of <i>KCNB1</i>, a deletion at 15q11.2, and a duplication at 15q26.1. The <i>KCNB1</i> variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This <i>KCNB1</i> substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32983","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
{"title":"Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review","authors":"Jan Dahrendorff, Glenn Currier, Monica Uddin","doi":"10.1002/ajmg.b.32985","DOIUrl":"10.1002/ajmg.b.32985","url":null,"abstract":"<p>Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (<i>N</i> = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (<i>N</i> = 22) with a few studies assessing treatment response to electroconvulsive therapy (<i>N</i> = 3). Additionally, there are few genome-scale efforts (<i>N</i> = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dementia, an increasingly prevalent neurological disorder with a projected threefold rise globally by 2050, necessitates early detection for effective management. The risk notably increases after age 65. Dementia leads to a progressive decline in cognitive functions, affecting memory, reasoning, and problem-solving abilities. This decline can impact the individual's ability to perform daily tasks and make decisions, underscoring the crucial importance of timely identification. With the advent of technologies like computer vision and deep learning, the prospect of early detection becomes even more promising. Employing sophisticated algorithms on imaging data, such as positron emission tomography scans, facilitates the recognition of subtle structural brain changes, enabling diagnosis at an earlier stage for potentially more effective interventions. In an experimental study, the Swin transformer algorithm demonstrated superior overall accuracy compared to the vision transformer and convolutional neural network, emphasizing its efficiency. Detecting dementia early is essential for proactive management, personalized care, and implementing preventive measures, ultimately enhancing outcomes for individuals and lessening the overall burden on healthcare systems.
{"title":"Revolutionizing dementia detection: Leveraging vision and Swin transformers for early diagnosis","authors":"Rini P L, Gayathri K S","doi":"10.1002/ajmg.b.32979","DOIUrl":"10.1002/ajmg.b.32979","url":null,"abstract":"<p>Dementia, an increasingly prevalent neurological disorder with a projected threefold rise globally by 2050, necessitates early detection for effective management. The risk notably increases after age 65. Dementia leads to a progressive decline in cognitive functions, affecting memory, reasoning, and problem-solving abilities. This decline can impact the individual's ability to perform daily tasks and make decisions, underscoring the crucial importance of timely identification. With the advent of technologies like computer vision and deep learning, the prospect of early detection becomes even more promising. Employing sophisticated algorithms on imaging data, such as positron emission tomography scans, facilitates the recognition of subtle structural brain changes, enabling diagnosis at an earlier stage for potentially more effective interventions. In an experimental study, the Swin transformer algorithm demonstrated superior overall accuracy compared to the vision transformer and convolutional neural network, emphasizing its efficiency. Detecting dementia early is essential for proactive management, personalized care, and implementing preventive measures, ultimately enhancing outcomes for individuals and lessening the overall burden on healthcare systems.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hereditary spastic paraplegia (HSP) is a group of familial diseases characterized by progressive corticospinal tract degeneration. Clinically, patients present with lower-limb spasticity and weakness. To date, more than 80 genetic HSP types have been identified. Despite advances in molecular genetics, novel HSP gene discoveries are ongoing, with a low genetic diagnostic yield. In this study, we aimed to determine pathogenic variants in a family with HSP, which was not diagnosed through conventional genetic testing. We clinically characterized a large family and conducted whole genome sequencing (WGS) analysis of four affected and three unaffected individuals in the family to identify the genetic cause of HSP. This family had autosomal dominant pure (uncomplicated) late childhood-onset HSP. The patients' symptoms accelerated between the ages of 20 and 30. Brain magnetic resonance images typically showed white matter changes, a thin corpus callosum, and cerebellar atrophy. We identified a heterozygous missense variant, KCNJ3 c.1297T>G (p.Leu433Val), through WGS and family genetic analysis, confirmed by Sanger sequencing. We suggest that the identification of KCNJ3 c.1297T>G (p.Leu433Val) constitutes the discovery of a potential novel gene responsible for HSP in this family. This is the first study to report the possible role of a KCNJ3 variant in HSP pathogenesis. Our findings further expand the phenotypic and genotypic spectrum of HSP.
{"title":"KCNJ3 is a novel candidate gene for autosomal dominant pure hereditary spastic paraplegia identified using whole genome sequencing","authors":"Woong-Woo Lee, Cha Gon Lee, Chang-Seok Ki","doi":"10.1002/ajmg.b.32984","DOIUrl":"10.1002/ajmg.b.32984","url":null,"abstract":"<p>Hereditary spastic paraplegia (HSP) is a group of familial diseases characterized by progressive corticospinal tract degeneration. Clinically, patients present with lower-limb spasticity and weakness. To date, more than 80 genetic HSP types have been identified. Despite advances in molecular genetics, novel HSP gene discoveries are ongoing, with a low genetic diagnostic yield. In this study, we aimed to determine pathogenic variants in a family with HSP, which was not diagnosed through conventional genetic testing. We clinically characterized a large family and conducted whole genome sequencing (WGS) analysis of four affected and three unaffected individuals in the family to identify the genetic cause of HSP. This family had autosomal dominant pure (uncomplicated) late childhood-onset HSP. The patients' symptoms accelerated between the ages of 20 and 30. Brain magnetic resonance images typically showed white matter changes, a thin corpus callosum, and cerebellar atrophy. We identified a heterozygous missense variant, <i>KCNJ3</i> c.1297T>G (p.Leu433Val), through WGS and family genetic analysis, confirmed by Sanger sequencing. We suggest that the identification of <i>KCNJ3</i> c.1297T>G (p.Leu433Val) constitutes the discovery of a potential novel gene responsible for HSP in this family. This is the first study to report the possible role of a <i>KCNJ3</i> variant in HSP pathogenesis. Our findings further expand the phenotypic and genotypic spectrum of HSP.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32984","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas J. Santistevan, Colby T. Ford, Cole S. Gilsdorf, Yevgenya Grinblat
Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here, we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish mecp2 mutants from 5 to 7 days post-fertilization (dpf). We show that zebrafish mecp2 function is required for normal thigmotaxis but is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for mecp2 in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires mecp2 function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2's function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.
{"title":"Behavioral and transcriptomic analyses of mecp2 function in zebrafish","authors":"Nicholas J. Santistevan, Colby T. Ford, Cole S. Gilsdorf, Yevgenya Grinblat","doi":"10.1002/ajmg.b.32981","DOIUrl":"10.1002/ajmg.b.32981","url":null,"abstract":"<p>Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse <i>Mecp2</i> mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish <i>mecp2</i> mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here, we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish <i>mecp2</i> mutants from 5 to 7 days post-fertilization (dpf). We show that zebrafish <i>mecp2</i> function is required for normal thigmotaxis but is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for <i>mecp2</i> in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires <i>mecp2</i> function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2's function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32981","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis C. Edwards, Madhurbain Singh, Roseann E. Peterson, Bradley T. Webb, Amanda E. Gentry
Little is known about how non-suicidal and suicidal self-injury are differentially genetically related to psychopathology and related measures. This research was conducted using the UK Biobank Resource, in participants of European ancestry (N = 2320 non-suicidal self-injury [NSSI] only; N = 2648 suicide attempt; 69.18% female). We compared polygenic scores (PGS) for psychopathology and other relevant measures within self-injuring individuals. Logistic regressions and likelihood ratio tests (LRT) were used to identify PGS that were differentially associated with these outcomes. In a multivariable model, PGS for anorexia nervosa (odds ratio [OR] = 1.07; 95% confidence intervals [CI] 1.01; 1.15) and suicidal behavior (OR = 1.06; 95% CI 1.00; 1.12) both differentiated between NSSI and suicide attempt, while the PGS for other phenotypes did not. The LRT between the multivariable and base models was significant (Chi square = 11.38, df = 2, p = 0.003), and the multivariable model explained a larger proportion of variance (Nagelkerke's pseudo-R2 = 0.028 vs. 0.025). While NSSI and suicidal behavior are similarly genetically related to a range of mental health and related outcomes, genetic liability to anorexia nervosa and suicidal behavior is higher among those reporting a suicide attempt than those reporting NSSI-only. Further elucidation of these distinctions is necessary, which will require a nuanced assessment of suicidal versus non-suicidal self-injury in large samples.
{"title":"Associations between polygenic liability to psychopathology and non-suicidal versus suicidal self-injury","authors":"Alexis C. Edwards, Madhurbain Singh, Roseann E. Peterson, Bradley T. Webb, Amanda E. Gentry","doi":"10.1002/ajmg.b.32982","DOIUrl":"10.1002/ajmg.b.32982","url":null,"abstract":"<p>Little is known about how non-suicidal and suicidal self-injury are differentially genetically related to psychopathology and related measures. This research was conducted using the UK Biobank Resource, in participants of European ancestry (<i>N</i> = 2320 non-suicidal self-injury [NSSI] only; <i>N</i> = 2648 suicide attempt; 69.18% female). We compared polygenic scores (PGS) for psychopathology and other relevant measures within self-injuring individuals. Logistic regressions and likelihood ratio tests (LRT) were used to identify PGS that were differentially associated with these outcomes. In a multivariable model, PGS for anorexia nervosa (odds ratio [OR] = 1.07; 95% confidence intervals [CI] 1.01; 1.15) and suicidal behavior (OR = 1.06; 95% CI 1.00; 1.12) both differentiated between NSSI and suicide attempt, while the PGS for other phenotypes did not. The LRT between the multivariable and base models was significant (Chi square = 11.38, df = 2, <i>p</i> = 0.003), and the multivariable model explained a larger proportion of variance (Nagelkerke's pseudo-<i>R</i><sup>2</sup> = 0.028 vs. 0.025). While NSSI and suicidal behavior are similarly genetically related to a range of mental health and related outcomes, genetic liability to anorexia nervosa and suicidal behavior is higher among those reporting a suicide attempt than those reporting NSSI-only. Further elucidation of these distinctions is necessary, which will require a nuanced assessment of suicidal versus non-suicidal self-injury in large samples.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32982","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shane Crinion, Cathy A. Wyse, Gary Donohoe, Lorna M. Lopez, Derek W. Morris
Chronotype is a proxy sleep measure that has been associated with neuropsychiatric disorders. By investigating how chronotype influences risk for neuropsychiatric disorders and vice versa, we may identify modifiable risk factors for each phenotype. Here we used Mendelian randomization (MR), to explore causal effects by (1) studying the causal relationships between neuropsychiatric disorders and chronotype and (2) characterizing the genetic components of these phenotypes. Firstly, we investigated if a causal role exists between five neuropsychiatric disorders and chronotype using the largest genome-wide association studies (GWAS) available. Secondly, we integrated data from expression quantitative trait loci (eQTLs) to investigate the role of gene expression alterations on these phenotypes. Evening chronotype was causal for increased risk of schizophrenia and autism spectrum disorder and schizophrenia was causal for a tendency toward evening chronotype. We identified 12 eQTLs where gene expression changes in brain or blood were causal for one of the phenotypes, including two eQTLs for SNX19 in hippocampus and hypothalamus that were causal for schizophrenia. These findings provide important evidence for the complex, bidirectional relationship that exists between a sleep-based phenotype and neuropsychiatric disorders, and use gene expression data to identify causal roles for genes at associated loci.
{"title":"Mendelian randomization analysis using GWAS and eQTL data to investigate the relationship between chronotype and neuropsychiatric disorders and their molecular basis","authors":"Shane Crinion, Cathy A. Wyse, Gary Donohoe, Lorna M. Lopez, Derek W. Morris","doi":"10.1002/ajmg.b.32980","DOIUrl":"10.1002/ajmg.b.32980","url":null,"abstract":"<p>Chronotype is a proxy sleep measure that has been associated with neuropsychiatric disorders. By investigating how chronotype influences risk for neuropsychiatric disorders and vice versa, we may identify modifiable risk factors for each phenotype. Here we used Mendelian randomization (MR), to explore causal effects by (1) studying the causal relationships between neuropsychiatric disorders and chronotype and (2) characterizing the genetic components of these phenotypes. Firstly, we investigated if a causal role exists between five neuropsychiatric disorders and chronotype using the largest genome-wide association studies (GWAS) available. Secondly, we integrated data from expression quantitative trait loci (eQTLs) to investigate the role of gene expression alterations on these phenotypes. Evening chronotype was causal for increased risk of schizophrenia and autism spectrum disorder and schizophrenia was causal for a tendency toward evening chronotype. We identified 12 eQTLs where gene expression changes in brain or blood were causal for one of the phenotypes, including two eQTLs for SNX19 in hippocampus and hypothalamus that were causal for schizophrenia. These findings provide important evidence for the complex, bidirectional relationship that exists between a sleep-based phenotype and neuropsychiatric disorders, and use gene expression data to identify causal roles for genes at associated loci.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32980","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiera Mack, Rolan Batallones, Emily Morris, Angela Inglis, Ramona Moldovan, Kevin McGhee, Kip D. Zimmerman, Jehannine Austin
Studies have consistently shown that psychiatric genetic counseling (pGC) helps people with psychiatric conditions by increasing empowerment and self-efficacy, and addressing emotions like guilt. Yet, it is not routinely provided. Genetic counselors and trainees express low confidence in their ability to provide meaningful pGC, especially in the absence of adequate training. Therefore, to address this gap a “Psychiatric Genetic Counseling for Genetic Counselors” (PG4GC) workshop was developed and delivered to 13 groups of participants (primarily qualified genetic counselors and trainees) between 2015 and 2023 (10 workshops were delivered in-person, and three virtually). Participants completed quantitative questionnaires both before and after completing the workshop to assess their comfort, knowledge, behavior, and feeling of being equipped to provide pGC. In total, 232 individuals completed the pre-workshop questionnaire and 154 completed the post-workshop questionnaire. Participants felt more comfortable, knowledgeable, and equipped to provide pGC, and reported being more likely to address psychiatric concerns after the workshop, regardless of whether they were trainees or practicing professionals and whether they completed the workshop in-person or virtually. This study suggests that the PG4GC workshop is an effective educational tool in pGC training that may aid in broader implementation of the service.
研究一致表明,精神疾病遗传咨询(pGC)可以增强患者的能力和自我效能感,缓解内疚等情绪,从而对精神疾病患者有所帮助。然而,这种咨询并不是常规性的。遗传咨询师和受训人员对自己提供有意义的 pGC 的能力信心不足,尤其是在缺乏适当培训的情况下。因此,为了弥补这一不足,我们开发了 "遗传咨询师的精神遗传咨询"(PG4GC)研讨会,并在 2015 年至 2023 年期间向 13 组参与者(主要是合格的遗传咨询师和受训人员)提供了培训(10 次研讨会为现场培训,3 次为虚拟培训)。参与者在完成研讨会之前和之后都填写了定量问卷,以评估他们在提供 pGC 方面的舒适度、知识、行为和装备感。共有 232 人完成了研修班前的问卷调查,154 人完成了研修班后的问卷调查。无论参加者是受训人员还是执业专业人员,也无论他们是亲自参加还是通过虚拟方式完成研修班,参加者都感觉在提供心理咨询方面更加得心应手、知识更加丰富、装备更加齐全,并表示在研修班结束后更有可能解决精神方面的问题。这项研究表明,PG4GC 工作坊是一种有效的心理咨询培训教育工具,可以帮助更广泛地开展心理咨询服务。
{"title":"The effectiveness of psychiatric genetic counseling training: An analysis of 13 international workshops","authors":"Tiera Mack, Rolan Batallones, Emily Morris, Angela Inglis, Ramona Moldovan, Kevin McGhee, Kip D. Zimmerman, Jehannine Austin","doi":"10.1002/ajmg.b.32978","DOIUrl":"10.1002/ajmg.b.32978","url":null,"abstract":"<p>Studies have consistently shown that psychiatric genetic counseling (pGC) helps people with psychiatric conditions by increasing empowerment and self-efficacy, and addressing emotions like guilt. Yet, it is not routinely provided. Genetic counselors and trainees express low confidence in their ability to provide meaningful pGC, especially in the absence of adequate training. Therefore, to address this gap a “Psychiatric Genetic Counseling for Genetic Counselors” (PG4GC) workshop was developed and delivered to 13 groups of participants (primarily qualified genetic counselors and trainees) between 2015 and 2023 (10 workshops were delivered in-person, and three virtually). Participants completed quantitative questionnaires both before and after completing the workshop to assess their comfort, knowledge, behavior, and feeling of being equipped to provide pGC. In total, 232 individuals completed the pre-workshop questionnaire and 154 completed the post-workshop questionnaire. Participants felt more comfortable, knowledgeable, and equipped to provide pGC, and reported being more likely to address psychiatric concerns after the workshop, regardless of whether they were trainees or practicing professionals and whether they completed the workshop in-person or virtually. This study suggests that the PG4GC workshop is an effective educational tool in pGC training that may aid in broader implementation of the service.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}